British Journal of Mathematics & Computer Science

14(1): 1-9, 2016, Article no.BJM CS.23269
ISSN: 2231-0851

SCIENCEDOM AIN international

www.sciencedomain.org SCIENCEDOMAIN

Test Cases Minimization and Prioritization Based on
Requirement, Coverage, Risk Factor and Execution Time

Wasiur Rhmann?, Taskeen Zaidi* and Vipin Saxena®

'Department of Computer Science, B. B. Ambedkar Universitynbuckndia.
Authors’ contributions

This work was carried out in collaboration between all authéugthor VS designed the study, wrote the
protocol and supervised the work. Authors WR and TZ carried olabalfatories work and performed the

statistical analysis. Author WR managed the analysesdittidy. Author VS wrote the first draft of the

manuscript. Author TZ managed the literature searchesealited the manuscript. All authors read and
approved the final manuscript.

Article Information

DOI: 10.9734/BIJMCS/2016/23269
Editor(s):
(1) Dariusz Jacek Jakébczak, Chair of Computer Seiend Management in this Department, Technicaldssity of Koszalin,
Poland.
Reviewers:

(1) Lirong Wang, Stonybrook University, USA.

(2) M. Bhanu Sridhar, GVP College of Engineering for Wom€isakhapatnam, India.

Complete Peer review Historpttp://sciencedomain.org/review-history/13030

Received: 28 November 2015
oronal R Y Accepted: 18 December 2015
| riginal Research Article Published: 28§ January 2016

Abstract

Large numbers of test cases are designed for effgctigsting the quality of the developed softw
products. Due to limited resource and time constraint itoispossible to test the software with lange
number of test cases. Test case minimization selecttesheases from test suites which have higher
probability of finding errors. Test case prioritization effeely improves various performance goals |by
executing test cases in appropriate order. This papegrisea test case minimization and prioritizatjon
approach based on several factors related to the sofpn@jeets. Proposed approach prioritizes the fest
cases based on faults exposed by test cases, requiresnerdge, risk, statement coverage and test [case
execution time. In the present work, test cases aretseélend prioritized within the given time
constraint.

Keywords: Test suite reduction; test case prioritizati@guirement priority; risk.

*Corresponding author: E-mailvsax1@rediffmail.com;

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; ArticleBuMCS.23269

1 Introduction

Software testing is a quality assurance activity and maedponsible for producing reliable software. The
objective of testing is to find the maximum possible errathinvrealistic time span by putting manageable
amount of effort for development of the software paiddest case execution satisfies preconditions and
provides test case input and gives output which is comparédtine expected output to ensure that it
satisfies expected post conditions to determine whetieertdast passed [1]. A good test case has high
probability of finding undiscovered errors [2]. In test suigduction a subset of test cases is selected for
testing the software to uncover errors while maintgjrthe quality of the software. Prioritization of test
cases can detect faults earlier in the softwarengpgtihase. In software projects, almost 40-50% of tte tot
efforts are consumed by software testing. Test casgitmation is done with the intent of earlier fault
detection from test suite. A huge amount of time is spetésting phase by software developer. Different
requirement of the software projects have different gyiceind almost 45% of the requirements of the
software products are rarely used [3]. Therefore, fdraase prioritization, we also considered the priority
of the requirement based on their importance to diffemeemt-powers involved in software projects. Test
case prioritization can adjust testing efforts whichue b limited resourse and budget constraints. Due to
this various researchers have activily studied test casstigation techniques. Srivastava [4] presented a
new test case prioritization algorithm in which averdgelt per minutes are calculated. Majority of
researchers used source code for test case priodtizatiile some researchers also investigated test case
prioritization techniques based on different softwardaats like design, document and system requirements
[5]. For test case prioritization, many researchessd software risk information to test the portion of the
software code which is more error prone [6®Bjikanth et al. [9] have proposed a technique of test case
prioritization. In this, authors used several requiremelatted components like requirements volatility and
requirement complexity for early detction of the faults iftvgare projects. Arafeen and Do [10] used text
mining technique to cluster similar requirements thenioglghip between requirements and test cases is
used for prioritization of test cases. Authors find out thee of requirement information for test case
prioritization improved the results. Rothermal e{&l] defined the test case prioritization as follows:

Given: T is a test suite; PT is the set of permutationis bfs a function from PT to the real numbers.

