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ABSTRACT

We study ion cyclotron (IC) oscillations activated by a stochastic, strong space-charge electric
wavefield E of nonlinear waves propagating auroral ionosphere. E is in a plane perpendicular to
the ambient magnetic field B. The word “strong” means that (1) the conventional linear plasma
wave model connected to a perturbed electric field is not suitable to be employed; (2) the E × B
drift is comparable to (even higher than) the thermal speed of particles, and drive them away from
the initial thermal equilibrium. A physical model is set up for a dense cluster of electron soliton
trains with which a magnetic flux tube is teeming. Then, the collision-free Boltzmann equation is
solved under the condition that E is temporally constant. With a nonzero initial guiding-center (GC)
velocity, ions are found to follow a double-circle trajectory in velocity space with an IC oscillation
frequency ω which shifts from the magnetic gyrofrequency Ω = eB/mi (where e and mi are the
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charge and mass of the singly ionized ions, respectively). Furthermore, the “constant” condition
is relaxed by using a simple stochastic E which has 10-step random strengths in 10 different time
intervals. The accommodation of ω (as well as other parameters) is illustrated in response to the E
switches. At last, the work is generalized by using two random-number generators for the strength
and time, respectively. In this case, ω can be shifted to several Ω values. This result is in good
agreement with what FAST satellite measured in auroral field-aligned current regions.

Keywords: Plasma kinetic equations; Electrostatic waves and oscillations; Space plasma physics;
Solitons and solitary waves; Auroral ionosphere; Wave/particle interactions; F region.
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1 INTRODUCTION

Electrostatic ion-cyclotron (IC) oscillation mode
was firstly predicted by Stix [1] in studying an
infinitely long, cylindrically symmetric plasma
column of finite density (n0) at zero pressure
immersed in a uniform axial magnetic field (B).
He pointed out that when ck ≫ ωUH and
ck/ω ≫ ωUH/Ω [where c is the speed of light, k
the wave vector along B, ω the wave frequency,
Ω = (1/c)eB/mi the ion cyclotron frequency
with (e,mi) the charge and mass of the singly
ionized ion, respectively, ωUH =

√
ω2
pi +Ω2

the ion upper-hybrid frequency where ωpi =√
4πne2/mi is the ion plasma frequency], the

extraordinary hydromagnetic wave becomes a
wave whose natural frequency approaches Ω.
He later found that when an IC wave propagates
in a plasma along a weakening B, ω becomes
enhanced; in the vicinity of ω = Ω, wave energy
can be absorbed by the plasma via cyclotron
damping with extremely efficient power transfers
[2]. At the same time, Bernstein [3] studied
extensively electron and ion oscillations of a
fully ionized, collision-free plasma in a static
external magnetic field. For the low-frequency ion
oscillations, he predicted two modes at cyclotron
harmonics: longitudinal ion waves and transverse
hydromagnetic waves.

Stix’s effective plasma heating mechanism drew
much attention in theoretical and laboratory
plasma studies. The energization process
was soon confirmed by experiments on a
magnetic mirror device called the B-66 machine
[4]. Besides, another experiment performed in
cesium and potassium plasmas also observed

the IC oscillations when the electron drift
was ∼10 times the ion thermal velocity, but
the frequency was slightly higher than Ω [5].
Drummond & Rosenbluth [6] explained that the
IC oscillations was excited by the magnetic field-
aligned currents (FACs); and Woods [7] extended
Stix’s work by taking into consideration the effects
of the plasma viscosity and compressibility.
By using a generalized dispersion relation,
the author showed that a range of oscillation
frequencies is possible which are well beyond Ω.
Furthermore, Yoshikawa et al. [8] showed that
the ion heating is also contributed by the electron
Landau damping and electron-ion collisions.
Later, Hosea & Sinclair [9,10] exposed that even
the IC wave propagation in a plasma is influenced
by the electron inertia. In an experiment where
torsional Alfven waves were excited, Müller [11]
examined the coupling of ions with neutrals with
a decreasing ionization degree. He witnessed
that both k and the damping effect peaked at Ω.

Interestingly, the IC-resonance acceleration
principle was soon applied to separate ion
isotopes and ions with different charge-to-mass
ratios in plasmas [12,13]. But if a plasma
contains only two ion species, Sawley & Tran [14]
noticed that the IC frequency lies approximately
midway between the two Ω values. If more
than one ion species, IC modes are strongly
influenced by electron dynamics (the electron
inertia and Landau damping) in a low density
plasma cavity, just as revealed in the plasma with
one type of ions [8,15-17]. Another important
result was obtained by Ono et al. [18]. The
authors measured profiles of wave absorptions
versus ion temperatures in an ACT-1 hydrogen
plasma. They identified that the excellent efficient
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IC resonant heating occurs near the fifth IC
harmonics of deuterium-like and tritium-like ions.
It deserves to mention an intriguing experiment
designed by Sato & Hatakeyama [19]. The
authors used a voltage-biased electrode to drive
an IC oscillation. The potential penetrates into
a plasma channel parallel to B in front of the
electrode, whileas the penetration is limited
by the radial escape of ions from the plasma
channel. This radial escape was found to obey
the cyclotron motion with a period of Ω in the
region close to the electrode.

In a plasma containing both negative and positive
ions, D’Angelo & Merlino [20] and Song et al.
[21] found that there are two branches of the
IC modes for mi+ > mi−: One is the “low-
frequency” mode ω ≥ Ω+, and the other is the
“high-frequency” one ω ≥ Ω−. The frequencies
were found to increase with the increasing
percentage of negative ions. Particularly, by
employing the standard linear Vlasov theory,
Chow & Rosenberg [22,23] investigated the
effects of heavier dust and heavier negative ions
on the collisionless IC instabilities, respectively.
In the former case, the authors showed that
positively charged dust tends to stabilize IC
waves, while negatively charged dust facilitates
triggering the instability; in the latter case, by
contrast, the instabilities of both the light and
heavy ions are easier to be excited when more
charge is carried by negative ions. In both
cases, the critical electron drifts to excite the
instabilities decrease when the relative density
of negative ions increases. In another dusty
plasma experiment to observe the IC waves,
Barkan et al. [24] verified that negatively charged
dust makes the plasma more unstable. The
newest experimental work was done by Kim et
al. [25]. They used very heavy negative ions
(C7F

−
14) in the plasma and observed that these

ions increase both the number and the intensity
of the excited harmonic IC modes.

In geospace, especially in auroral regions,
electrostatic IC oscillations have been detected
by rockets and satellites. Early space-borne
measurements of harmonic IC oscillations in
the VLF bands were done at altitudes <2700
km [26-29]. Following these measurements,
numerous vehicles diagnosed IC oscillations
during last decades, such as S3-3 [30], DE-

1 [31,32], ISEE-1 [33], Polar [34], FAST [35],
and Cluster [36]. Because many observations
provided evidence of parallel electric fields and/or
field-aligned currents existing in regions where
IC waves were measured, the excitation of
the IC waves was naturally connected to the
current-driven mechanism as considered by
laboratory experiments and theoretical studies
(e.g., [37]). It was suggested that if the field-
aligned currents increase to a threshold, say,
tens of µA/m2 in strength, the IC instability
[and/or the Buneman instability, the ion acoustic
(IA) instability] can be triggered; the plasma
turbulence and then anomalous collisions thus
induced in turn moderate the currents via
anomalous transport coefficients [38,39]. This
process was considered to lead to two possible
conspicuous consequences: one is the formation
of nonwave phase-space clumps originated from
the growth of the plasma instability [40], and the
other is the enhanced Joule heating in plasmas
due to the anomalous resistivity [41].

By excluding any nonlinear dispersion relations,
viscous heating terms, and chemical reactions,
Forme et al. [42] presented the criteria for the
wave ignitions due to current-driven instabilities.
The authors brought to light following results by
using an isotropic, time-dependent model: (1) If
vde > 1.8vthe (where vde and vthe are electron
drift velocity and thermal velocity, respectively),
the Bunemann instability is initiated. The
heating rates obey ∂Te

∂t
= 2

3
me
k
v2deν

∗
e and

∂Ti
∂t

∼ me
mi

· ∂Te
∂t

[where Te, Ti, me, and k are the
electron temperature, ion temperature, electron
mass, Boltzmann constant, respectively, ν∗

e =

α
(

me
mi

)1/3

ωpe the electron anomalous collision
frequency, α the numerical coefficient, and ωpe

the electron plasma frequency]. (2) If vde >
Ti
Te

vthe, the IA instability starts. The heating rates

follow ∂Te
∂t

= 2
3

me
k
v2deν

∗
e and ∂Ti

∂t
∼

Te
Ti

Cs
vde

1− Cs
vde

· ∂Te
∂t

[in which ν∗
e = 10−2α

(
Te
Ti

)(
vde
vthe

)
ωpe, and Cs =√

me
2mi

(
1 +

√
1 + 12 Ti

Te

)
· vthe is the generalized

sound velocity]. (3) If vde > ve = 15 Ti
Te

vthi, the IC
instability begins. The heating rates take ∂Te

∂t
=

2
3

me
k
v2deν

∗
e and ∂Ti

∂t
= 2

3
mi
k
v2deν

∗
i [in which ν∗

e =

αΩi

(
vde
ve

− 1
)2

, and ν∗
i is the ion anomalous
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collision frequency satisfying miν
∗
i = meν

∗
e ].

Numerical calculations exhibited that the first two
instabilities produce bigger electron heating rates
due to much higher collision frequencies which
inhibit the electron heat conduction processes,
while the first instability contributes little to the ion
temperature ratio, and the IC instability seems
to be initiated at the lowest altitudes while all
of them should exist above 1000 km for strong
currents with tens of µA/m2.

