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Abstract 
 

In the present context, the effect of Eckert number and Forchimer number on a two dimensional steady 
free convective heat and mass transfer flow of an electrically conducting fluid through a porous medium 
with radiation effect has been analyzed. The governing momentum, energy and concentration equations 
have been solved by using Nachtsheim-Swigert shooting iteration technique with sixth-order Runge-
Kutta integration scheme. In both cases of suction and injection flow the results are presented as velocity, 
temperature and concentration profiles for the pertinent parameters of this work. Moreover, the wall share 
stress, average heat transfer and average mass transfer are exposed in graphically. In all studied cases, 
velocity, temperature and concentration distributions are affected by the considered parameters. 
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1 Introduction 
 
The recent technological implications have given rise to increased interest in free and forced convection in 
inclined plate immersed in porous media. The study of heat and mass transfer with the Eckert number and 
Forcheimer number along with radiation is very important to engineers and scientists because of its 
numerous applications such as storage of radioactive nuclear waste materials, transpiration cooling, 
separation processes in chemical industries, filtration, ground water pollution etc. 
 
Researchers have done many conceptual works on mass and heat transfer, among them Jayaraj [1] observed 
the thermophoresis in laminar flow over cold inclined plates with variable properties. Mohammadein and 
Mansour [2] investigated radiative effects on natural convection flows in a porous media. Tarkar and Kumari 
[3] presented computational analysis of coupled radiation-convection dissipative non-grey gas flow in a non-
Darcy porous medium using the keller-Box implicit scheme. Ahammad and Shirazul Hoque Mollah [4] 
discussed MHD free convection flow and mass transfer over a stretching sheet considering Dufour & Soret 
effects in the presence of magnetic field. Their investigated results showed that the flow field is notably 
influenced by the considering parameters. Rapits and Perdikis [5] showed unsteady flow through a highly 
porous medium in the presence of radiation. Alam and Rahaman [6] investigated Dufour and Soret effects on 
mixed convection flow past a vertical porous flat plate with variable suction. Alam et al. [7] carried out a 
numerical study of the combined free-forced convection and mass transfer flow past a vertical porous plate 
in a porous medium with heat generation and thermal duffusion. Alam and Ahammad discussed [8] effects 
on variable chemical reaction and variable electric conductivity on free convective heat and mass transfer 
flow along an inclined stretching sheet with heat and mass transfer fluxes under the influence of Dufour and 
Soret effects. The authors established in their work that the chemical reaction parameter, Dufour number, 
Soret number and heat (or mass) flux parameter play a crucial role in the solutions. Alam and Rahaman [9] 
showed thermophoretic particle deposition on unsteady hydromagnetic radiative heat and mass transfer 
along an infinite inclined permeable surface with viscous dissipation and joule heating. Cortell [10] 
presented flow and heat transfer of a fluid through a porous medium over a stretching surface with internal 
heat generation/absorption and suction/blowing. Esmaeil et al. [11] investigated the effect of heat generation 
on natural convection from an inclined surface embedded in a porous medium. In that work the inclined 
surface is taken as impermeable. 
 
Kairi and Murthy [12] carried out Soret effect on free convection from a melting vertical surface in a non-
Darcy porous medium. Postelnicu [13] investigated influence of a magnetic field on heat and mass transfer 
by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. 
Ravikumar et al. [14] investigated MHD double diffusive and chemically reactive flow through porous 
medium bounded by two vertical plates. Samad et al. [15] presented free convection flow through a porous 
medium with thermal radiation, viscous dissipation and variable suction in presence of magnetic field. 
Maleque [16] showed MHD non-Newtonian casson fluid heat and mass transfer flow with 
exothermic/endothermic binary chemical reaction and activation energy. Elbashbeshy [17] analysed heat 
transfer over a stretching surface with variable surface heat flux. Chen [18] studied effects of magnetic field 
and suction/injection considering surface heat flux on convection heat transfer of non-Newtonian power-law. 
Acharya et al. [19] investigated heat and mass transfer over an accelerating surface with heat source in the 
presence of suction and blowing. 
 
Very recent Veera Krishna [20] focused Hall effects on MHD flow of a visco-elastic fluid through a porous 
medium. In this study the author considered an infinite oscillating porous plate with heat source and 
chemical reaction.  Ahmad Dar and Elangovan [21] carried out thermal diffusion, radiation and inclined 
magnetic field effects on oscillatory flow in an asymmetric channel in where heat source and chemical 
reaction is considered. 
 
