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Abstract

Shock waves are simulated passing through the Alfvén-acoustic equipartition layer in a stratified isothermal
magneto-atmosphere. The recent ray-theoretic calculations of Núñez predicted smoothing of the shock through this
layer, causing both the fast and slow components to emerge as continuous waves. However, it is found that the
partial mode conversion expected from linear theory for oblique incidence of the shock on the magnetic field is
accompanied by a smoothing of the slow shock only, while the fast shock persists. Explanations are presented
based on magnetohydrodynamic mode conversion and shock theory.

Unified Astronomy Thesaurus concepts: Solar oscillations (1515); Solar chromosphere (1479); Shocks (2086);
Magnetohydrodynamical simulations (1966); Stellar atmospheres (1584); Stellar chromospheres (230)

1. Introduction

Magnetohydrodynamic (MHD) waves may change nature—
between fast, slow, and Alfvén—several times while moving
through stellar atmospheres. Both fast–slow (Schunker & Cally
2006) and fast–Alfvén (Cally & Goossens 2008; Cally &
Hansen 2011) conversions have been explored in detail for linear
waves (reviewed by Cally et al. 2016). Linear fast–slow
conversion occurs where the Alfvén speed a matches the sound
speed c, and fast–Alfvén conversion is affected near where the fast
wave reflects in a stratified atmosphere (provided that the wave
vector is not in the same vertical plane as the magnetic field lines).
However, mode conversion by these processes is less well
understood for nonlinear waves in particular shocks.

Recently, Núñez (2019) presented an analysis based on the
generalized ray theory of Cally (2006) and Schunker & Cally
(2006; see also Tracy et al. 2003) to argue that magnetoacoustic
shocks passing through a layer where a and c coincide (the
Alfvén–acoustic equipartition) not only split into fast and slow
components as suggested by linear theory, but also that both the
resulting fast and slow shocks are smoothed in the process.

Núñez’s analysis proceeds by examining the convergence of
the Fourier components of the incoming wave. A shock
discontinuity is associated with an ( ) n1 asymptotic behavior
in wavenumber n space. Faster convergence results in continuous
(smooth) solutions. However, the argument is predicated on an
assumption that is merely stated and not justified: “Assuming that
the passage through the conversion zone acts linearly in the
waves, which is reasonable since they spend very little time there,
we obtain the surprising result that the shocks which may be
present in the incident wave are smoothed out in the outgoing
ones, except for the single case of a pure transfer from a fast to a
slow wave or vice versa.” (Núñez 2019, Conclusions).

The purpose of this Letter is to present the results of 1.5D
simulations testing this assumption and the resulting finding that
shocks are smoothed. We conclude that the assumption is in fact
not valid—the mode conversion region is advected with the slow
“shock” for several seconds, thereby extending the time over
which conversion is operating—and that the smoothing is only
partially realized; the slow shock is smoothed but the fast shock
is not. Elementary explanations for this are presented in the
discussion. These suggest that the smoothing of the slow shock,

but the persistence of the fast shock, may happen even without
advection of the a=c equipartition layer.

2. Model

We adopt the simplest suitable model to explore the
phenomenon: an isothermal gravitationally stratified 1.5D atmos-
phere with uniform magnetic field ( )q q=B B sin , 0, cos0
inclined at angle θ to the vertical. The magnetic field is chosen
such that the Alfvén speed a equals the sound speed c at a
sufficient altitude that a fast (i.e., acoustic) wave injected at the
bottom of the computational domain has enough space to shock
before reaching the equipartition level a=c.
The computational box stretches 2.0Mm both above and

below the z=0 height. The equilibrium density scale height is
h=175.731 km, the uniform sound speed is c=8.958 km s−1,
the adiabatic index is γ=5/3, and the magnetic field strength is
B0=0.9 kG oriented at angle θ to the vertical. The a=c
equipartition level is situated at height z0=125 km. The acoustic
cutoff frequency is ωc=c/2h, or 4.0mHz. There is nothing
particularly special about these values, though they are broadly
characteristic of the active solar chromosphere. Changing B
simply moves the equipartition level up or down. Similar results
may be expected for other stellar atmospheric models.
The numerical code used to solve the nonlinear MHD