Obviously, within the scope of linear plasma
waves, IC oscillations can be reasonably
explained by current-driven mechanism.
Nevertheless, as foretold by Bernstein, Green,
& Kruskal (BGK) [3] that localized non-wave
phase-space structures may exist in turbulent
plasmas originated from nonlinear processes,
numerous studies have demonstrated that
coherent, nonlinear potential structures can
actually be triggered by the particle trapping
due to various wave-particle interactions (see
reviews in [43]). Specifically, there are three
stages in the development [44]: (1) Electrons
are switched from a free state to a trapped
state in a potential well, leading to the formation
of electron phase-space holes by instabilities;
(2) The potential structures grow and deepen
with the growth of electron phase-space holes;
the anomalous transport properties increase to
develop ion trapping; and (3) After several ion
cyclotron periods, localized non-wave structures
(also called solitary waves, space-charge
elements, electrostatic double layers, clumps, or
electrostatic shocks) are formed in phase space.
If both waves and non-wave structures remain
alive in electric and magnetic fields, the space-
charge structures are stratified (or “filamented”)
to form field-aligned “clumps” [45]; at the same
time, ions response to these elements in two
possible ways: they may either keep regular
motions without any gains of the electromagnetic
energy from the fields if their speed across the
magnetic field is less than the phase velocity of
a single wave [46], or, be coherently energized
within a small phase space when the Doppler-
shifted wave frequencies are close to an integer
multiple of Ω [47].

In the IC modes, Chiueh & Diamond [40]
discovered that if T⊥i ≥ T∥i ∼ Te (where
T⊥i and T∥i are ion temperature components

perpendicular and parallel to B, respectively), the
turbulence is of the wave-clump type; if T⊥i ≫
T∥i ∼ Te, it is the clump-dominant type. This
new ingredient is space-charge “clumps”, the so-
called electrostatic solitons, which describes the
incomplete blending of a Vlasov plasma: wave-
particle interactions make stochastic orbits of
particles by turbulent electric fields; the phase-
space density tends to decrease to smaller
scales in a finite time, and thus generate phase-
space space-charge density granulations (that is,
clumps); these clumps ballistically propagate at
the resonant velocities v = ω − nΩi/k∥ in a finite
time. In the development, the turbulent forces
produced by the turbulent electromagnetic field
tend to tear the space-charge chunk of particles
apart and cause the decay of the clumps.
However, the size of the space-charge structures
is so small that they keep every particle feels
the same force. Thus, the elements retain their
structural integrity for a relatively longer time than
the average correlation time of the system. This
effect offsets the separation tendency caused by
turbulent processes.

In addition, the authors found that the shape
of the space-charge structures does not rely
on turbulent frequencies in position space, but
does in velocity space. In position space,
for either low or high frequency turbulence,
the parallel scale is of the spectrum-averaged
parallel wavelength k̄−1

∥ , while the perpendicular
scale is of the cylindrically-symmetric, spectrum-
averaged perpendicular wavelength k̄−1

⊥ . By
contrast, in velocity space, the perpendicular
extent is not the same for different frequency
bands: for low-frequencies, the scale can extend
up to a scale dependent on the thermal velocity
vT; for high frequencies, it is determined by
vT(k̄⊥ρ)

−1 > vT (where ρ = vT√
2Ω

is the
gyroradius, and k̄⊥ρ ≥ 1). Specifically, the clump
shape in phase space depends on the particle
species. For electron clumps in the IC regime,
the perpendicular diffusion dominates the parallel
one with k̄⊥ ≫ k̄∥. So electron parallel diffusion
can be ignored. Because electrons are strongly
magnetized with k̄⊥ρe ≪ 1, electron clump is
bounded to the magnetic field lines. In real
space, it has a 1-D long cigar shape. In velocity
space, it has a pancake shape of radius vte
and thickness (k̄∥τe)

−1 (where τe is the electron
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decorrelation time). The electron clump travels at
a parallel speed of v∥ ∼ nΩi/k∥. For ion clumps,
their perpendicular diffusion is dominated by
k̄⊥ ≫ k̄∥, like electron ones. So ion parallel
diffusion can also be ignored. However, ions are
weakly magnetized with k̄⊥ρi ∼ 1. If k̄⊥ρi < 1,
ion clump will show the same cigar shape as
electron clump in real space. On the other hand,
if k̄⊥ρi > 1, ion clump will appear as a tether
rod in real space with tether length ρi gyrating
about the guiding center (GC). In both cases, the
ion clump propagates at the ballistic velocity v
with a radius k̄−1

⊥ and a length k̄−1
∥ . In velocity

space, ion clump appears in a pancake shape
of radius vti for k̄⊥ρi < 1, and in a gyrating
tether disk of radius vti(k̄⊥ρi)

−1 and tether length
vti for k̄⊥ρi > 1. The thickness of either the
pancake or the disk is (k̄∥τi)

−1 (where τi is the
ion decorrelation time).

The nonlinear space-charge structures have
been observed at many sites in geospace, e.g.,
auroral zones of mid-and-high-altitudes, bow
shock, magnetotail, and solar wind due to the
existence of detectable space-charge electric
fields, see, e.g., [48] for detailed introductions.
The nonlinear phenomena had been recognized
gradually with the advance of theoretical work
and observations [49]. The structures were
first noticed and named as intense broadband
electrostatic noises (BENs) in 1970s in the
magnetotail [50,51], along with data of magnetic
noise bursts (relating to cross-tail current and
intervals of tailward flows), electrostatic electron
cyclotron waves, and upper hybrid waves
[51,52]. BEN is bursty, extending from the
lowest frequencies up to as high as the plasma
frequency (electron cyclotron frequency) while
the intensity decreases when the frequency
increases. It peaks at or below the LH frequency.
During 1980s, the first space-charge structure
was identified from S3-3 waveform electric-field
data in the auroral acceleration region [53]. It is
characterized by locally density-depleted (called
“ion hole”), electric-field fluctuations in a size
of Debye-scale. Because no spectral form of
data were used, no link was made between
these new definitions and BEN, but simply the
FFT-rendering of solitary waves. Yet, theoretical
investigations pointed out that certain kinds of
nonlinear structures could explain the broad

frequency spectra [54], and, electron acoustic
solitons passing by a satellite would generate
spectra that could explain the high frequency
part of BEN [55]. The breakthrough eventually
came when a sophisticated waveform receivers
was used, which has a high temporal resolution.
In 1994, Matsumoto et al. [56] analyzed the
distant magnetotail with Geotail data and proved
that solitary waves are as a matter of fact
BENs: the measured waveform electric field
of BENs is nothing but the spectra from of
the electrostatic solitary waves carrying space-
charge electric fields. From that time, extensive
and detailed pictures for these nonlinear electric
field structures were reported from almost every
high-resolution space project (see details in [57]).

It is now clear that the electrostatic solitary waves
are solitary structures that behave as are space-
charge carriers to contribute strong transverse
electric fields to space plasmas. Due to the
presence of these fields, the characteristics of
charged particles residing in the vicinity of the
regions teemed with solitary waves will surely
be altered. For example, in his pioneer work,
Stix [1] showed unequivocally that near the IC
resonant frequency the electric field determines
the behavior of charged particles. This prediction
was demonstrated to be valid [58]: the virtual
ion cyclotron frequency ω should satisfy ω2 =
Ω2+Ωd(Ex/B)/dx when the first derivative of the
electric field (∇ ·E = dEx/dx) is nonzero, while
the second derivative

(
d2Ex/dx

2
)

is zero. There
was another example [59]: If E = E0(1 + y/L)ŷ
in the cartesian geometry (where E0 is the field
at y = 0, L the characteristic length, y the ion
position), that is, the electric field is proportional
to the distance in a specific direction in space, the
authors exposed that ω2 = Ω2[1−(E0/B)/(LΩ)].
In the cylindrical case, Ma & St.-Maurice [60]
presented that ω2 = Ω2[1 + 4(Ec/B)/(RcΩ)]
if E = −Ec(r/Rc)r̂ (where Ec is the field at
r = Rc, Rc the characteristic radius, r the ion
position), that is, the electric field is proportional
to the radius. These studies unfolded that the
frequency of the IC oscillations can shift away
from Ω either positively or negatively, depending
on the polarization of E perpendicular to B, but
irrelevant of the origin of E. In the linear wave
regime, the perturbed E is weak. The frequency
shift is thus negligible. On the contrary, if E is
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provided by some nonlinear process, say, the
space charges of solitons, the linear perturbation
condition is broken. E may be so strong that the
shift is unable to be overlooked. Let’s use FAST
data for an estimation. Ergun et al. [61] provided
that the local magnetic field B is 11481 nT, and
the typical peak strength of the space-charge
electric field E for a soliton is 1 V/m. As a result,
the local peak E × B drift (E/B) is 87 km/s. At
the thermal equilibrium state of about 1000 K, the
thermal speeds of protons and electrons are of
the orders of 4 km/s and 170 km/s, respectively.
The speed E/B is typically larger than the ion
thermal speed. However, the speed E/B is
small relative to the electron thermal speed. Any
departures from a Maxwellian velocity distribution
due to the Lorentz force cannot be negligible for
ions, and we call such a electric field is “strong”
for ions. In such strong fields, any traditional
linear wave theory is not suitable to be used.
But for thermal electrons, they can still be simply
assumed to follow Maxwellian but with a E × B
drift to the leading order for the situation at
hand. We call such a electric field is “weak”
for electrons, and traditional linear wave theories
are still valid for them.