Problem: To find Tbelongs to PT such that (for alf)I(T" belongs to PT) (T£T") [f(T') >f(T')].

Here, PT represents the set of all possible priatitins (orderings) of T and f is a function that, applied to
any such ordering, yields an award value for that ordering.

Test case minimization is also explained in [12] and desthiéow in brief:

Given: A test suite T{t t,, . . . ,}) and a set of test requirements;R(y, . . . ,p)

Problem: To find the smallest Such that §is subset of T, for all r element Ry(3atisfies r).
The objective of present work is to develop test caseifaiion techniques based on the requirement
priority and risk factor associated with the softwarejguts and statement coverage within the given time

constraint. Proposed test case prioritization technigarimizes fault exposed and statement coverage of
test cases.

2 Research M ethodology
The procedure of test case selection and prioritizasiale$cribed below:
2.1 Requirement priority

Customer, Manager and developer assign different values Irto 10 to the requirements based on their
importance and sum of these values for each requirersenal¢tulated to assign the priority to the

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; ArticleBuMCS.23269

requirement. Let us consider two requirements likaml B and assign the priority factors as shown in the
following Table 1.

Table 1. Requirement priority tablewith prioritization factor (sample values)

Requirements Prioritization factor (1to 10) Total
Manager Developer Customer

Ry 4 4 5 13

R, 4 3 8 15

2.2 Risk exposure

Let us consider four types of risk which may occur in tfénsare projects [13]. Risk exposure is computed
by the formula

Risk-Exposure (RE)= Probability of occurrence of risk(Beverity (S) Q)

Then risk exposure for each requirement is the sum talagdctotal risk exposure for each requirement. For
calculating risk factor, several problems which mayuodo the development of the software project are
listed then their probability of occurrence and severitgsisigned to each problem. Historical data of some
projects can be used for calculating the probability aewkrity values which are assigned based on
established data [13]. Let us consider four types of attabkchwnay occur during the development of the

software project, these are

LP = Loss of Power

CFD~> Corrupt File Data

UUD - Unauthorized User Access
ST - Slow Throughput

Then the following table is constructed based on the vafueésnd S for Rand R.

Table 2. Requirement and risk factor (sample values)

Requirement Risk Prioritization factor (value 1to 10) Total of risk exposure
LP CFD uuD ST
R, P 2 2 2 3
S 4 5 3 2 30
RE 8 10 6 6
R, P 3 4 5 4 37
S 4 2 3 5
RE 12 8 8 9

Here we find the subset of test suites such that it canessmum requirement specified and risk of the
requirement while maintaing statement coverage anddatgction capability high within the given time. In
the present work, test case selection is based on Ogkirmieogramming [14] of optimization techniques.
2.3 0-1integer programming

Let us describe 0=1 integer programming which has thewolly objective function and associated
constraint:

Max z= 211] Witi

Where, w=S+F+RR +R, (2)

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; ArticleBuMCS.23269

In the above equation,; & statement coverage of test caseijsHault exposed by test case RR is
requirement priority value covered by a test cases Rsk exposure covered by a test case. The decision
variable t takes only 0 and 1 value. If test case i is selectedithealue will be 1 otherwise 0. Hence the
constraint is given below:

21 teiti<=T

where §; is test case execution time for test case is total time allocated for testing the project.

