

British Journal of Mathematics & Computer Science

14(1): 1-9, 2016, Article no.BJMCS.23269

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: E-mail: vsax1@rediffmail.com;

Test Cases Minimization and Prioritization Based on
Requirement, Coverage, Risk Factor and Execution Time

Wasiur Rhmann1, Taskeen Zaidi1 and Vipin Saxena1*

1Department of Computer Science, B. B. Ambedkar University, Lucknow, India.

Authors’ contributions

This work was carried out in collaboration between all authors. Author VS designed the study, wrote the

protocol and supervised the work. Authors WR and TZ carried out all laboratories work and performed the
statistical analysis. Author WR managed the analyses of the study. Author VS wrote the first draft of the
manuscript. Author TZ managed the literature searches and edited the manuscript. All authors read and

approved the final manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/23269
Editor(s):

(1) Dariusz Jacek Jakóbczak, Chair of Computer Science and Management in this Department, Technical University of Koszalin,
Poland.

Reviewers:
(1) Lirong Wang, Stonybrook University, USA.

(2) M. Bhanu Sridhar, GVP College of Engineering for Women, Visakhapatnam, India.
Complete Peer review History: http://sciencedomain.org/review-history/13030

Received: 23rd November 2015
Accepted: 18th December 2015
Published: 20th January 2016

Abstract

Large numbers of test cases are designed for effectively testing the quality of the developed software
products. Due to limited resource and time constraint it is not possible to test the software with large
number of test cases. Test case minimization selects the test cases from test suites which have higher
probability of finding errors. Test case prioritization effectively improves various performance goals by
executing test cases in appropriate order. This paper presents a test case minimization and prioritization
approach based on several factors related to the software projects. Proposed approach prioritizes the test
cases based on faults exposed by test cases, requirement coverage, risk, statement coverage and test case
execution time. In the present work, test cases are selected and prioritized within the given time
constraint.

Keywords: Test suite reduction; test case prioritization; requirement priority; risk.

Original Research Article

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; Article no.BJMCS.23269

2

1 Introduction

Software testing is a quality assurance activity and mainly responsible for producing reliable software. The
objective of testing is to find the maximum possible errors within realistic time span by putting manageable
amount of effort for development of the software product. Test case execution satisfies preconditions and
provides test case input and gives output which is compared with the expected output to ensure that it
satisfies expected post conditions to determine whether the test passed [1]. A good test case has high
probability of finding undiscovered errors [2]. In test suite reduction a subset of test cases is selected for
testing the software to uncover errors while maintaining the quality of the software. Prioritization of test
cases can detect faults earlier in the software testing phase. In software projects, almost 40-50% of the total
efforts are consumed by software testing. Test case prioritization is done with the intent of earlier fault
detection from test suite. A huge amount of time is spent in testing phase by software developer. Different
requirement of the software projects have different priority and almost 45% of the requirements of the
software products are rarely used [3]. Therefore, for test case prioritization, we also considered the priority
of the requirement based on their importance to different man-powers involved in software projects. Test
case prioritization can adjust testing efforts which is due to limited resourse and budget constraints. Due to
this various researchers have activily studied test case prioritization techniques. Srivastava [4] presented a
new test case prioritization algorithm in which average fault per minutes are calculated. Majority of
researchers used source code for test case prioritization while some researchers also investigated test case
prioritization techniques based on different software artifacts like design, document and system requirements
[5]. For test case prioritization, many researchers used software risk information to test the portion of the
software code which is more error prone [6-8]. Srikanth et al. [9] have proposed a technique of test case
prioritization. In this, authors used several requirement related components like requirements volatility and
requirement complexity for early detction of the faults in software projects. Arafeen and Do [10] used text
mining technique to cluster similar requirements then relationship between requirements and test cases is
used for prioritization of test cases. Authors find out that use of requirement information for test case
prioritization improved the results. Rothermal et al. [11] defined the test case prioritization as follows:

Given: T is a test suite; PT is the set of permutations of T; f is a function from PT to the real numbers.