Let’s use FAST data to assess the cyclotron
frequency ω of ions in the strong electric field
mentioned above, in order to know the order
of the frequency shift. Assume that the field
is cylindrically symmetric and proportional to
r. The magnetic gyrofrequency of ions is
Ωi = 1100 rad/s (or 200 Hz) for a proton, and
Ωe = (mi/me)Ωi for an electron. Rc scales
with the ion gyroradius ρi which satisfies 2λD ≤
ρi ≤ 20λD where λD = 82 m is Debye length
[62]. These parameters give 1.1Ωi ≤ ω ≤ 1.7Ωi,
indicating that the IC oscillation ω always deviates
from Ωi by tens of percent. For a plasma
density of n0 ∼ 5.7 cm−3, we have the ion
plasma frequency ωpi is 3139 rad/s, and the
electron plasma frequency ωpe is 43ωpi. Thus,
the lower-hybrid (LH) frequency ωLH is 3138
rad/s (or 500 Hz). Obviously, the maximum IC
oscillation frequency shifts into the LH band. This
approximate evaluation explains qualitatively the
FAST observations that the solitary structures
are evenly spaced at a frequency above the
local H+ gyrofrequency (see Fig.5 in [61] for a
reference). Notice that this estimation is only

suitable for a single soliton case. In reality,
the electric field should be produced by space
charges of all soliton trains in magnetic flux tubes;
and, the strength of E may not be constant with
time. Therefore, the IC oscillations may have a
very different picture. More detailed modeling
and simulations are then needed for accurate
data assimilations and quantitative explanations.
Unfortunately, no relevant studies have been
found to report on the IC oscillations under
strong electric field conditions. This situation
is understandable: traditionally, we rely on the
linear plasma wave theory to consider instabilities
and related oscillations, where the wavefield
E is weak, behaving as a perturbation, and
that measured ω should always be located at
harmonics of Ω; any observable deviations from
linear theory predictions are naturally attributed
to the contributions of unusual initial and/or
boundary conditions within the frame of the
theory, regardless of the fact whether or not these
conditions are still valid for the theory.

Fortunately, stochastic methods are widely used
in different fields of physics [63-65]. Different
these methods, we offer an alternative approach
in this paper which illustrates the IC oscillations
stimulated by a strong electric field of solitons
propagating in auroral ionosphere. The electric
field is produced by solitons’ space charges
stochastically in the plane perpendicular to the
magnetic field. We focus on the ion oscillating
feature, in order to see what kind of frequency-
shifted IC waves can be excited. This study is
totally different from those using traditional linear
wave theories where the plane-wave perturbation
assumption, E1 ∼ ei(k·r−ωt), is used. For
strong space-charge electric field strengths
which produce large drifts to particles, this weak-
field condition is broken and we have to seek
for solutions with the aid of kinetic theory, and
then to describe the macroscopic properties of
ions in terms of their microscopic characteristics
of motion. We start from setting up a physical
model to describe solitons propagating in a
magnetic flux tube, and give a Hamiltonian
formulation for ions driven by the space-charge
electric field in the tube, as given in Section 2.
Then, in Section 3, we present results for the
IC oscillation features and bulk parameters of
ions with a nonzero initial drift velocity by solving
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directly the Boltzmann equation coupled with ion
equations of motion in a temporally-constant
electric field (note that this “constant” occurs
only instantaneously for a stochastic field). To
give a clear illustration for the IC oscillations in
solitons’ stochastic electric field, we relax the
“constant” condition in Section 4 by using an
artificial stochastic E which has 10-step random
strengths in corresponding 10 different time
intervals. The accommodation of ω (as well as
other parameters) is illustrated in response to
the E switches. At last, the work is generalized
by using two random-number generators for the
strength and time, respectively, in Section 5. In
Section 6, we summarize the results and have a
discussion. The last Section gives conclusions.

Fig. 1. Left: Cylindrical coordinates with
reference to the Cartesian frame of an
infinitely-long magnetic flux tube, the

symmetric line of which lies on the z-axis. Rc

is a characteristic radius. Right: A
cross-section viewed from the top. The flux

tube is teeming with a dense cluster of
soliton trains. The diagram is not to true

scale, but used to dramatically illustrate the
point

2 PHYSICAL MODELING
OF NONLINEAR WAVES

In order to provide the most basic picture for
the new mechanism, and thus to gain important
insights into more complicated situations, while
still being able to illustrate the process clearly,
we set up a physical model in a cylindrical

geometry (r, ϕ, z) for a dense cluster of soliton
trains propagating in a magnetic flux tube with the
axis along the magnetic field B = Bêz (where
êz is the unit axial vector), which is assumed
to be homogeneous in space, as described by
Fig.1. The background to set up such a model
is identical to what was presented in Ma & St-
Maurice [60] where we focused on the auroral
region which is in and above 140 km, well
with the F-layer. In this region, numerous data
were collected by satellites, radars and rockets
which exposed the existence of solitary waves,
as introduced in the above Section. Based on
previous studies, this region owns a magnetic
field of 0.5 Gauss; ion temperature of 1000 K;
stochastic transverse electric fields up to an order
of 50 mV/m or greater; an ion-neutral collision
frequency of an order of 0.01-1 Hz; and, ion
gyrofrequency of an order of 50 Hz. See [60,66]
in details. The consideration of the modelling
is inspired by FAST observations (e.g., [61,62])
which provided the features of the soliton cluster
in the tube as follows [67]:

(1) the cluster is composed of infinite long
cylindrically-symmetric trains of solitons;

(2) each of the trains appearing in space has the
same space-charge density δnsc;

(3) both the number and time are random for
trains to emerge in space due to the plasma
turbulence;

(4) space charges carried by all the trains
arising in space cause a homogeneous density
perturbation to the uniform and isotropic
background n0;

(5) the cylinder-edge effects are neglected with a
characteristic radius Rc of a circle (heavy dashed
line) which is well inside the flux-tube cylinder
(heavy solid boundary line);

(6) the electron-electron, electron-ion, electron-
neutral, and, ion-neutral interactions are
neglected, and thus we are dealing with a
collision-free problem.

Under these simplifications, the space-charge
density of the whole cylinder, δnc, should be δnsc

if the flux tube is completely filled with soliton
sets. However, soliton trains appear in space
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stochastically. Thus, δnc is stochastic, denoted
by δñc, where and hereafter the sign “ ˜ ” means
“stochastic”. This stochasticity originates from
the probabilistic magnitude and appearance of
δnc in the flux tube. In the area within the radius
r (thin solid line), δñc produces a radial electric
field Ẽr by means of Gauss’s law if we assume
that solitons have electron space charges:

Ẽr = −Ẽcr (2.1)

where Ẽc = [eRc/(2ϵ0)]δñc is positive. Clearly,
the electric field within the cylinder is proportional
to r, and points radially inward. We can check
that the plasma is quasi-neutral even if the
plasma has a density perturbation: if we were
to let Ẽc=2 V/m at Rc=1 km, the corresponding
space-charge number density would need to be
δñc ≈ 2 × 105 m−3. This is 104 to 106 times
smaller than the ambient plasma density n0 in the
ionospheric F -region. In such a radial electric
field proportional to r, at any time before Ẽc

switches to a new amplitude next, ion dynamics
are determined by the electrostatic, space-
charge electric field (crossed to B) which is
constant with time at the present step. We study
the ion oscillations starting from t = 0 when the
electric field Ẽr is applied, and ions have an initial
state with a Maxwellian distribution function, but
the initial guiding-center (GC) velocity vd0 of ions
(or, the drift velocity exhibiting the initial state of
the ion’s instantaneous center in velocity space)
is nonzero.

We are going to deal with a system of a
nonrelativistic ensemble of ions of the same
species in the absolute space. The particles
are assumed identical, and a test particle thus
provides an idealized approximation to exhibit
physical properties of the specified domain [68-
70]. We use the ion’s Hamiltonian formulism as
the radical basis for the study:

H = p · v − L , L = K − P (2.2)

in which H is the Hamiltonian, p = {pr, pϕ, pz}
is the canonical momentum, v = {vr, vϕ, vz} =
{ṙ, rϕ̇, ż} is the velocity, L is the Lagrangian,
K = 1

2
miv

2 is the kinetic energy, P = e(φ−v ·A)
is the potential energy, where φ(r) = −

∫
E·dr =

1
2
ẼcRc · (r/Rc)

2 is the electric potential, and A is
the vector potential satisfying B = ∇ × A. In

cylindrical coordinates,

K = 1
2
mi(ṙ

2 + r2ϕ̇2 + ż2)

P = e

[
1
2
EcRc

(
r
Rc

)2

− 1
2
Br2ϕ̇

]  (2.3)

where and hereafter Ẽc is written as Ec for
simplicity. These two expressions give

L = 1
2
mi(ṙ

2 + r2ϕ̇2 + ż2)−

−e

[
1
2
EcRc

(
r
Rc

)2

− 1
2
Br2ϕ̇

]
pr = ∂L/∂ṙ = miṙ

pϕ = ∂L/∂ϕ̇ = mir
2ϕ̇+ 1

2
eBr2

pz = ∂L/∂ż = miż


(2.4)

and then,

H = 1
2
miv

2
r + 1

2
miv

2
ϕ + 1

2
miv

2
z+

+ 1
2
mi

Ec
B
RcΩ

(
r
Rc

)2

}
(2.5)

in which Ω = eB/mi is the ion gyrofrequency.
Using the two canonical Hamilton’s equations of
motion, ṙ = ∂H/∂p and ṗ = −∂H/∂r, we
obtain:

r̈ = r(ϕ̇2 +Ωϕ̇)− Ec
B
RcΩ

r
R2

c

rϕ̈ = −2ṙϕ̇− Ωṙ , z̈ = 0

}
(2.6)