3 A Case Study

Let us consider a small software program as a case s$tudcash withdrawal from bank. Here we
considered a case of cash withdrawal from ATM which dsegerprint along with the pin number to
provide additional security. Code of software contains ahatetof cash withdrawal which takes four
parameter namely Pin number, Fingerprint, Account type and Anajuntthdrawal. The Pin number is
1234, Account type is savings and maximum withdrawal li;m§0,000 and Fingerprint is fingerprint (OK).
Here fingerprint is taken as correct input while wfingerpfimtong fingerprint) for unauthorized access.
Different requirements of this software are listed belo

Reql: Appropriate message should be display if usersemteng pin number;
Reg2: A message of fingerprint not matched
Req3: Appropriate message should appear on the scregar floes not select correct account type

Reg4: A message of insufficient amount available should beagiesp if user enters amount of
withdrawal more than the available balance

Reqg5: Appropriate message should appear if user eriwghidraw amount more than withdrawal limit
Req6: Appropriate message of withdrawal should appearsafteessful withdrawal

For the above, a code in JAVA is given below:

1 void withdraw (PIN, FINGERPRINT, ACC_TYPE, AMOUN(T)
2 if (PINI="1234")

3 {System.out.print("Please enter correct pin");}
4 elsef

5 if(FINGERPRINT ![='0Ok’)
6 {System.out.print("Fingerprint not matched");}

7 else{

8 if(ACC_TYPE!="Saving’)

9 {System.out.print("Please enter correct acotypg");}

10 elsef

11 if(AMOUNT>balance)

12 { System.out.print("Not sufficient amount");}

13 else ifl AMOUNT<Balance && AMOUNT> 50000)

14 { System.out.print("Enter amount should be less than 500900");
15 else{

16 System.out.print("Balnce"+Balance-AMOUNT); } } }}}

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; ArticleBuMCS.23269

In the

above program, there are six possible outcomes ,hémgce are six equivalance classes. These six

equivalance classes are used for test case generatiatsambias follows:

C1={<PIN, FINGERPRINT, ACC_TYPE, AMOUNT>, Pin is wrong}

C1={<PIN, FINGERPRINT, ACC_TYPE, AMOUNT>, Fingerprinbhmatched}

C3={<PIN, FINGERPRINT, ACC_TYPE, AMOUNT>, Please ematerrect account type}
C4={<PIN, FINGER_PRINT, ACC_TYPE, AMOUNT>, Not Suffigie Amount}

C5= {<PIN, FINGER_PRINT, ACC_TYPE, AMOUNT>, Enter amouhb#d be less than 50000}
C6= {<PIN, FINGERPRINT, ACC_TYPE, AMOUNT>, Balance}

On the basis of above equivalence classes, various testarasgenerated and represented below in Table 3.

Table 3. Test case creation from JAVA code

Test case I nput data Expected output
Ty (12,’Fingerprint’,’'Saving’,5) Pleasater correct Pin number
T, (1234,'wFingerprint’,’Current’,5 Please scan ydungerprint
Ts (1234, Fingerprint’,'Current’,5) Please clsmocorrect Account type
Ts (1234, Fingerprint’,’Saving’,6000) Not Suffent balance available
Ts (1234, Fingerprint’,’Saving’,65000) Amount shdube less than limit
Te (1234, Fingerprint’,’Saving’,5) Shows akadble balance
In the above program, authors introduced three bugs to maketmuBags inserted are shown below as
<> inthe same program.

1 void withdraw(PIN, FINGERPRINT, ACC_TYPE, AMOUNT){

2 1If (PIN 12341

3 System.out.printin(“Please enter correct pin numbgr”);

4 else{

5 If(FINGERPRINT I="OK"){

6 System. out. print (* Fingerprint not matched”);}

7 else {

8 If (ACC_TYP 'Saving)

9 {System. out. printin (“Please enter correct acctype”);}

10 else{

11 if (AMOUNT>Balance)

12 {System. out. printin (“Not sufficient amount”); }

13 else if (AMOUN Balance &8 AMOUNT>50000)

14 {System. out. Println (“Enter amount should ba lmn 50000”);}

15 else

16 {System.out.print(“Balance”+Balance-AMOUNT); } } } }

Total mutant inserted are=3

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; ArticleBuMCS.23269

Mutant exposed by test cases are (1, 1, 2, 2, 2, 2) resggctivd statement coverage of test cases is (3, 5, 7,
9, 10, 11), respectively. Now, requirement priority of testes are recorded in the following Table 4.