Problem: To find T′ belongs to PT such that (for all T′′) (T′′ belongs to PT) (T′′≠T′) [f(T ′) ≥f(T′′)].

Here, PT represents the set of all possible prioritizations (orderings) of T and f is a function that, applied to
any such ordering, yields an award value for that ordering.

Test case minimization is also explained in [12] and described below in brief:

Given: A test suite T(t1, t2, . . . ,tn) and a set of test requirements R(r1, r2, . . . ,rn)

Problem: To find the smallest T0 such that T0 is subset of T, for all r element R (T0 satisfies r).

The objective of present work is to develop test case prioritization techniques based on the requirement
priority and risk factor associated with the software projects and statement coverage within the given time
constraint. Proposed test case prioritization technique maximizes fault exposed and statement coverage of
test cases.

2 Research Methodology

The procedure of test case selection and prioritization is described below:

2.1 Requirement priority

Customer, Manager and developer assign different values from 1 to 10 to the requirements based on their
importance and sum of these values for each requirement is calculated to assign the priority to the

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; Article no.BJMCS.23269

3

requirement. Let us consider two requirements like R1 and R2 and assign the priority factors as shown in the
following Table 1.

 Table 1. Requirement priority table with prioritization factor (sample values)

Requirements Prioritization factor (1 to 10) Total
Manager Developer Customer

R1 4 4 5 13
R2 4 3 8 15

2.2 Risk exposure

Let us consider four types of risk which may occur in the software projects [13]. Risk exposure is computed
by the formula

Risk-Exposure (RE)= Probability of occurrence of risk (P) * Severity (S) (1)

Then risk exposure for each requirement is the sum to calculate total risk exposure for each requirement. For
calculating risk factor, several problems which may occur in the development of the software project are
listed then their probability of occurrence and severity is assigned to each problem. Historical data of some
projects can be used for calculating the probability and severity values which are assigned based on
established data [13]. Let us consider four types of attacks which may occur during the development of the
software project, these are

LP � Loss of Power
CFD� Corrupt File Data
UUD � Unauthorized User Access
ST � Slow Throughput

Then the following table is constructed based on the values of P and S for R1 and R2.

Table 2. Requirement and risk factor (sample values)

Requirement Risk Prioritization factor (value 1 to 10) Total of risk exposure
LP CFD UUD ST

R1

P 2 2 2 3
30 S 4 5 3 2

RE 8 10 6 6
R2 P 3 4 5 4 37

S 4 2 3 5
RE 12 8 8 9

Here we find the subset of test suites such that it covers maximum requirement specified and risk of the
requirement while maintaing statement coverage and fault detection capability high within the given time. In
the present work, test case selection is based on 0-1 integer programming [14] of optimization techniques.

2.3 0-1 integer programming

Let us describe 0=1 integer programming which has the following objective function and associated
constraint:

 Max z= ∑ w�t�
�
�

Where, wi = Si + Fi + RPi + Ri (2)

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; Article no.BJMCS.23269

4

In the above equation, Si is statement coverage of test case, Fi is fault exposed by test case ti, RPi is
requirement priority value covered by a test case, Ri is risk exposure covered by a test case. The decision
variable ti takes only 0 and 1 value. If test case i is selected then its value will be 1 otherwise 0. Hence the
constraint is given below:

∑ ��	�	

� <=T

where tei is test case execution time for test case ti, T is total time allocated for testing the project.