Because the time-inversion transformation has
an unaltered nature [68], that is, for the inversion
of the time direction (t → −t), there exist (r → r)
and (v → −v), we know that the position vector
r and hence all quantities that depend only on
r do not change sign; by contrast, the velocity
vector v and quantities that depend only on v
change sign. This property gives that for two
states {r1,v1, t1} and {r2,v2, t2} of a particle,
there are two identical solutions for the same
equation of motion. One provides expressions
of {r1,v1, t1} by using {r2,v2, t2}, and the other
is to express {r2,v2, t2} by {r1,v1, t1}, whereas
the description of the characteristics of motion is
unaltered. That is to say, we can either use the
initial state as the final state, or, vice versa. For
ions, Eq.(2.5) provides three constants of motion
due to the fact that the Hamiltonian does not
contain ϕ, z, and time t explicitly: the azimuthal
angular momentum pϕ = K, the axial momentum
pz, and the total energy H. Expressed by the

8
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parameters at the two states, we have

pϕ = mir1vϕ1 +mir
2
1
Ω
2
=

= mir2vϕ2 +mir
2
2
Ω
2
= K

pz = mivz1 = mivz2
H = 1

2
miv

2
r1 +

1
2
miv

2
ϕ1 +

1
2
miv

2
z1+

+ 1
2
mi

Ec
B
RcΩ

(
r1
Rc

)2

=

= 1
2
miv

2
r2 +

1
2
miv

2
ϕ2 +

1
2
miv

2
z2+

+ 1
2
mi

Ec
B
RcΩ

(
r2
Rc

)2


(2.7)

in which {r1, vr1, vϕ1, vz1} and {r2, vr2, vϕ2, vz2}
the parameters of {r, vr, vϕ, vz} at t = t1 and
t = t2, respectively. Thus, in the plane
perpendicular to B, we obtain two Hamilton’s
canonical equations:

r1vϕ1 + r21
Ω
2
= r2vϕ2 + r22

Ω
2
= K

mi

v2r1 + v2ϕ1 +
Ec
B
RcΩ·

·
[(

r1
Rc

)2

−
(

r2
Rc

)2
]
= v2r2 + v2ϕ2

 (2.8)

corresponding to the conservation of canonical
angular momentum and that of the total
energy, respectively. Concisely, Eq.(2.8) gives
one modified Hamilton’s canonical equation of
motion:

v2r1 +
(
Ωr1
2

)2
+

(
K

mir1

)2

+ Ec
B
RcΩ·

·
[(

r1
Rc

)2

−
(

r2
Rc

)2
]
=

= v2r2 +
(
Ωr2
2

)2
+

(
K

mir2

)2

 (2.9)

3 ION CYCLOTRON FRE-
QUENCY ω WHEN Ẽr

SWITCHES ON AT t = 0

Let moment t1 = t be the final stage
with phase space parameters {r, vr, vϕ, t} =
{r1, vr1, vϕ1, t1}, and moment t2 = t0 =
0 be the initial stage with {r0, vr0, vϕ0, 0} =
{r2, vr2, vϕ2, t2} (hereafter we will use the
subscript ‘0’ to indicate the initial state). Eq.(2.9)
becomes

v2r +
(
Ωr
2

)2
+

(
K

mir

)2

+ Ec
B
RcΩ·

·
[(

r
Rc

)2

−
(

r0
Rc

)2
]
=

= v2r0 +
(
Ωr0
2

)2
+

(
K

mir0

)2

 (3.1)

Following exactly the same algebra as given in
[60], we obtain the solution of Eq.(3.1) in the
case when the initial GC velocity vd is nonzero,
namely, vd0 = {vdr0, vdϕ0} ̸= 0:

a0

[
(vr − vdr)

2 + (vϕ − vdϕ)
2
]
= a00·

·
[
(vr0 − vdr0)

2 + (vϕ0 − vdϕ0)
2
]

v2dr +
(
vdϕ − Ec

B
r
Rc

)2

= v2dr0+

+
(
vdϕ0 − Ec

B
r
Rc

)2

= R2
v

a0 = a00
a1+a2cosωt

a1+a2

a1 = 1 + a2 , a2 = 2Ec/B
RcΩi

vdr = vdr0 − Ec
B

r
Rc

a00
a0

Ωi
ω
sinωt

vdϕ = vdϕ0 +
Ec
B

r
Rc

a00
a0

(
Ωi
ω

)2 ·
·(1− cosωt)


(3.2)

in which a00 = a0|t=0 = 1 is the initial value of a0;
Rv is the distance between the GC velocity vd

and the E × B drift velocity vE = E × B/B2; ω
is the ion cyclotron frequency to be determined
later. It is clear that the parameters a0, vdr,
and vdϕ are functions of t and r but irrelevant
to velocity components vr and vϕ. In concise
vector form, the top two expressions in Eq.(3.2)
are expressed as follows:

a0(v − vd)
2 = a00(v0 − vd0)

2

(vd − vE)
2 = (vd0 − vE)

2 = R2
v

}
(3.3)

which shows that the motion of ions contains
two circular trajectories in velocity space: one
is that v rotates around the GC velocity, vd,
and the other is that GC velocity rotates around
the E × B-drift velocity. If assuming vd0 = 0
in Eqs.(3.2,3.3), we immediately obtain results
given by Eqs.(16∼20) of [60], which studied the
vd0 = 0 case. Fig.3 in that paper showed the
two orbits in velocity space with an origin O. As a
generalization of that case for vd0 ̸= 0, the two
velocity-vector circles are now in a new frame
which has a shifted origin O′, as presented in
Fig.2. In the new frame, the GC vd-circle passes
through O′.

9
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Fig. 2. Characteristics of ion motion for
vd-circle not passing through the origin O. A

shifted frame is introduced to satisfy
vd-circle passing through the new origin O′.
The relation of the two frames is vr = v′r and
vϕ = v′ϕ +

∣∣∆E×B
B2

∣∣. In the old frame, the initial
time is t = 0 with vd0 = {vdr0, vdϕ0}, while in

the new one the initial time is t′ = t1 with
v′
d0 = {v′dr0, v′dϕ0}. The initial ion velocity
vector v0(t = 0, t′ = t1) is also shown,

starting from the end of vector vd0 or v′
d0

In the old frame, the initial drift velocity at t = 0
is vd0 ̸= 0, and the E × B drift is still as before:
vE = Ec

B
r
Rc

ϕ̂ = {0, Ec
B

r
Rc

}. The radius of the
vd-circle is

Rv = |vd0 − vE | =

√
v2dr0 +

(
vdϕ0 −

Ec

B

r

Rc

)2

(3.4)
which does not equal to the magnitude
(Ec/B)(r/Rc) of the vector vE . Thus, the origin
O is either inside the vd circle, or outside it. Fig.2
shows the latter case based on the assumed
initial condition: |vd0 − vE | < |vE |.

By contrast, in the new frame, we introduce a
“pseudo-electric field”: E′ = −E′

c
r
Rc

r̂, satisfying

Rv = |v′
E | =

∣∣∣∣E′ ×B

B2

∣∣∣∣ = ∣∣∣∣E′
c

B

r

Rc
ϕ̂

∣∣∣∣ = E′
c

B

r

Rc

(3.5)
Thus, Eqs.(3.4,3.5) provide

E′
c

B

r

Rc
=

√
v2dr0 +

(
vdϕ0 −

Ec

B

r

Rc

)2

(3.6)

and then, the difference between vE and v′
E is in

the ϕ-direction:

∆E×B
B2 = (E−E′)×B

B2 =

=
{
0,

Ec−E′
c

B
r
Rc

}
= {0, δvϕ}

}
(3.7)

in which

δvϕ = Ec
B

r
Rc

−Rv = Ec
B

r
Rc

·

·

1−√(
vdr0

Ec
B

r
Rc

)2

+

(
vdϕ0
Ec
B

r
Rc

− 1

)2



(3.8)

Using this shift, we obtain a relation between the
old and new frames:

v′r = vr , v′ϕ = vϕ − δvϕ (3.9)

and the expression of Rv changes from the old
frame to the new one:

Rv = |vd0 − vE | =
∣∣v′

d0 − v′
E

∣∣ (3.10)

in which v′
d0 = {v′dr0, v′dϕ0} is in fact the vector

vd0 but viewed in the new frame, satisfying(
v′
d0 − v′

E

)2
=

(
E′

c

B

r

Rc

)2

(3.11)

Because(
v′
d − v′

E

)2
=

(
v′
d0 − v′

E

)2 (3.12)

in the circular motion at any time t ≥ 0, we have(
v′
d − v′

E

)2
=

(
E′

c

B

r

Rc

)2

(3.13)

in the new frame, or, using the scalar expression,

v′2dr +
(
v′dϕ − E′

c
B

r
Rc

)2

=
(

E′
c

B
r
Rc

)2
(3.14)

which indicates that the GC velocity v′
d passes

through the origin O′, and there is an initial GC
velocity v′

d0 = 0 at t′ = 0. Therefore, we have
following important relations in the new frame,
just as those relations in the case of vd0 = 0 at
t = 0 in the old frame given in [60]:

a′
0(t

′) = a′
00

{
1− 1

2

[
1−

(
Ω
ω

)2]
(1− cosωt′)