Table 4. Setting the priority factor for requirements

Requirement PF value (1 to 10) Total
Customer Developer M anager
Ry 5 5 5 15
R, 5 5 5 15
R3 6 6 6 18
R4 7 7 7 21
Rs 8 8 8 24
Rs 9 9 9 27

Let us introduce the risk factor for the requirements iais given below in the following Table 5.

Table5. Requirement with their risk factor and priority factor value

Requirement Risk PF value Total of risk exposure
LP CFD UubD ST

Ry P 2 2 2 3 30
S 4 5 3 2
RE 8 10 6 6

R, P 3 4 5 4 37
S 4 2 3 5
RE 12 8 8 9

Rs P 3 3 4 2 40
S 4 4 2 4
RE 12 12 8 8

R4 P 2 3 2 6 35
S 4 3 3 2
RE 8 9 6 12

Rs P 2 4 3 5 41
S 5 3 3 2
RE 10 12 9 10

Res P 3 4 2 4 43
S 5 3 4 2
RE 15 12 8 8

The following Table 6 represents the statement andésst coverage criteria for the statements taken from
JAVA code from line numbers 1-16.

Table 6. Statement and test case cover age taken from JAVA code

Statement\Test cases T1 T, Ts T, Ts Te
1 X X X X X X
2 X X X X X X
3 X

4 X X X X X
5 X X X X X
6 X

7 X X X X
8 X X X X
9 X

10 X X X
11 X X X
12 X

13 X x
14 x

15 X
16 X

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; ArticleBuMCS.23269

From Tables 4, 5 and 6 and mutant exposed as (1, 1, 2, 2a& @pnsidered to find statement coverage,
fault exposed, requirement priority and risk represeimetbllowing table. For the execution time, it is
considered as a twice the statement covered by theatsst It is recorded in the last row of the table.

Table 7. Test case with statement, fault, requirement and risk cover age

Test case T, T, T, T, Ts Te
Statement coverage 3 5 7 9 10 11
Fault exposed 1 1 2 2 2 2
Requirement priority 15 15 18 21 24 27
Risk 30 37 40 35 41 43
Total (T) 49 58 67 67 77 83
Execution time (ms) 6 10 14 18 20 22

On the basis of above, let us formulate the 0-1 integeati programming problem which is given below.
Total time of executing test cases is considered tdbas/

Max Z=49T;+58T,+67T3+67Ty+77Ts+83Ts
Subject to:

6T1+10T2+14T3+18T4+20T5+22T5<:70 (3)
4 Results and Discussion

For the solution of the problem 3, authors used LINGO 15.@vadétto solve the formulated optimization
problem. Different types of equations like linear, nonlingagdratic, integer optimization problems can be
easily solved by LINGO. Optimization models can be gasipressed by using integrated package of
LINGO. It provides an environment for building, editing gdeoshs and solves them with the available build-
in solvers. In the reduced test suite, we findTp, T;, T, and T as test cases and these should run in the
given time constraint to cover maximun requirement, riskestent coverage and faults. For selected test
cases by the software, authors calculated differetarf®moecorded in the following Table 8.

Table 8. Percentage cover age of different factors

Test cases T, T, T, Ta Te % covered
Fault 1 1 2 2 2 2/2=100%
identified

Statement 1,2,3 1,2,4,5,6 1,2,45,7,8,9 1,2,45,7,8,1,2,4,5,7,8, 1,2,3,4,5,6,7,8,

covered 10,11,12 10,11,13,15,16 9,10,11,12,13,15,16
Requirement 15 15 18 21 27 96/120=80.0%
covered

Risk covered 30 37 40 35 43 185/226=81.85%

From the above table, prioritized order of test casesdbaseequirement and risk i, TTs, T4, T, and T
which is in the decreasing order of requirement and risk. Ehitheé order of test case which covers
maximum statements within the given time. Here test cabah have higher coverage of requirement and
have probability of exposing more number of errors are tdissedit is recorded in the following Table 9.

