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Abstract 
The Olive (Olea europaea L.) is a typical fruit tree of Mediterranean areas characterized by high-quality oil 
production and high tolerance to water deficit. Due to worldwide water scarcity in Mediterranean regions, it 
becomes indispensable to monitor plant water status, in example, through xylem water potential (Ψx). 
Unfortunately, measurement is difficult to perform with high spatial resolution at field scale (> 50 measurements 
per hectare), due to the large amount of manpower required in the prosses which turned this technique into a 
high-cost solution. This situation drastically hinders its applicability in large production areas. Thus, the 
objective of this research is implementing a spatial prediction model of plant water status in an olive orchard, 
using a single Ψx measurement performed in a reference site over the orchard. The experimental site was 
established in 2.2 hectares of commercial olive trees in the Pencahue valley located in the Maule region (Chile) 
during the 2013/14 growing season. Measurements of Ψx were performed at key phenological stages of olive 
trees. The proposed methodology allowed to estimate the behavior of Ψx in unsampled olive trees from reference 
site measurements, with an average spatial error less than ±0.6 MPa and correlation of 0.8 (R2) ratifying the high 
spatial dependence between different sites sampled at field scale. Therefore, distribution of spatial variability 
would be adequate for the application of irrigation in homogeneous management zones, facilitating water 
management practices in clearly identified zones within the olive orchard under study. 

Keywords: precision agriculture, spatial variability, midday stem water potential, spatial prediction model 

1. Introduction 
The severe lack of precipitation is one of the most critical issues in agriculture these days, especially in 
Mediterranean climate where significant water deficit areas were emerged worldwide. Chile is no free from this 
issue where annual mean precipitation has been reduced by 45 to 105 mm in the last 31 years (IPCC, 2021), 
affecting on water availability for agricultural ecosystems (Del Pozo et al., 2019). Also, high variability in annual 
climatic conditions, due to the ENSO fluctuations occur lasts years directly affecting on precipitations. ENSO 
consists of the alternation of two seasonal ocean currents, “Niño” and “Niña” cycles which modifying the 
climate of a year, especially during the “Niña” significantly reducing the precipitation. Thus, proper water 
management and implementation of methodologies to optimize irrigation during agricultural growing season is 
increasingly necessary to consider also on olive trees (Ahumada et al., 2018).  

Olives (Olea europaea L.) has become an important and profitable crop in Mediterranean climates (Tognetti et 
al., 2006). Chile maintained a stable cultivated surface until 1997 (Ben-Gal et al., 2009), and then it has faced an 
exponential growth in cultivated hectares due to the high-quality olive oil production and crop ability to tolerate 
strong water deficits (Ahumada et al., 2017). This issue push growers to plant it on areas with low water 
availability, where other species could not thrive (Dichio et al., 2003; Moriana et al., 2003; García-González et 
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al., 2010). This high tolerance to lack of water of this specie is due to the strong stomatal control in conjunction 
with osmoregulation mechanisms to regulates transpiration rate (Fernández et al., 1997; Moriana et al., 2003; 
Tognetti et al., 2006) allowing olive trees to tolerate long periods with strong soil water deficit during season 
(Dichio et al., 2003; Ahumada et al., 2017, 2018). Thus, it has been observed in some investigations, that this 
species can reach xylem water potential values (Ψx) of up to -2.0 MPa while maintaining mild stress, and even 
reach values of -6.0 MPa, for severe stress values with a significant reduction in photosynthetic capacity 
(Ahumada et al., 2019). 

Knowing the water behavior of olive trees by monitoring Ψx is fundamental to made decision on irrigation 
management (Tognetti et al., 2006; Ahumada et al., 2018) (irrigation timing and frequency) to save water, 
especially considering the current climatic context. However, identifying which sector or plants in the orchard 
monitor and how many measurements perform in the process is difficult to define, especially in orchards with 
high soil spatial variability. This variability is present in all agricultural orchards, which is related to some 
agronomic interest variables (AIV) (López-Granados et al., 2003; Acevedo-Opazo et al., 2010). Thus, the 
spatialized study of AIV such as Ψx (among others), would allow as to know and understand how spatial 
variability of water status is distributed over the field during the season to propose a site-specific irrigation 
management (López-Granados et al., 2003; Acevedo-Opazo et al., 2008, 2010, 2013). Similarly, the water 
behavior can be predicted from a measurement of water potential at a reference site, thus implementing a spatial 
prediction model of AIV such as water status (Acevedo-Opazo et al., 2009). 