}
v′dr(t

′) = −E′
c

B
r
Rc

a′
00
a′
0

Ω
ω
sinωt′

v′dϕ(t
′) =

E′
c

B
r
Rc

a′
00
a′
0

(
Ω
ω

)2
(1− cosωt′)


(3.15)

where

ω = Ω

√
1 + 4

E′
c/B

RcΩ
= Ω

√
1 +

(
4
Rc

r

)
Rv

RcΩ

(3.16)

10
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in which Eq.(3.6) is used. This expression gives
the IC frequency in the case of vd0 ̸= 0. It tells us
that there are two factors which determine the ion
cyclotron oscillation ω: the strength of the electric
field E in which ions are residing, and the initial
GC velocity of ions, vd0. If E = 0 and vd0 = 0
at the same time, ω returns to Ω; If E ̸= 0 but
vd0 = 0, ω is given by the third expression in
Eq.(14) of [60]; If E = 0 but vd0 ̸= 0, we have
Rv = |vd0|, and ω is given by:

ω = Ω

√
1 + 4

|vd0|
rΩ

̸= Ω (3.17)

which discloses that if ions have a bulk speed in
a magnetic field, they will oscillate in a cyclotron
frequency which is different from the magnetic
gyrofrequency. This is an interesting feature:
even though there is no electric field in space,
ions can still keep cyclotron oscillations as if they
were in an electric field. If E and vd0 are all
nonzero in the case under discussion, we rely on
Eq.(3.16) to calculate ω in a stochastic electric
field produced by solitons’ space charges.

We are dealing with a case of vd0 ̸= 0 in the
old frame: vd0 = {vdr0, vdϕ0} ̸= 0. Viewed in
the new frame, this initial condition is, by using
Eq.(3.9):

v′
d0 = {v′dr0, v′dϕ0} = {vdr0, vdϕ0 − δvϕ} ̸= 0

(3.18)

which means that ions start to oscillate from an
initial time t′ = t1 in the new frame with a nonzero
GC velocity vector v′

d0|(t′=t1) ̸= 0 which was
evolved from v′

d0|(t′=0) = 0 in the new frame.
The initial time t′ = t1 is determined by a relation
obtained after applying the initial condition v′

d0 to
the last two expressions in Eq.(3.15):

ϕ0 = ωt1 = −2× tan−1
(

ω
Ω

v′
dϕ0

v′
dr0

)
, or

t1 = − 2
ω
× tan−1

(
ω
Ω

v′
dϕ0

v′
dr0

)


(3.19)

Before the end of this section, we show the
expressions of ion bulk kinetic energy 1

2
mi⟨v⟩2

(where ⟨v⟩ is the ion bulk velocity, or the average
velocity) and ion temperature T (hereafter the
subscript “i” in Ti is omitted for simplicity) by
employing the ion velocity distribution, in order

to show the effect of ion cyclotron oscillations on
the evolutions of observable ion properties in the
stochastic space-charge electric field of solitons.

The ion distribution function fi under collision-
free conditions is obtained from the following
Boltzmann equation:

Dfi
Dt

=
∂fi
∂t

+v ·∇fi+
e

mi
(E+v×B) ·∇vfi = 0

(3.20)

in which the electric field E is “external”,
produced by the solitons’ space charges.
Macroscopically, this field is stochastic,
maintained by the dynamical processes of the
propagation of solitons which are unaffected by
the local behavior of the ions; microscopically,
within any tiny temporal intervals (t, t+∆t) when
a specific space-charge electric field appears
in space with a lifetime ∆t, ions are residing in
this “external” constant field from t to t + ∆t.
In this sense, we are solving a Boltzmann
equation the solution of which can be accessed
purely analytically, according to our previous
work, rather than a Boltzmann-Vlasov equation
(where the electric field in the equation contains
both ‘external’ and ‘internal’ components) which
requires numerical calculations during which
the physical mechanism of any resultant effects
caused by the stochastic field is more difficult to
be recognized.

As discussed in [60], the function fi describes
the probability of finding a particle (exactly,
“an ion” in our case) in a particular volume
element drdv around the phase-space point
{r,v} in the 6-dimensional phase space filled
with identical particles [68]. Eq.(3.20) states
that in the absence of the short-range collision
term (∂fi/∂t)c, fi remains constant along the
6-dimensional trajectories followed by the ions in
phase space, once a particular initial condition
is stated [69,70]. To be more specific, if we
know the initial ion distribution function at an
initial phase-space vector point {r(t0),v(t0)} =
{r0,v0} in any tiny temporal intervals, we are
able to describe the ions’ distribution function
fi(r,v, t) at any time in the intervals in phase
space, namely, the problem Dfi/Dt = 0 is simply

11
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formally given by

fi(r,v, t) = fi(r0,v0, t0) = f0(r0, vr0, vϕ0, t0)
(3.21)

Let ni represent ion density, and T = {Tr, Tϕ, T∥}
represent the temperature where Tr, Tϕ, and T∥
are the three components in radial, azimuthal,
and axial directions, respectively. By assuming
that the initial distribution f0 of ions is a
time-stationary, position-independent, velocity-
shifted, density-homogeneous, and temperature-
anisotropic Maxwellian with nonzero initial GC
velocity vd0, initial temperature Tr0 = Tϕ0 =
T∥ = T0, initial density n0, and initial time t0 = 0,
we have:

f0 = n0mi
2πkbT0

·

·e−
mi[(vr0−vdr0)2+(vϕ0−vdϕ0)2]

2kbT0

 (3.22)

Here, we employ a “Backward mapping”
approach to transform this initial distribution
f0 to the final solution of the Boltzmann
equations. As introduced in [60,66], the core
of this approach lies in the task of finding an
explicit connection between the initial phase-
space state, {r0,v0, t0}, and the final one,
{r,v, t}. Luckily, this relation can be obtained
if we solve the set of differential equations of
motion as done in [60]: there are two identical
solutions for the same set of equations of
motion; one provides {r,v, t} expressed by using
{r0,v0, t0} (forward mapping), while the other
provides {r0,v0, t0} expressed by using {r,v, t}
(backward mapping), whereby the description of
the characteristics of motion is traced backwards
but is otherwise unaltered. We use the latter
method to solve fi(r,v, t). This method allows us
to relate the 6-dimensional phase point {r,v} at
any time t to {r0,v0, t0} and to therefore find the
distribution at time t, since the initial distribution
is already fully known, as given by Eq.(3.22).
Finding the distribution function is then just a
matter of expressing r0 and v0 in terms of r,v,
and t in the expression for the initial condition f0.
Therefore, Eqs.(3.2,3.21) thus give

fi(r, vr, vϕ, t) =

(
a00
a0

n0

)
mi

2πkb

(
a00
a0

Ti0

) ·

·e
−

mi[(vr−vdr)2+(vϕ−vdϕ)2]

2kb

(
a00
a0

Ti0

)

 (3.23)

from which we have ni, average velocity ⟨v⟩ =
{⟨vr⟩, ⟨vϕ⟩}, and T as follows:

ni
n0

= Tr
T0

=
Tϕ

T0
= a00

a0

⟨v⟩ = vd = {vdr, vdϕ}

}
(3.24)

Consequently, the ion bulk kinetic energy
1
2
mi⟨v⟩2 and temperature T are expressed by

1
2
mi⟨v⟩2 = 1

2
miv

2
d

Ti =
Tr+Tϕ+T∥

3
= T0

2
a00
a0

+1

3

}
(3.25)

in which v2
d = v2dr + v2dϕ. In dimensionless forms

with Ti normalized by T0, vdr & vdϕ by vth (the ion
thermal equilibrium speed), and thus 1

2
mi⟨v⟩2 &

1
2
miv

2
d by 1

2
miv

2
th, Eq.(3.25) becomes

⟨v⟩2 = v2
d , Ti =

2a00
a0

+ 1

3
(3.26)

4 OSCILLATIONS IN A
STOCHASTIC NONLINEAR
WAVEFIELD

In a period of time 1 s, we artificially choose ten
random electric field strengths of Er to produce
ten Ec/B values at ten random moments ti (i =
1 ∼ 10) in sequence, as shown in Column A
and B, respectively, in Table 1. Column C gives
(Ec/B)(r/Rc) at r = 0.5Rc. Hereafter, the
subscript numbers from 1 to 10 attached to all
physical parameters indicate the corresponding
Er-levels, respectively.

4.1 Er-level 1 in t ∈ [t1, t2]: Initial
oscillations with ω1

Before t < 0, ions are assumed at the state of a
thermal equilibrium in the absence of any electric
field with vd|t<0 = {vdr, vdϕ}|t<0 = {0, 0} = 0.