3 A Case Study

Let us consider a small software program as a case study for cash withdrawal from bank. Here we
considered a case of cash withdrawal from ATM which uses fingerprint along with the pin number to
provide additional security. Code of software contains a method of cash withdrawal which takes four
parameter namely Pin number, Fingerprint, Account type and Amount of withdrawal. The Pin number is
1234, Account type is savings and maximum withdrawal limit is 50,000 and Fingerprint is fingerprint (OK).
Here fingerprint is taken as correct input while wfingerprint (wrong fingerprint) for unauthorized access.
Different requirements of this software are listed below:

Req1: Appropriate message should be display if user enters wrong pin number;
Req2: A message of fingerprint not matched
Req3: Appropriate message should appear on the screen if user does not select correct account type
Req4: A message of insufficient amount available should be displayed if user enters amount of

withdrawal more than the available balance
Req5: Appropriate message should appear if user tries to withdraw amount more than withdrawal limit
Req6: Appropriate message of withdrawal should appear after successful withdrawal

For the above, a code in JAVA is given below:

1 void withdraw (PIN, FINGERPRINT, ACC_TYPE, AMOUNT){
2 if (PIN!='1234')
3 {System.out.print("Please enter correct pin");}
4 else{
5 if(FINGERPRINT !='Ok')
6 {System.out.print("Fingerprint not matched");}
7 else{
8 if(ACC_TYPE!='Saving')
9 {System.out.print("Please enter correct acoount type");}
10 else{
11 if(AMOUNT>balance)
12 { System.out.print("Not sufficient amount");}
13 else if(AMOUNT<Balance && AMOUNT> 50000)
14 { System.out.print("Enter amount should be less than 500000");}
15 else{
16 System.out.print("Balnce"+Balance-AMOUNT); } } } } }

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; Article no.BJMCS.23269

5

In the above program, there are six possible outcomes hence, there are six equivalance classes. These six
equivalance classes are used for test case generations which are as follows:

C1= {<PIN, FINGERPRINT, ACC_TYPE, AMOUNT>, Pin is wrong}
C1= {<PIN, FINGERPRINT, ACC_TYPE, AMOUNT>, Fingerprint not matched}
C3= {<PIN, FINGERPRINT, ACC_TYPE, AMOUNT>, Please eneter correct account type}
C4= {<PIN, FINGER_PRINT, ACC_TYPE, AMOUNT>, Not Sufficient Amount}
C5= {<PIN, FINGER_PRINT, ACC_TYPE, AMOUNT>, Enter amount shold be less than 50000}
C6= {<PIN, FINGERPRINT, ACC_TYPE, AMOUNT>, Balance}

On the basis of above equivalence classes, various test cases are generated and represented below in Table 3.

Table 3. Test case creation from JAVA code

Test case Input data Expected output
T1 (12,’Fingerprint’,’Saving’,5) Please enter correct Pin number
T2 (1234,’wFingerprint’,’Current’,5 Please scan your Fingerprint
T3 (1234,’Fingerprint’,’Current’,5) Please choose correct Account type
T4 (1234,’Fingerprint’,’Saving’,6000) Not Sufficient balance available
T5 (1234,’Fingerprint’,’Saving’,65000) Amount should be less than limit
T6 (1234,’Fingerprint’,’Saving’,5) Shows available balance

In the above program, authors introduced three bugs to make mutants. Bugs inserted are shown below as
 in the same program.

1 void withdraw(PIN, FINGERPRINT, ACC_TYPE, AMOUNT){

2 If (PIN “’1234’){

3 System.out.println(“Please enter correct pin number”); }

4 else{

5 If(FINGERPRINT !=’OK’){

6 System. out. print (“ Fingerprint not matched”);}

7 else {

8 If (ACC_TYPE ’Saving’)

9 {System. out. println (“Please enter correct account type”);}

10 else {

11 if (AMOUNT>Balance)

12 {System. out. println (“Not sufficient amount”); }

13 else if (AMOUNT Balance && AMOUNT>50000)

14 {System. out. Println (“Enter amount should be less than 50000”);}

15 else

16 {System.out.print(“Balance”+Balance-AMOUNT); } } } }

 Total mutant inserted are=3

”==”

”==”

”>”

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; Article no.BJMCS.23269

6

Mutant exposed by test cases are (1, 1, 2, 2, 2, 2) respectively and statement coverage of test cases is (3, 5, 7,
9, 10, 11), respectively. Now, requirement priority of test cases are recorded in the following Table 4.