This research proposes the implementation of a spatial prediction model of water status in an Olive orchard, to 
study the spatial variability at field scale and optimize the water resources during the growing season. The model 
is expected to propose homogeneous management zones for xylem water status management within the orchard, 
generating significant water savings and facilitating irrigation work. 

2. Materials and Method 
2.1 Study Site 

The study was conducted in olive orchard orchard (Olea Europea L., cv. Arbequina) during the 2013/2014 
growing season in the “Olivares de Quepu” company, located in Pencahue Valley, Chile (35º23′ LS; 71º44′ LW; 
96 m.a.s.l.) in an area of 2.2 hectares (ha). The nine years old orchard has planting by a frame of 5.0 × 1.5 m 
(1332 pl ha-1), with monocone training system, irrigated by two drippers per plant with a discharge of 2.0 L h-1. 
Pencahue valley is classified as warm temperate Mediterranean climate, with a prolonged dry season during 
spring to summer (annual rainfall of 700 mm, concentrated in winter), with average minimum temperatures of 
4.4 ºC and average maximum temperature of 30 ºC. Regarding the soils, they correspond to the Pencahue series, 
which are characterized by being shallow, with slopes that surround 2 to 10%, textures that vary between fine 
sandy loam and sandy clay loam. Regarding the reference evapotranspiration, this is approximately 6 mm day-1 
for the month of January, 4.5 mm day-1 for February and 3 mm day-1 for March.  

Due to the conditions of water demand described above and the characteristics of the soil, the irrigations are 
carried out every 15 to 20 days for the same irrigation sector. However, due to the lack of water as of 
mid-January, the irrigations are extended every 30 days. 

2.2 Geolocation of the Experimental Site 

The develop and implementation of the model, 38 sampling sites were selected within a 2.2 hectares olive 
orchard (Figure 1). These sites were distributed in a non-regular grid, according to the nested method (Weitz et 
al., 1993). This method considers the location of the first points of the grid at smaller distances, to later increase 
the monitoring distance between them, to minimize the experimental or field error at spatial semi-variance 
calculating moment. To know the exact localization of each site on grid, a geo-referenced process was made 
using a DGPS (Trimble, Pathfinder ProXRS, Sunnyvale, California, USA).  
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Within the implementation stages of the plant water status prediction model proposed by Acevedo-Opazo et al. 
(2008), the reference site (sre) was determined, which turned out to be S10, with an average correlation of 0.8 
with the rest of the sites sampled in the study.  

2.6 Spatial Distribution Maps  

For Ψx mapping of the olive orchard, sectors with different ranges of plant water status were identified. For this, 
the range proposed by Ahumada et al. (2019) was used, who determined that for Ψx from -2.2 MPa a slight stress 
begins to be observed in the water status of the Olives, and above -3.6 MPa, this stress passes to be moderate. 
Due to the stress levels reached in this study, the step from zero to slight stress was used to differentiate two 
different management sectors, considering that the entire orchard was subjected to the same type of irrigation. 
Thus, thematic cartographies of midday stem water potential were performed using the 3D Field software 
(Version 2.9.0.0, 2007 Vladimir Galouchko, Rusia).  

2.7 Model Validation 

To statistically corroborate the errors associated with the model, root mean square error (RMSE; Equation 5) and 
correlation coefficient (R2) was used. With this statistic, cartographies were constructed to observe the spatial 
distribution of the error of the proposed model. 

RMSE = ට∑ ൫yobst - yest൯2n
i=1

n
                               (5) 

3. Results 
3.1 Semi-variogram Analysis 

The semi-variogram models evaluated at different monitoring dates during the season, in most cases, showed a 
good degree of correlation with the values of Ψx, being the Exponential model the one that presented the best 
results. In this sense, the R2 values ranged between 0.44 and 0.99 (Table 1). The lowest R2 value was recorded 
during the first monitoring date (January 1), with a value of 0.44. This result was due to the irrigation criteria 
used by the grower. An irrigation frequency of around 20 days was considered (at the beginning of the season), 
which would have generated a condition of null to slight water restriction. The above is shown in Figure 2, 
where Ψx showed values below -1.6 MPa. This situation changed from the second monitoring date (January 31), 
where the irrigation frequency was extended to 30 days, increasing the water potential level above -1.9 MPa 
(Figure 2).  