equations is Lare2d (Arber et al. 2001). The grid comprises
8192 cells in the vertical direction, giving a resolution of
0.488 km.
A shock viscosity term is employed to avoid the Gibbs

phenomenon while not artificially smoothing the shock front. It
can be seen that the shock fronts remain sharp where predicted
throughout the simulations. An artificial cooling term is applied
to avoid thermal runaway from shock heating, allowing the
atmosphere to remain close to its initial profile. This term has
the form of an exponentially weighted moving average, where
the degree of weighting is set at αw=0.05. When the cooling
term is removed, the results show a <1% difference within a
scale height either side of the a=c layer, which is our main
area of interest.
Exact solutions for mode conversion and transmission are

known for the linear model in terms of 2F3 generalized
hypergeometric functions (Hansen et al. 2016). Transmission
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decreases with increasing attack angle between the wave vector
and the magnetic field (Schunker & Cally 2006). According to
Núñez (2019), an acoustic shock with zero attack angle should
pass through a=c unchanged. On the other hand, if we orient
the magnetic field away from vertical, substantial mode splitting
will occur; the resulting fast and slow “shocks” should be
smoothed throughout this process if Núñez’s analysis is correct.

The fast wave above a=c is predominantly magnetic in
nature, and will not reflect due to the ever-increasing Alfvén
speed gradient as the wave is exactly vertical. In any case, that
is beyond the phenomenon of interest here. The acoustic slow
wave also propagates upward unhindered and becomes
progressively more aligned with the magnetic field as the
plasma beta reduces toward zero, while the fast wave becomes
ever more transverse with height. This provides a convenient
way to distinguish them in a?c, as well as via their
propagation speeds.

Specifically, we plot the transverse and parallel-to-the-field
plasma velocities v⊥ and vP, as well as the density ρ scaled by
the equilibrium density ρ0(z). It is important to note that these
“⊥” and “P” components are with respect to the actual
(perturbed) magnetic field, not the original field. Because the
shock front compresses the plasma vertically by up to a factor
of 4, and the field lines are tied to the plasma, the perturbed
field inclination is greatly increased.

3. Results

A wave driver is placed at the base z=−2.0Mm, and
delivers an angular-frequency-ω0 half-period sinusoidal vertical
velocity burst of amplitude V0. The driver creates a strictly
vertical wave vector. The plasma velocity is also initially

vertical, until the inclined magnetic field takes effect as the
plasma beta decreases with increasing altitude. For concrete-
ness, we adopt ω0=2ωc=8.0 mHz. This corresponds to a
broad frequency spectrum
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centered at zero, where f=ω/2π. However, the acoustic cutoff
only lets frequencies above 4 mHz propagate upward. This is
confirmed numerically. Using drivers lasting several half-
periods allows us to localize the driving frequency more
precisely, but introduces other numerical complications,
particularly first shocks reflect off the top of the computational
domain and complicate behavior in the region of interest. For
the cleanest results, the half-period driver has been found to be
best. In any case, it makes very clean shocks from a broad
spectrum of frequencies above fc.
Kalkofen et al. (1994) have discussed the evolution of linear

and nonlinear waves in non-magnetic 1D isothermal atmospheres.
The wakes produced by the initial pulse follow each other by
typically one cutoff period, supporting the theory that the
atmosphere rings at the cutoff frequency. We restrict our results
to tracking the initial pulse produced by the 8.0 mHz driver.
The velocity perturbation increases exponentially with

height until a shock is formed well below the a=c layer.
When the magnetic field is vertical, the shock front remains
sharp throughout the entire simulation and travels unhindered
through to the top of the computational box, as expected
(Figure 1). Increasing θ, the angle of the magnetic field from
vertical, produces a splitting of the wave into its slow and fast

Figure 1. θ=0°: the blue solid line, orange dashed line (zero in this case) and green dotted–dashed line correspond to vP, v⊥and ρ/ρ0, respectively. The shock front is
formed and travels through the a=c layer unaltered. The solid vertical line is where a=c, which moves in response to the incident wave. The pink horizontal line is
the equilibrium sound speed. The blue dot indicates the steepest point in the acoustic shock. The top-right panel indicates that the shock reaches the conversion layer
with almost-maximal density contrast (X=4).
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components around the a=c layer. When a>c, the fast wave
accelerates out in front of the slow wave and the two wave
types can be easily distinguished.