Table 4. Setting the priority factor for requirements

Requirement PF value (1 to 10) Total
Customer Developer Manager

R1 5 5 5 15
R2 5 5 5 15
R3 6 6 6 18
R4 7 7 7 21
R5 8 8 8 24
R6 9 9 9 27

Let us introduce the risk factor for the requirements and it is given below in the following Table 5.

Table 5. Requirement with their risk factor and priority factor value

Requirement Risk PF value Total of risk exposure
LP CFD UUD ST

R1 P 2 2 2 3 30
S 4 5 3 2
RE 8 10 6 6

R2 P 3 4 5 4 37
S 4 2 3 5
RE 12 8 8 9

R3 P 3 3 4 2 40
S 4 4 2 4
RE 12 12 8 8

R4 P 2 3 2 6 35
S 4 3 3 2
RE 8 9 6 12

R5 P 2 4 3 5 41
S 5 3 3 2
RE 10 12 9 10

R6 P 3 4 2 4 43
S 5 3 4 2
RE 15 12 8 8

The following Table 6 represents the statement and test case coverage criteria for the statements taken from
JAVA code from line numbers 1-16.

Table 6. Statement and test case coverage taken from JAVA code

Statement\Test cases T1 T2 T3 T4 T5 T6
1 × × × × × ×
2 × × × × × ×
3 ×
4 × × × × ×
5 × × × × ×
6 ×
7 × × × ×
8 × × × ×
9 ×
10 × × ×
11 × × ×
12 ×
13 × ×
14 ×
15 ×
16 ×

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; Article no.BJMCS.23269

7

From Tables 4, 5 and 6 and mutant exposed as (1, 1, 2, 2, 2, 2) are considered to find statement coverage,
fault exposed, requirement priority and risk represented in following table. For the execution time, it is
considered as a twice the statement covered by the test case. It is recorded in the last row of the table.

Table 7. Test case with statement, fault, requirement and risk coverage

Test case T1 T2 T3 T4 T5 T6
Statement coverage 3 5 7 9 10 11
Fault exposed 1 1 2 2 2 2
Requirement priority 15 15 18 21 24 27
Risk 30 37 40 35 41 43
Total (T) 49 58 67 67 77 83
Execution time (ms) 6 10 14 18 20 22

On the basis of above, let us formulate the 0-1 integer linear programming problem which is given below.
Total time of executing test cases is considered to be 70 ms.

Max Z=49T1+58T2+67T3+67T4+77T5+83T6

Subject to:

6T1+10T2+14T3+18T4+20T5+22T5<=70 (3)

4 Results and Discussion

For the solution of the problem 3, authors used LINGO 15.0 software to solve the formulated optimization
problem. Different types of equations like linear, nonlinear, quadratic, integer optimization problems can be
easily solved by LINGO. Optimization models can be easily expressed by using integrated package of
LINGO. It provides an environment for building, editing problems and solves them with the available build-
in solvers. In the reduced test suite, we find T1, T2, T3, T4 and T6 as test cases and these should run in the
given time constraint to cover maximun requirement, risk, statement coverage and faults. For selected test
cases by the software, authors calculated different factors recorded in the following Table 8.

Table 8. Percentage coverage of different factors

Test cases T1 T2 T3 T4 T6 % covered
Fault
identified

1 1 2 2 2 2/2=100%

Statement
covered

1,2,3 1,2,4,5,6 1,2,4,5,7,8,9 1,2,4,5,7,8,
10, 11, 12

1,2,4,5,7,8,
10, 11, 13, 15, 16

1,2,3,4,5,6,7,8,
9,10,11,12,13,15,16

Requirement
covered

15 15 18 21 27 96/120=80.0%

Risk covered 30 37 40 35 43 185/226=81.85%

From the above table, prioritized order of test cases based on requirement and risk is T6, T3, T4, T2 and T1
which is in the decreasing order of requirement and risk. This is the order of test case which covers
maximum statements within the given time. Here test cases which have higher coverage of requirement and
have probability of exposing more number of errors are tested first. It is recorded in the following Table 9.