 

Table 1. Parameters of the adjusted semi-variogram for each xylematic water potential measurement (MPa) 
evaluated 

Components Semi-variogram of Olive Orchard—Summer Season 2014 
Date Unit Model R2 C0 C0 + C A0 SD (%) 
03-01-14 MPa Ex 0.44 0.006 0.04 33.90 14.7 

31-01-14 MPa Ex 0.91 0.000 0.18 150.60 0.1 

07-02-14 MPa G 0.97 0.069 1.79 279.03 3.8 

28-02-14 MPa Ex 0.90 0.003 0.39 94.20 0.8 

07-03-14 MPa Ex 0.99 0.012 0.19 195.00 6.8 

14-03-14 MPa G 0.98 0.049 0.34 217.54 14.2 

Note. C0: Nugget. C0 + C: Sill. A0: Range. SD: Spatial Dependence (%). G: Gaussian, Ex: Exponential. 

 

On the other hand, for different values of A0 calculated on different sampling dates, an important variability was 
observed, which ranged between 33 and 280 meters (Table 1), being these values always higher than the 
sampling distances used in the field (nest method, with actual sampling distances that varied between 1.5 and 23 
meters). 

3.2 Water Status of Olive Tree 

For each of the sampling dates (six in total) the mean Ψx of the 38 sampling sites was calculated (Figure 2). In 
this regard, it is observed that as the season elapses the Ψx measurement of the orchard becomes more negative 
until 59 Julian day with a mean value of -2.4 MPa, date from which the water stress was reduced, reaching 
values of -1.9 MPa on the last measurement date of the season (73 Julian day). A similar behavior was observed 
for the standard deviation (SDD), which was higher during the dates with greater water stress (Figure 2). 
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model performance, which show a good degree of spatial coincidence between the proposed zones (spatial 
motifs) in terms of their spatial distribution and the identification of irrigation management zones, even for the 
worst performing date (February 7). 

When observing the results of the cartographies obtained by the proposed model for the worst estimation date 
(February 7) (Figure 5), it is observed that there is an 86% coincidence between the actual values measured in 
the field compared to the values estimated by the model for the same sampling sites. On the other hand, for the 
best estimation date (March 14), there is a 95% coincidence between the actual measured values compared to the 
values estimated by the model for the same sites of the sampling grid. The results obtained are interesting, since 
when comparing the results obtained in the proposed cartographies, a good degree of coincidence is observed 
between both plant water status cartographies proposed by the spatial model, allowing to clearly identify two 
different irrigation management zones within the orchard, facilitating the producer's decision making. 

In the Figure 6, the areas of black color represent the sites where the spatial prediction of the model is less 
reliable. Regarding the spatial distribution of these sectors (black color), they are mainly located in the “eastern” 
sector of the orchard under study, a sector that coincides with the zone of highest water restriction in the orchard, 
observed throughout the season. Therefore, as indicated in the research proposed by Acevedo-Opazo et al. (2008) 
there is an important coincidence between the sectors of highest spatial variability with the zones of highest 
water restriction and highest spatial error measured within the orchard. This tool represents an important 
contribution for farmers, since it generates a significant reduction in the labor used for monitoring the water 
status. 

The methodology used in this article was proposed to spatially model the phenology and maturity of the vine 
with interesting results (Verdugo-Vásquez et al., 2016, 2018, 2019). This first validation approach in olives 
orchards opens the opportunity to continue exploring different models of interest in this species, such as 
phenology, yield, and maturity, among others. There is also space to evaluate its use in other species affected by 
climate change, such as the cherry tree.  

5. Conclusion 
The evaluated orchard presents an important spatial structure, corroborating that most of the semi-variance 
observed for the plant water status variable, would be explained mainly by the high spatial variability of the field 
or structural variance “C”. Thus, it is possible to propose a site-specific management for the intra-predial 
irrigation operation. Based on this, it is possible to propose a linear model for spatial prediction of xylem water 
potential in olive trees with a spatial error of less than 0.4 MPa in more than 80% of the orchard area. This 
measurement is relevant in conditions of high spatial variability and in a semi-arid climate. Therefore, it is 
possible to propose two well-defined and structured site-specific management zones within the orchard under 
study, in which two different irrigation criteria are observed for each of the sectors identified in the study, where 
the threshold identified between both zones was -2.2 MPa.  
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