Table9. Prioritized order of test cases

Test case Regquirement+Risk Total
T, 15+30 45
T, 15+37 52
T, 18+40 58
T, 21+35 56
Te 27+43 70

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; ArticleBuMCS.23269

5 Conclusions

In the presented work, authors have proposed a testsebsetion and prioritization technique using 0-1
integer programming based on requirement priority and risk $g\ard statement coverage. The first test
cases are selected from test suite based on given timeatoinsSelected test cases cover maximum faults,
statements, requirement and risk. Then test cases iargizgd based on requirement and risk values. A
small JAVA method for cash withdrawal is considered fdidesion of proposed approach. Here 0-1 integer
programming is used as each decision variable can have onkatues 0 or 1. For 1 a decision variable is
selected and for 0 a decision variable is not seleatechde of software testing, minimized test cases can be
selected from large number of test cases. If a test isaselected then value of corresponding decision
variable will be 1 otherwise 0. In the present workumegment of cash withdrawal are written manually,
statement covered by test cases and fault exposed byasest are also calculated manually so authors
considered simple example of cash withdrawal from ATMfuture we may consider complex and large
software for test case prioritization and automated tmokfatement coverage and fault exposing potential
may also be considered.

Competing Interests
Authors have declared that no competing interests exist.
References

[1] Jorgensen PS. Software testing: A craft's man appreicéadition. CRC Presses Taylor and Francis
Group; 2013.

[2] Pressman RS. Software engineering: A practitioner’'s apprddcGraw Hilt 2013.

[3] Srikanth H, Williams L. On the economics of requiremeratsel test case prioritization. Proceeding
of the seventh international workshop on Economics-driven saftwagineering research. New
York, USA; 2005;1-3.

[4] Srivastava PR. Test case prioritization. Journal ofofétéecal and Applied Information Technology.
2008;4(2):178-181.

[5] Krishnamoorthi R, Mary SASA. Factor oriented requiremenwvecage based system test
case prioritization of new and regression test cases. matwn and Software Technology.
2009;51(4):799-808.

[6] Do H, Mirarab S, Tahvildari L, Rothermel G. The effeatf time constraints on test case
prioritization: A series of controlled experiments. |IEHEansaction on Software Engineering.
2010;26(5):593-617.

[71 Yoon M, Lee Y, Song M, Choi Bi. A test case prioritizationotigh correlation of requirement and
risk. Journal of Software Eng. Appl. 2012;5(10):823-835.

[8] Stallbaum H, Metzger A, Pohl K. An automated techniquerifk based test case generation and
prioritization. In: Proceedings of thé®3nternational Workshop on Automation of Software Test,
New York, USA. 2008;67—70.

[9] Srikanth H, Williams L, Osborne J. System test cageriization of new and regression test cases.
In: Proceedings of International Symposium on Empirical Soévargineering. 2005;64—-73.

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; ArticleBuMCS.23269

(10]

(11]

(12]

(13]

(14]

Arafeen MJ, Do H. Test case prioritization using regmients based clustering. Proceedings of IEEE
Sixth International Conference of Software Testing fémiion and Validation (ICST), Washington,
USA. 2013;312-321.

Elbaum S, Malishevsky AG, Rothermel G. Test case pidation: A family of empirical studies.
IEEE Transaction on Software Engineerif§02;28(2):159-182.

Mudgal AP. A proposed model for minimization of test suite. Jaluof Nature Inspired Computing.
2013;1(2):34-37.

Tamres L. Introducing software testing' Edition, Addison Wesley; 2006.

Williams HP. Model building in mathematical programming. JohiteyyY New York; 1993.

© 2016 Rhmann et al.; This is an Open Access artilibtributed under the terms of the Creative Comsmattribution License
(http://creativecommons.org/licenses/byj4®@hich permits unrestricted use, distributiondareproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be asedsere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/13030