Table 9. Prioritized order of test cases

Test case Requirement+Risk Total
T1 15+30 45
T2 15+37 52
T3 18+40 58
T4 21+35 56
T6 27+43 70

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; Article no.BJMCS.23269

8

5 Conclusions

In the presented work, authors have proposed a test case selection and prioritization technique using 0-1
integer programming based on requirement priority and risk severity and statement coverage. The first test
cases are selected from test suite based on given time constraint. Selected test cases cover maximum faults,
statements, requirement and risk. Then test cases are prioritized based on requirement and risk values. A
small JAVA method for cash withdrawal is considered for validation of proposed approach. Here 0-1 integer
programming is used as each decision variable can have only two values 0 or 1. For 1 a decision variable is
selected and for 0 a decision variable is not selected. In case of software testing, minimized test cases can be
selected from large number of test cases. If a test case is selected then value of corresponding decision
variable will be 1 otherwise 0. In the present work, requirement of cash withdrawal are written manually,
statement covered by test cases and fault exposed by test cases are also calculated manually so authors
considered simple example of cash withdrawal from ATM. In future we may consider complex and large
software for test case prioritization and automated tool for statement coverage and fault exposing potential
may also be considered.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Jorgensen PS. Software testing: A craft’s man approach, 4th edition. CRC Presses Taylor and Francis

Group; 2013.

[2] Pressman RS. Software engineering: A practitioner’s approach. McGraw Hill; 2013.

[3] Srikanth H, Williams L. On the economics of requirements based test case prioritization. Proceeding
of the seventh international workshop on Economics-driven software engineering research. New
York, USA; 2005;1-3.

[4] Srivastava PR. Test case prioritization. Journal of Theoretical and Applied Information Technology.
2008;4(2):178-181.

[5] Krishnamoorthi R, Mary SASA. Factor oriented requirement coverage based system test
case prioritization of new and regression test cases. Information and Software Technology.
2009;51(4):799–808.

[6] Do H, Mirarab S, Tahvildari L, Rothermel G. The effects of time constraints on test case
prioritization: A series of controlled experiments. IEEE Transaction on Software Engineering.
2010;26(5):593–617.

[7] Yoon M, Lee Y, Song M, Choi Bi. A test case prioritization through correlation of requirement and
risk. Journal of Software Eng. Appl. 2012;5(10):823–835.

[8] Stallbaum H, Metzger A, Pohl K. An automated technique for risk based test case generation and
prioritization. In: Proceedings of the 3rd International Workshop on Automation of Software Test,
New York, USA. 2008;67–70.

[9] Srikanth H, Williams L, Osborne J. System test case prioritization of new and regression test cases.
In: Proceedings of International Symposium on Empirical Software Engineering. 2005;64–73.

Rhmann et al.; BJMCS, 14(1): 1-9, 2016; Article no.BJMCS.23269

9

[10] Arafeen MJ, Do H. Test case prioritization using requirements based clustering. Proceedings of IEEE
Sixth International Conference of Software Testing Verification and Validation (ICST), Washington,
USA. 2013;312-321.

[11] Elbaum S, Malishevsky AG, Rothermel G. Test case prioritization: A family of empirical studies.
IEEE Transaction on Software Engineering. 2002;28(2):159-182.

[12] Mudgal AP. A proposed model for minimization of test suite. Journal of Nature Inspired Computing.
2013;1(2):34-37.

[13] Tamres L. Introducing software testing. 1st Edition, Addison Wesley; 2006.

[14] Williams HP. Model building in mathematical programming. John Wiley, New York; 1993.

© 2016 Rhmann et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://sciencedomain.org/review-history/13030