The objective of this work is to analyze the behavior of radiation effect along with Eckert number and 
Forcheimer number simultaneously on heat and mass transfer for both of the suction and injection flow. 
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2 Mathematical Formulation 

 
Consider a steady MHD laminar free convective heat and mass transfer flow of a viscous and incompressible 
fluid along an inclined surface from the vertical with an acute angle  embedded in porous media. The 

surface is assumed to be permeable and moving with velocity, bxxuw )( (where b is constant called 

stretching rate). Fluid suction is imposed at the stretching surface. The flow is assumed to be in x-direction, 
which is taken along the plate in the upward direction while the y-axis is taken to be normal to the plate. We 
further assume that there exists a homogeneous n-th order chemical reaction between the fluid and species 
concentration. 

 

With the Boussinesq and the usual boundary-layer approximations the present problem is governed by the 
continuity, momentum, energy and concentration equations respectively as follows: 
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By applying Rosseland approximation �� can be expressed as, 
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, where �� is the Stefan-Boltzamann constant, ��  is the mean absorption coefficient and 
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Then equation (3) takes the form, 
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where u, v are the fluid velocity components along the x and y directions respectively,  denotes the 
kinematic viscosity, g is the gravitational acceleration ,  is the fluid density,  and  is the volumetric 
coefficient of thermal expansion & concentration expansion respectively, k is the fluid thermal conductivity, 
cs is the concentration susceptibility, cp is the specific heat at constant pressure, Tm is the mean temperature 

of fluid, kT is the thermal diffusion ratio, lK  is the reaction rate, Dm is the molecular diffusivity of the species 

concentration and n stands for the chemical reaction order. 
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Therefore equation (2) can be re-written as: 
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Therefore equation (5) can be re-written as: 
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The boundary conditions for the model are given as: 
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where b is a constant called stretching rate and A1, A2 are proportionality constants and )(xvw represents the 

permeability of the porous surface where its sign indicates suction ( 0) or injection ( 0). 
 
Now, introducing the similarity variables (see Acharya et al. [19]): 
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Then equations (2)-(4) yields the following equations 
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The boundary conditions (8) becomes 
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Here,   2/1
/ bvf ww  is the non-dimensional wall mass transfer coefficient so that wf 0 indicates wall 

suction whereas wf  0 indicates wall injection. 

 
For the present problem the local skin-friction coefficient, the local Nusselt number and the local Sherwood 
number are the parameters of engineering interest which are given respectively as below: 
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Applying the boundary condition (13), the system of equations (10)-(12) have been solved numerically by 
using the Nachtsheim-Swigert [22] shooting iteration technique with sixth-order Runge-Kutta integration 
scheme. Various groups of the parameters gs, gc, fw, Pr, Sc, Df, Sr, K, n and  were considered in different 
phases. In all the computations the step size  = 0.01 was selected that satisfied a convergence criterion of 
106 in almost all of different phases mentioned above. 
 

3 Code Validation 
 
For the justification of the numerical code of our work, we have compared the local Nusselt number (1/θ(0)) 
of present study with the previously published work Elbashbeshy [17] and Chen [18] for specific value of Pr 
with gs =  gc = K = r = Sr = R = n = Df = Fs = Da-1= Re-1=0, Sc = 0.22, fw = 0.6 and  = 900. The 
comparison is shown in Table 1 that reveals very tremendous agreement with the mentioned results and thus 
it makes an assertion of the current numerical code. 
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Table 1. Comparison of the local Nusselt number with Elbashbeshy [17] and Chen [18] for their 
Newtonian fluid case and for gs = gc = K = r = Sr = R = n = Df = Fs = Da-1= Re-1=0, Sc = 0.22, fw = 0.6 

and  = 900 case with different Pr 
 

Pr Elbashbeshy [17] Chen [18] Present study 
0.72 0.7711 0.76217 0.7622729 
1.00 1.0060 1.00616 1.0062684 
10.0 7.0921 7.09205 7.0939394 

 

4 Results and Discussion 
 
In this research we have shown the effect of Eckert number and Forchimer number on a two dimensional 
steady free convective heat and mass transfer flow of an electrically conducting fluid through a porous 
medium with radiation effect. 
 

The influence of Eckert number Ec on the velocity, temperature and concentration profiles are displayed in 
Fig. 1(a)-(c) respectively. It is observed that velocity and temperature profiles that are displayed in Fig. (a) 
and (b) increase due to the effect of Eckert number for the cases of suction and injection whereas 
concentration profiles decreases. A remarkable variation is followed for suction/injection flow in velocity 
and temperature profiles for different values of Eckert number (Ec = 0.1, 0.3, 0.5) but a minor disparity is 
found in case of concentration field. 

 

Fig. 2(a)-(c) demonstrates the velocity, temperature and concentration distributions for chosen values of the 
Forchimer number (Fs = 0.5, 1.0, 1.5) for both the fluid suction and injection. These figures reveal that an 
increase in the Forchimer number leads to decrease the velocity field but the reverse trend is followed for the 
temperature and concentration fields. Though for various chosen values of Forchimer number no significant 
dissimilarity is observed in temperature and concentration fields, a noteworthy effect is seen for η < 1.5 in 
velocity profile for the mentioned values of Fs. 
 