At t = t1 = 0, Level 1 begins with Ec1/B
switched on. It lasts from t1 to t2 = 0.05 s:
t ∈ [t1, t2]. The initial conditions are as follows:
a01(t1) = a001(t1) = a−1

001(t1) = 1, vdr1(t1) =
vdr|t<0 = 0, and vdϕ1(t1) = vdϕ|t<0 = 0, along
with δvϕ1 = ϕ01 = 0. This is the case described
in great details in [65] when the vd-circle passes
through the origin. The input parameters of this
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Table 1. Parameters of Stochastic heating
in 10 Random steps of 0 ∼ 1 s at r/R0 = 0.5

A B C D E F G H I J K L
Level ti(s) Ec/B

Ec
B

r
Rc

vdr(ti) vdϕ(ti) Rv ω/Ω δvϕ ϕ0(rad) a0(ti) a00 1/a00

1 0 2.0 1 0 0 1 1.915 0 0 1 1 1
2 0.05 3.6 1.80 -0.060 0.002 1.799 2.408 0.001 0.080 0.998 0.999 1.001
3 0.13 0.2 0.10 -1.051 0.340 1.078 1.969 -0.978 2.372 0.688 1.897 0.527
4 0.21 1.5 0.75 .358 -0.917 1.705 2.355 -0.955 -0.490 1.754 1.843 0.543
5 0.23 0.0 0.00 -0.811 -0.750 1.104 1.986 -1.104 1.430 1.447 2.131 0.469
6 0.30 1.0 0.50 0.474 -0.997 1.571 2.278 -1.071 -0.677 1.865 2.047 0.489
7 0.46 2.8 1.40 -1.360 -0.286 2.166 2.603 -0.776 1.486 1.001 1.641 0.609
8 0.69 0.7 0.35 0.978 -0.532 1.318 2.125 -0.968 -1.541 1.251 1.977 0.506
9 0.83 4.5 2.25 0.155 -0.959 3.212 3.093 -0.962 -0.149 1.953 1.963 0.509
10 0.92 0 0 -2.047 -0.225 2.060 2.548 -2 2.291 0.990 3.323 0.301

END 1 0 0 -2.047 -0.225 2.060 2.548 -2 2.291 0.990 3.323 0.301

level are as follows:

Rv1 = Ec1
B

r
Rc

ω1
Ω

= Ec1
B

r
Rc

−Rv1 = 0

ϕ01 = 0
a01(t1)
a001

= 1

a001 = a01(t1)/
[
a01(t1)
a001

]


(4.1)

Notice that the ion cyclotron oscillation frequency
ω is written in its genuine form: it is as a matter
of fact determined by Rv, rather than Ec/B;
however, if the initial ion GC velocity vd is zero,
we have Rv = Ec/B (a case discussed in [60].

In t ∈ (t1, t2), these input parameters give rise
to the ion characteristics of motion at an arbitrary
time t as follows:

a01(t)
a001

= 1− 1
2

[
1−

(
Ω
ω1

)2
]
·

· {1− cos[ω1(t− t1) + ϕ01]}
a01(t) = a001 ·

[
a01(t)
a001

]
vdr1(t) = −Rv1

[
a01(t)
a001

]−1
Ω
ω1

·
·sin[ω1(t− t1) + ϕ01]

vdϕ1(t) = Rv1

[
a01(t)
a001

]−1 (
Ω
ω1

)2

·
· {1− cos[ω1(t− t1) + ϕ01]}+ δvϕ1


(4.2)

At the end of the stage, t = t2, above functions

have following values, respectively:

a01(t2)
a001

= 1− 1
2

[
1−

(
Ω
ω1

)2
]
·

· {1− cos[ω1(t2 − t1) + ϕ01]}
a01(t2) = a001 ·

[
a01(t2)
a001

]
vdr1(t2) = −Rv1

[
a01(t2)
a001

]−1
Ω
ω1

·
·sin[ω1(t2 − t1) + ϕ01]

vdϕ1(t2) = Rv1

[
a01(t2)
a001

]−1 (
Ω
ω1

)2

·
· {1− cos[ω1(t2 − t1) + ϕ01]}+ δvϕ1


(4.3)

We know that a01(t2) and {vdr1(t2), vdϕ1(t2)}
represent the ion temperature and GC velocity at
t = t2, respectively. They keep invariant during
the switch of the electric field from level 1 to 2:

a02(t2) = a01(t2)
vdr2(t2) = vdr1(t2)
vdϕ2(t2) = vdϕ1(t2)

 (4.4)

4.2 Er-level 2 in t ∈ [t2, t3]:
Oscillations with ω2 for
generalization

Without loss of generality, we give expressions
for the ion oscillation features at this level after
the electric field switches from Ec1/B to Ec2/B.
By using the initial conditions given by Eq.(4.4),
we obtain the input parameters as follows:
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Rv2 =

√
[vdr2(t2)]

2 +
[
vdϕ2(t2)− Ec2

B
r
Rc

]2
ω2
Ω

=
√

1 + 8 Rv2
RcΩ

δvϕ2 = Ec2
B

r
Rc

−Rv2

ϕ02 = −2tan−1
[
ω2
Ω

vdϕ2(t2)−δvϕ2

vdr2(t2)

]
a02(t2)
a002

= 1− 1
2

[
1−

(
Ω
ω2

)2
]
(1− cosϕ02)

a002 = a02(t2)/
[
a02(t2)
a002

]


(4.5)

which gives rise to the ion characteristics of
motion at an arbitrary time t as follows:

a02(t)
a002

= 1− 1
2

[
1−

(
Ω
ω2

)2
]
·

· {1− cos[ω2(t− t2) + ϕ02]}
a02(t) = a002 ·

[
a02(t)
a002

]
vdr2(t) = −Rv2

[
a02(t)
a002

]−1
Ω
ω2

·
·sin[ω2(t− t2) + ϕ02]

vdϕ2(t) = Rv2

[
a02(t)
a002

]−1 (
Ω
ω2

)2

·
· {1− cos[ω2(t− t2) + ϕ02]}+ δvϕ2


(4.6)

At the end of the stage, t = t3, above functions
have following values, respectively:

a02(t3)
a002

= 1− 1
2

[
1−

(
Ω
ω2

)2
]
·

· {1− cos[ω2(t3 − t2) + ϕ02]}
a02(t3) = a002 ·

[
a02(t3)
a002

]
vdr2(t3) = −Rv2

[
a02(t3)
a002

]−1
Ω
ω2

·
·sin[ω2(t3 − t2) + ϕ02]

vdϕ2(t3) = Rv2

[
a02(t3)
a002

]−1 (
Ω
ω2

)2

·
· {1− cos[ω2(t3 − t2) + ϕ02]}+ δvϕ2


(4.7)

which keep invariant during the switch of the
electric field from level 2 to 3, and behave as the
initial conditions for the new step:

a03(t3) = a02(t3)
vdr3(t3) = vdr2(t3)
vdϕ3(t3) = vdϕ2(t3)

 (4.8)

4.3 All Er-levels: Oscillations
with different cyclotron
frequencies

By generalizing expressions given above with
reiterations of similar derivations, we calculate

vdr, vdϕ, Rv, ω/Ω, δvϕ, ϕ0, a0(ti), a00, and a−1
00

for all Er-levels. Data are given in columns D ∼
L, respectively, of Table 1. The temporal changes
of these parameters are depicted in Figs.3∼5.
From the evolutions of the parameters in these
figures, we see several oscillation features of ions
as follows.

First of all, any random change in Ec/B causes
immediate variations in other parameters. For
example, in the upper left panel of Fig.3, when
Ec
B

r
Rc

increases from 1 to 1.8 at t = 0.05 s
followed by a drop to 0.1 at t = 0.13 s, ω/Ω in
the lower left panel goes up from 1.915 to 2.408,
and then decreases to 1.969 without any delay.
Accordingly, other parameters (e.g., Rv, δvϕ, a00)
also have prompt jumps.

Secondly, though solitons’ electric field stimulates
ions from the gyration frequency Ω to the
stochastic cyclotron frequency ω, ω never returns
to Ω even if the electric field is turned off. Look
at Er-level 5 and 10 in the upper left panel
of Fig.3, where the electric field strengths are
zero. However, the ω/Ω-values in the lower left
panel are 1.986 and 2.548, respectively, not 1
(or, ω = Ω) as normally considered it should be
in the absence of electric fields. This indicates
that when the electric field disappears, ions still
oscillate as if there were an electric field. As
discussed in the last section, this “imaginary” field
is nothing but as a matter of fact a reflection of
the nonzero drift velocity that ions have acquired
before the electric field is off.
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Fig. 3. Evolution of parameters in response
to artificially generated stochastic electric
fields of solitons. Data are given in Table 1.
E=0 is set initially before t = 0, at level 5 of
0.23 < t < 0.3, and finally after t > 0.92 s
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Fig. 4. Evolution of a−1
0 (t) and a−1

00 in
response to artificially generated stochastic

electric fields of solitons

Fig. 5. GC-velocity vd-circles in response to
the artificially generated stochastic electric

field of solitons

Thirdly, during the stochastic cyclotron
oscillations, ions are heated transversely, as
revealed by the evolution of a−1

0 (t) in Fig.4. As
discussed in the last section, a−1

0 (t) reflects the
ions’ transverse temperature Tr (or Tϕ) evolving
from the initial isothermal T0 in the soliton’s
space-charge electric field proportional to the
radius. Fig.4 shows that a−1

0 (t) is mostly higher
than 1. This means that T is often above T0.
The figure shows that ions are heated to 1.36
T0 on average, changing from 0.3T0 to 5.8T0,
while Table 1 tells us that ω varies from 1.915Ω to
3.093Ω during this period of time. Thus, cyclotron
oscillations and transverse ion heating are the
both available manifestations of the presence

of the solitons, or, exactly, their space-charge
electric field in space at any time. It is worth to
mention here that the last two columns a00 and
a−1
00 in Table 1 are retrospective values of a0(t)

and a−1
0 (t), respectively, at t′i = 0 in the shifted

frame with the origin O′.