We choose to look separately at velocities both parallel and
transverse to the (actual) magnetic field. This separation allows
an approximation of the two wave types; however, it is not
precise. This can be seen by the fast wave appearing in the
parallel velocity for θ>0, and vice versa for the slow wave.

We also look at the in-place compression ratio ρ/ρ0, where ρ
is the density value at the given time and ρ0 is the initial
background density value at the same position. This is not the
same as the classical shock-jump compression ratio X=ρ2/ρ1
from the pre-shock to post-shock regions (“1” and “2”,
respectively), though they do correspond immediately after a
shock front passes. For an oblique compressive shock, where
the magnetic field is not completely perpendicular to the shock
front, the limiting compression ratio for γ=5/3 is 4
(Priest 1982). For these simulations, this remains true across
the shock front as expected; however, the values behind the
front can exceed this ratio due to the transport of fluid via the
propagating shock. Deeper, higher-density fluid is carried
upward and is then related to the original density values of
greater heights giving the appearance of a much higher
compression ratio. To eliminate this, the movement of each
fluid particle would need to be traced throughout the simulation
and the densities compared to those at their original equilibrium
height, which is an unnecessary complication.

A non-zero attack angle gives rise to the splitting of the fast
and slow components around a=c. However, both the fast
and slow shock remain sharp in the simulations when θ is less
than about 15°. (In reality, we believe that the slow shock will
smooth for any non-zero attack angle, but this is computation-
ally imperceptible at these very narrow incidences.) After this

point, we begin to see smoothing of the slow component as it
separates from the fast shock and traverses the layers around
a=c. As the slow wave exits the a=c layer, it begins to
steepen again to “re-shock,” which is best seen in Figure 2.
Conversely, the fast shock remains sharp throughout and
continues to propagate through the atmosphere unaltered in its
form. It does not reflect because it is vertical.
Figures 2–4 display the evolution of the θ=15°, 30°, and

60° cases, respectively. The greater the value of θ, the more
smoothing of the slow component is seen. We quantify this by
measuring the steepness of the slow shock at its inflection
point. The blue dots shown on the “shock” front in each case is
where vP has its inflection point, i.e., where the “shock” is at its
steepest. The value of hP given above each panel is the
“velocity scale height” there and is defined as

⎛
⎝⎜

⎞
⎠⎟ ( ) 
=h v

dv

dz
, 2,max

which is a measure of shock steepness. A small hP corresponds
to a steep shock front (numerically limited).
Núñez (2019) assumes that the passage through the

conversion zone acts linearly on the waves, which is based
on the supposition that they spend very little time in that area.
However, the incoming shock front acts to drag the a=c layer
along with it (Figure 5), which can increase in height by up to
400 km for low θ. The shock front itself can spend multiple
seconds within close proximity of the a=c layer.

4. Discussion and Conclusions

1.5D simulations were conducted using a bottom-driven
8.0 mHz half-period pulse injected into an isothermal,
gravitationally stratified atmosphere with the angle that the

Figure 2. θ=15°: at the a=c layer, the slow shock is smoothed slightly, before steepening again to produce another shock front. The fast shock remains sharp and
propagates unaltered. The orange dot shows the location of the steepest point in the fast shock.
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magnetic field makes from vertical being varied from θ=0° to
60°. Only power above the acoustic cutoff of 4 mHz propagates
upward. The perturbation was allowed to freely evolve,
forming a shock that is well below the Alfvén-acoustic

equipartition (a=c) layer. If the attack angle α between the
(vertical) wave vector k and magnetic field is non-zero, the
shock splits into its slow and fast components around a=c.
For θ15°, the slow shock in our simulations shows

Figure 3. θ=30°: at this stage, the increased magnetic field inclination produces an easily identifiable smoothing of the slow shock around a=c before beginning to
steepen again. Again, the fast shock remains sharp and propagates freely.