The effect of radiation parameter on velocity, temperature and concentration fields are shown in Fig. 3(a)-(c) 
respectively. For both case of suction and injection flow, it can be concluded that higher values of radiation 
parameter leads to decrease the velocity and temperature distributions but a reverse trend is followed for the 
concentration profile. One can easily detect a variety for three selected values of radiation parameter (R = 1, 
2, 3) in velocity and temperature fields for both of the suction and injection cases while concentration field is 
identical for these values of R. 
 

Fig. 4(a)-(c) illustrate the mode of the local skin-friction coefficient Cf, local Nusselt number Nu and                
local Sherwood number Sh which indicate the the wall share stress, average heat transfer and average             
mass transfer respectively at different values of the Eckert number Ec and the radiation parameter R.                         
It is found that with the rising value of Ec, local skin-friction coefficient and local Sherwood number                 
grow up whereas local Nusselt number shows an opposite effect. In addition as radiation parameter      
increases local Nusselt number increase but local skin-friction coefficient and local Sherwood number 
decreases. 
  

Lastly, the influence of Forchimer number Fs and radiation parameter R on the local skin-friction coefficient 
Cf, local Nusselt number Nu and local Sherwood number Sh are exposed in Fig. 5(a)-(c). From these one can 
noted that Cf, Nu, Sh are almost flat for the increasing value of Fs. On the other hand, Cf, Sh decrease and 
Nu increases as R increases. 
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(a) (a) 

  
(b) (b) 

  
(c) (c) 

 

Fig. 1. Variation of dimensionless (a) velocity, (b) 
temperature and (c) concentration profiles across 
the boundary layer for different values of Ec and 
for fw = 1.0, gs = 12, gc = 6, Pr = 0.71, Sc = 0.22, r 

=1.0,  K = 1.0, Fs = 1.0, Sr = 0.60,   Df = 0.10,  
R=1.0, Da=0.50, Re=200, n=1.0  and  

 = 30°                                                                                                               

Fig. 2. Variation of dimensionless (a) velocity, 
(b) temperature and (c) concentration 
profiles across the boundary layer for 

different values   of Fs and for fw = 1.0, gs = 
12, gc = 6, Pr = 0.71, Sc = 0.22, r =1.0,  K = 1.0, 
Fs = 1.0, Sr = 0.60, Df = 0.10, R=1.0, Da=0.50, 

Re=200, n=1.0 and  = 30° 
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(a) (a) 

 

 
(b) (b) 

  
(c) (c) 

 

Fig. 3. Variation of dimensionless (a) velocity, (b) 
temperature and (c) concentration profiles across 
the boundary layer for different values of R and 
for fw = 1.0, gs = 12, gc = 6, Pr = 0.71, Sc = 0.22, r 

=1.0, n = 1.0, Sr = 0.60, Df = 0.10,  Fs =1.0, 
Da=0.50, Re=200, Ec=0.01, K = 1.0 and  = 30° 

Fig. 4. Effects of Ec and R on (a) local skin- 
friction coefficient, (b) local Nusselt number and 
(c) local Sherwood number for fw = 1.0, gs= 12, gc 
= 6, Pr = 0.71,Sc = 0.22, r =1.0, K = 1.0,    Fs = 1.0, 
Sr = 0.60,Df = 0.10, n=1.0, Re=200, Da=0.50 and  

 = 30° 
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(a)                                  (b) 

 
(c) 

 
Fig. 5. Effects of Fs and R on (a) local skin-friction coefficient, (b) local Nusselt number and (c) local 

Sherwood number  for fw = 1.0, gs = 12, gc = 6, Pr = 0.71,Sc = 0.22, r =1.0,  K = 1.0, Fs = 1.0, Sr = 0.60,Df 
= 0.10, n=1.0,  Re=200,  Da=0.50 and   = 30° 

 

5 Conclusions 
 
From the present study the followings can be summarized: 
 

The numerical investigations shows that the velocity profiles increase with the increasing value of 
Eckert number Ec and it decreases with growing value of Forchimer number Fs and radiation parameter 
R. The temperature profiles increase with the increasing values of Eckert number Ec, Forchimer number 
Fs whereas it decreases with increasing values of radiation parameter R. The concentration profile 
decreases with an increasing value of Eckert number Ec and it decreases with the rising values of 
Forchimer number Fs and radiation parameter R. 
 
As radiation parameter increases, the local skin-friction coefficient and local Sherwood number decrease 
while local Nusselt number increases with respect to both of the considered parameters Ec and Fs in all 
cases of suction and injection flow. 
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