Lastly, in sharp contrast to the random
amplitudes of vdr(ti) and vdϕ(ti) caused by the
electric field switches, as shown in the upper right
panel of Fig.3, the GC-velocity (or, the vd-vector)
evolves in circles with different radii in velocity
space during these switches, as shown in Fig.5.
All the vd-circles are symmetric to the axis of
vdr(t)=0. This means that the mean amplitude
of vdr(t) is always zero. Thus, vd rotates in ϕ-
direction on average with a temporally changing
speed, as shown by, e.g., Eq.(4.6).
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Fig. 6. Oscillations of four parameters with
time in a low-amplitude stochastic

space-charge electric field of solitons:
(Ec/B)(r/Rc), Rv, δvϕ, and ω/Ω

5 OSCILLATIONS IN A
GENERALIZED STOCHA-
STIC NONLINEAR WAVE-
FIELD

In order to get deeper insights into the features
of the ion cyclotron oscillations triggered by
stochastic space-charge electric fields of solitons,
we use two random-number generators to
simulate the stochastic appearances and the
Ec/B strengths of electron solitons. The
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maximum temporal interval is 1 (in unit of
one gyro-period 2π/Ω s). The lifespan of the
stochastic electric field is 4000 gyro-periods. The
calculation also gives results for extra 1000 gyro-
periods to see what happens after the electric
field is switched off. We consider ions at r =
0.5Rc.

For comparisons, we consider both a low-
amplitude stochastic electric field of solitons
and a high-amplitude one, corresponding to two
extreme cases FAST could encountered. The
peak Ec/B-strength in the former is 4 (in unit
of vth = 1 km/s), while RcΩ = 3 (in unit
of vth); by contrast, the peak Ec/B-strength in
the latter is 90, while RcΩ = 275. The two
corresponding nominal ion gyration frequencies
(that for Maxwellian ions with zero GC velocity
to response to the peak stochastic electric field
strength) are 2.52Ω and 1.52Ω, respectively.

Fig. 6 illustrates the oscillating properties of
following four parameters with time in the low-
amplitude stochastic field: (Ec/B)(r/Rc), Rv,
δvϕ, and ω/Ω. The upper left panel gives the
input stochastic (Ec/B)(r/Rc)-profile which is
zero after t = 4000. The upper right panel
shows the stochastic changes of the velocity
radius of the GC-circles, Rv. Although Ec

B
r
Rc

never exceeds 2, it can reach up to more than 25
in modulations. From t = 4000, it is fixed at about
23. The lower left panel presents the variations of
the shift between the old coordinates and a series
of new ones in the stochastic electric field, δvϕ.
Because this shift is equal to (Ec

B
r
Rc

−Rv), it has
an anti-correlation with Rv due to relatively small
amplitudes of Ec

B
r
Rc

at any time. The lower right
panel exhibits the evolving properties of the ion
cyclotron frequency ω. Obviously, it is positively
correlated to Rv, in agreement with what was
discussed in the last Section. It is within 1 ∼ 9Ω in
frequencies but with an average around ∼ 5.5Ω.
Note that the final oscillation is frozen at 8Ω after
4000 gyro-periods of time when the electric field
is switched off.

Fig. 7 displays the temporal evolutions of the
transverse GC kinetic energy v2d (in unit of v2th)
of ions and their temperature T (in unit of T0)
in this case. The upper panel shows that that
the kinetic energy is enhanced by at least 2
orders of magnitude by the stochastic electric

field. For the ion temperature, it also demonstrate
markedly up to a 20-fold increase. Because
in the present study the the parallel component
is assumed constant, the temperature growth is
contributed by the transverse components Tr and
Tϕ. After 4000 gyrations of time, both v2d and
T keep constant in time, much higher than their
respective initial values.

Fig. 8 and Fig. 9 manifest the four parameters
and v2d & T , respectively, in the high-amplitude
stochastic field. From the upper left panel of Fig.
8, we see that (Ec/B)(r/Rc) is much higher than
that in Fig. 6, which produces much higher Rv,
δvϕ. On the contrary, the cyclotron frequency ω in
the lower right panel of Fig. 8 is lower than that in
Fig. 6. By checking analytical expressions in the
last section, we know that ω/Ω is really related
to the electric field (Ec/B), but depends on the
ratio between (Ec/B) and RcΩ. Though (Ec/B)
increases 22.5 times the weak field, the fact that
RcΩ becomes 91 times the weak field makes the
ratio is smaller than that in the weak field. Thus, ω
has smaller amplitudes which are within 1 ∼ 7Ω
in frequencies. The average is around ∼ 4.4Ω
which seems to be the final value stabilized after
4000 gyro-periods of time. Strikingly, the gained
kinetic energy of ions is much higher in Fig. 9
than that in Fig. 7, while the ion temperature
shown in Fig.9 does not increase that much as
that in Fig. 7.

Fig. 7. Temporal evolutions of the transverse
GC kinetic energy v2d of ions and their

temperature T in a low-amplitude stochastic
space-charge electric field of solitons
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Fig. 8. Oscillations of four parameters with
time in a high-amplitude stochastic

space-charge electric field of solitons:
(Ec/B)(r/Rc), Rv, δvϕ, and ω/Ω

Fig. 9. Temporal evolutions of the transverse
GC kinetic energy v2d of ions and their

temperature T in a high-amplitude stochastic
space-charge electric field of solitons

For the two cases, the IC oscillation frequency
shifts around ∼ 5Ω on average, between
4.4Ω and 5.5Ω. This indicate that observable
frequencies should not fall exactly about Ω.
Instead, they should be away from the ion
gyro-frequency. In the present radially inward
electric field case, ω has a “blue” shift to the
LH frequency. Reasonably, if the electric field
is radially outward (say, produced by positive
space-charge solitons), we predict ω will have a

“red” shift to a frequency lower than Ω. Another
paper will discuss this case.

6 SUMMARY AND DIS-
CUSSION

Plasma instabilities and waves in IC modes is
a hot topic in traditional linear wave theories,
where the electric field is weak, considered as
a perturbation under a plane wave formulation.
Aiming at illustrating the IC oscillations in
response to a stochastic, strong electric field
contributed by nonlinear waves in auroral
ionosphere, we established a physical model
to describe characteristics of ions residing in
such an electric field which randomly appears
in space with random strengths, however, is
instantaneously constant in time. To get easy
access and comprehensive insight into the
oscillation features, we relied on ion Hamiltonian
mechanics to solve the Boltzmann equation
completely analytically for an invariant field with
time. We obtained a double-circle trajectory in
velocity space for ions with a nonzero initial GC
velocity, and acquired evolutions of their kinetic
energy and temperature. Then, we designed a
stochastic electric field with 10-step strengths to
illustrate how the IC oscillation frequency and
other parameters accommodate to the strong
space-charge electric field of solitons which
appears in flux tubes randomly with time. After
that, we bring two random-number generators
into play to simulate real situations at a position
well inside the flux tube. We obtained that
the IC frequency can be shifted to several ion
gyration frequencies. Specifically, with both a
low-amplitude electric field and a high-amplitude
one, we reported that the actual IC frequencies
fall in around 5Ω on average of the two cases.

The simulation result coincides with
observations, e.g., Fig.1(aa-cc) in [61]. The
data gives five pulses in ∼ 5 ms, indicating
a frequency of ∼1 kHz for solitary structures
to appear at a specific spatial position. Using
H+ gyrofrequency Ω ∼200 Hz we calculated
in Section 1 from FAST measurements, we
predicted from our result that solitons should
have a frequency of 880∼1100 Hz, in agreement
with what FAST data exhibited. Here, we would
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like to show our special concern to the authors’
claim that the frequency of the evenly spaced
solitons appears to be, “within error”, the LH
oscillations (see Fig.5 in that paper). In the linear
wave regime, the LH instabilities are triggered by
the density and/or temperature gradients of the
background plasma, involving both modulations
of the perturbed electric field to electrons and
ions. In upward/downward current regions FAST
satellite passes, such conditions to excite LH
waves seem not satisfied in the linear wave
regime. If LH oscillations do exist, they may be
triggered by some kind of mechanisms related
to strong soliton electric fields. Unfortunately, the
authors mentioned nothing about the activation of
the LH instabilities. We are going to pay attention
to this issue and show linked evidence to support
the authors’ argument.

This paper is the first attempt to account for
measurements of plasma IC oscillations by
employing a nonlinear plasma wave model.
The approach hires the kinetic theory, instead
of the linear wave theory, to understand the
IC oscillations observed in space, where the
linear plasma process has evolved to produce
measurable nonlinear phenomena by high-
resolution payloads. As a start, we attacked
the most basic problem with as simple a model
as possible toward our goal to gain important
insights into more complicated situations, while
still being able to obtain applicable numerical
solutions to observations. In the model, we
did not take into consideration the effect of the
parallel electric field sustained by solitons on
perpendicular ion oscillations, and neglected an
upward mirror force which may be brought about
by a diverging magnetic flux tube. We exclude the
boundary effects on the characteristics of ions by
simply choosing a radius which is well inside the
flux tube cylinder. We also assumed that the
solitons’ space charges are distributed in the flux
tube uniformly, regardless of a possible density
inhomogeneity due to intermediate spaces
among soliton trains. Though with these limits,
the feature of measured IC oscillations driven by
nonlinear waves can be satisfactorily explained.
We hope the work could provide a reference to
future studies on solving similar problems under
conditions that traditional linear wave models are
no longer suitable.

7 CONCLUSION

After Chiueh & Diamond predicted the existence
of “space-charge Clumps, numerous high-
resolution observations (e.g., FAST, Polar)
confirmed these space-charge structures which
were nothing else but the measured nonlinear
electrostatic solitary waves (see the first report
in [56]). These stochastic solitary structures are
space-charge carriers which contribute strong
transverse electric fields in space plasmas to
excite ion cyclotron (IC) oscillations. Different
from the stochastic methods used in different
fields of physics [63-65], this paper offered an
alternative for readers to deal with similar studies
in the elucidation of the IC oscillations stimulated
in auroral ionosphere. This new approach was
featured by a couple of recognitions in treating
the space-charge electric field, as demonstrated
in [67]: macroscopically, the field is stochastic,
maintained by the dynamical processes of the
propagation of solitons unaffected by the local
behaviour of the ions; microscopically, within
any tiny temporal intervals when a specific
space-charge electric field appears in space
with a lifetime ions are residing in this externally
constant field. In that sense, we are solving a
simpler Boltzmann equation analytically, rather
than a more complicated Boltzmann-Vlasov
equation which requires numerical approaches.
For the stochastic, strong space-charge electric
wavefield E of nonlinear waves propagating in
auroral ionosphere, we conclude that

(1) With a nonzero initial guiding-center (GC)
velocity, ions are found to follow a double-
circle trajectory in velocity space with an IC
oscillation frequency ω which shifts from the
magnetic gyrofrequency Ω = eB/mi; (2) After
the “constant” condition of the field is relaxed
by using a simple stochastic E strengths in
different limited random time intervals, frequency
ω accommodates the E switches which brings
about variations of related transport parameters;
(3) By generalizing the stochastic properties
in both the field strength and time interval, ω
can be shifted to several times over the value
of Ω, bringing astonishing enhancements in
the physical properties such as, temperature,
kinetic energy, in good agreement with what
observations demonstrated in auroral field-
aligned current regions.
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[11] Müeller G. Experimental study of torsional
Alfven waves in a cylindrical partially
ionized magnetoplasma. Plasma Phys.
1974;16:813-822.

[12] Dawson JM, Kim HC, Arnush D, et al.
Isotope separation in plasmas by use of
ion cyclotron resonance. Phys. Rev. Lett.
1976;37:1547-1550.

[13] Weibel ES. Separation of isotopes. Phys.
Rev. Lett. 1980;44(6):377-379.

[14] Sawley ML, Tran MQ. Free and forced
ion cyclotron waves in a cylindrical cavity
partially filled with a two-ion species plasma.
Lausanne Rep. 1982;206(82):1-56.

[15] Sawley ML. Ion cyclotron modes in a low
density plasma cavity - Part I: Theory.
Lausanne Rep. 1990;422(90):1-29.

[16] Sawley ML, Paris PJ. Ion cyclotron
modes in low density plasma cavity
- Part II: Experiment. Lausanne Rep.
1990;423(90):1-24.

[17] Sawley ML, Paris PJ. Ion cyclotron modes
in a low density plasma cavity. J. Phys. D:
Appl. Phys. 1991;24:2135-2148.

[18] Ono M, Wurden GA, Wong KL. Efficient
ion heating via finite-Larmor-radius ion-
cyclotron waves in a plasma. Phys. Rev.
Lett. 1984;52(1):37-40.

[19] Sato N, Hatakeyama R. A mechanism for
potential-driven electrostatic ion cyclotron
oscillations in a plasma. J. Phys. Soc.
Japan. 1985;54(5):1661-1664.

[20] D’Angelo N, Merlino RL. EIC waves in
a plasma with negative ions. IEEE Trans.
Plasma Sci. 1986;PS-14(3):285-286.

[21] Song B, Suszcynsky D, D’Angelo N, et
al. Electrostatic ion-cyclotron waves in a

19



Ma and St.-Maurice; PSIJ, 12(3), 1-22, 2016; Article no.PSIJ.29209

plasma with negative ions. Phys. Fluids B.
1989;1(12):2316-2318.

[22] Chow VW, Rosenberg M. Electrostatic
ion cyclotron instability in dusty plasmas.
Planet. Space Sci. 1995;43(5):613-618.

[23] Chow VW, Rosenberg M. Electrostatic
ion cyclotron instabilities in negative ion
plasmas. Phys. Plasmas. 1996;3(4):1202-
1211.

[24] Barkan A, D’Angelo N, Merlino RL.
Laboratory experiments on electrostatic
ion cyclotron waves in a dusty plasma.
Planet. Space Sci. 1995;43(7):905-908.

[25] Kim S-H, Heinrich JR, Merlino RL.
Electrostatic ion-cyclotron waves in a
plasma with heavy negative ions. Planet.
Space Sci. 2008;56(11):1552-1559.

[26] Smith RL, Brice NM, Katsufrakis J. An ion
gyrofrequency phenomenon observed in
satellites. Nature. 1964;204:274-275.

[27] Gurnett DA, Shawhan SD, Brice NM, et al.
Ion cyclotron whistlers. J. Geophys. Res.
1965;70(7):1665-1688.

[28] Mosier SR, Gurnett DA. Ionospheric
observation of VLF electrostatic noise
related to harmonics of the proton
gyrofrequency. Nature. 1969;223:605-
606.

[29] Kikuchi H. Harmonic ion cyclotron
resonances observed by the OGO4
satellite. Nature. 1970;225:257-258.

[30] Kintner PM, Kelley MC, Mozer FS.
Electrostatic hydrogen cyclotron waves
near one earth radius altitude in the polar
magnetosphere. Geophys. Res. Lett.
1978;5:139-142.

[31] Boardsen SA, Gurnett DA, Peterson
WK. Double-peaked electrostatic ion
cyclotron harmonic waves. J. Geophys.
Res. 1990;95:10,591-10,598.

[32] Erlandson RE, Ukhorskiy AJ. Observations
of electromagnetic ion cyclotron waves
during geomagnetic storms: Wave

occurrence and pitch angle scattering.
J. Geophys. Res. 2001;106(A3):3883-3895.

[33] Guglielmi AV, Potapov AS, Russell
CT. J. The ion cyclotron resonator in
the magnetosphere. Experimental and
Theoretical Phys. Lett. 2000;72(6):298300.
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[44] Büchner J, Elkina N. Anomalous resistivity
of current-driven isothermal plasmas due
to phase space structuring. Phys. Plasmas
2006;13:082304.

[45] Dupree TH. Theory of phase space
density granulation in plasma. Phys. Fluids
1972;15(2):334-344.

[46] Karney CFF, Bers A. Stochastic ion
heating by a perpendicularly propagating
electrostatic wave. Phys. Rev. Lett.
1977;39:550-554.

[47] Strozzi DJ, Ram AK, Bers A.
Coherent acceleration of magnetized
ions by electrostatic waves with
arbitrary wavenumbers. Phys. Plasmas
2003;10(7):2722-2731.

[48] Mottez F. Instabilities and formation of
coherent structures. Astrophys. Space Sci.
2001;277:59-70.

[49] Pickett JS, Chen L-J, Kahler SW, et
al. On the generation of solitary waves
observed by Cluster in the near-Earth
magnetosheath. Nonlinear Processes in
Geophys. 2005;12:181-193.

[50] Scarf FL, Frank LA, Ackerson KL, et
al. Plasma wave turbulence at distant
crossings of the plasma sheet boundaries
and the neutral sheet. Geophys. Res. Lett.
1974;1:189-192.

[51] Gurnett DA, Frank LA, Lepping RP. Plasma
waves in the distant magnetotail. J.
Geophys. Res. 1976;81:6059-6071.

[52] Cattell CA, Mozer FS, Anderson RR, et
al. ISEE observations of the plasma sheet
boundary, plasma sheet, and neutral sheet
2. Waves. J. Geophys. Res. 1986;91:5681-
5688.

[53] Temerin M, Cerny K, Lotko W, et al.
Observations of double layers and solitary
waves in the auroral plasma. Phys. Rev.
Lett. 1982;48:1175-1179.

[54] Nishida A, Hada T, Anderson KA, et
al. Broadband electrostatic noise in the
rnagnetotail: Its relation to plasma sheet
dynamics. J. Geophys. Res. 1985;90:4453-
4460.

[55] Dubouloz N, Pottelette R, Malingre M, et
al. Generation of broadband electrostatic
acoustic solitons. Geophys. Res. Lett.
1991;18:155-158.

[56] Matsumoto H, Kojima H, Miyatake T, et
al. Electrostatic solitary waves (ESW)
in the magnetotail: BEN wave forms
observed by GEOTAIL. Geophys. Res. Lett.
1994;21:2915-2918.

[57] Ma JZG, Hirose A. Parallel propagation of
ion solitons in magnetic flux tubes. Phys.
Scr. 2009;79:045502.

[58] Cole KD. Effects of crossed magnetic
and spatially dependent electric fields on
charged particles motion. Planet. Space
Sci. 1976;24:515-518.

[59] St-Maurice J-P, Winkler E, Hamza AM.
J. Ionospheric ion velocity distributions
and associated transport properties in the
presence of auroral electric field gradients.
J. Geophys. Res. 1994;99:19,527-19,548.

[60] Ma JZG, St-Maurice J-P. Ion distribution
functions in cylindrically symmetric
electric fields in the auroral ionosphere:
The collision-free case in a uniformly
charged configuration. J. Geophys. Res.
2008;113:A05312.

[61] Ergun RE, Carlson CW, McFadden JP, et al.
FAST satellite observations of electric field
structures in the auroral zone. Geophys.
Res. Lett. 1998;25:2025-2028.

[62] Ergun RE. Magnetic-field-aligned electric
fields associated with Debye-scale plasma
structures. Plasma Phys. Control. Fusion
1999;41:A61-73.

[63] Bonfig KW. Das Direkte Digitale
Messverfahren als Grundlage einfacher
und dennoch genauer und storsicherer
Sensoren. Sensors 1988;3:103-108.

21



Ma and St.-Maurice; PSIJ, 12(3), 1-22, 2016; Article no.PSIJ.29209

[64] Matko V, Donlagić D, Koprivnikar J. On
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