Figure 4. θ=60°: heavy smoothing of the slow shock through a=c. The fast shock remains sharp and propagates freely again. The transmitted slow wave is
subsonic and much too weak to re-shock before the fast shock reaches the top of the computational box.
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smoothing through this area, then begins to re-shock upon
exiting. The fast shock, however, continues to propagate freely
throughout the atmosphere regardless of the value of θ. This is
in only partial agreement with Núñez (2019), who stated that
both the fast and slow components of the shock should be
smoothed. A possible reason for the discrepancy is that the
a=c equipartition region is advected with the shock for
several seconds, making the interaction intrinsically nonlinear.

However, it is not clear that Núñez’s result is correct even
without this effect. Figure 6 shows the exact linear transmission
coefficient  for a vertical wave in an isothermal atmosphere
(Cally 2009) as a function of frequency with the four field
inclinations discussed above. The complement, = - 1 , is
the conversion coefficient, i.e., the fraction of energy going into
the fast wave above a=c. Of course, it starts at the cutoff
frequency ωc. Any shock wave discontinuity is necessarily
constructed from high-order Fourier modes with amplitudes
asymptotically proportional to the inverse of the vertical
wavenumber kz. In turn, kz is proportional to ω through a
dispersion relation. Figure 6 shows that, especially at greater
magnetic field inclinations, high-frequency high-wavenumber
modes are not transmitted to any appreciable degree, thereby
smoothing the incident acoustic shock. On the other hand, these
small-scale Fourier modes are essentially perfectly converted to
fast waves, which are therefore sharp. This is in accord with our
simulations. The advection of the a=c level with the shock
could only amplify this effect.

The same conclusion follows from the approximate Wentzel
−Kramers−Brillouin (WKB)-based formula for transmission
(Schunker & Cally 2006),

[ ∣ ∣ ] ( )p a» - = khexp sin , 3s a c
2

where [ ( ) ]= =
-h d a c dss a c

2 2 1 is the thickness of the conver-
sion layer along the direction of the wave vector k, and α is the
attack angle between k and B. In our case α=θ, s=z, and
 0 exponentially with increasing ∣ ∣k , faster at greater θ.

Again, this is in accord with our findings. The advection of
a=c with the shock may effectively increase hs and thereby
decrease  and increase  , as suggested above.

A further perspective is afforded by the jump relations for
MHD shocks in uniform media, and in particular the so-called

shock adiabatic, a bi-cubic polynomial for the shock speed v1
dependent on adiabatic index γ, magnetic field inclination θ1 in
the pre-shock plasma, shock compression ratio X=ρ2/ρ1
(where 1<X<(γ+1)/(γ−1), as for hydrodynamic
shocks), and pre-shock sound and Alfvén speeds c1 and a1,
respectively (Fitzpatrick 2014):
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The post-shock region is denoted by label “2.” For γ=5/3,
compression is limited to 1<X<4. This should give a good
local description of shocks in a stratified atmosphere.
Consider the case γ=5/3, θ=30°, corresponding to Figure 3.

Adiabats for our canonical sound speed c1=8.958 kms
−1 and

four Alfvén speeds are plotted in Figure 7. For each Alfvén speed
case, the upper curve corresponds to the fast shock. The loops
beneath correspond to the slow shock (lower branch) and the
intermediate or Alfvén shock (upper branch). The intermediate
shock is not excited in our simulations. Clearly, the fast shock
exists for each 1<X<4, but the slow shock is absent if X is to
the right of its loop. As a1 increases with height in the stratified
atmosphere, the intermediate/fast loop extends to greater X and the
shock redevelops. For example, at the height where a1=12, a
slow shock may only exist for X1.53, but for a1=35 there is a
slow shock for all X2.99.
This is consistent with our simulations (Figure 3), in that the

compression is large across the slow wave front in the bottom
two panels, where the somewhat-steep slow wave has passed
beyond a=c. This means there is no available slow shock
solution, providing another explanation for its absence in the
simulations.
On the other hand, the fast shock always has a solution.

Because X is close to 1 (and gets closer with height) across the
fast shock in the bottom panels, the fast shock travels at a speed
only just above the Alfvén speed a1.
The reason for the slow wave above a=c inheriting most of

the density contrast is difficult to see from the exact
mathematics, but it is plausible conceptually. The slow wave
above the equipartition height is the primarily acoustic

Figure 5. Heights in time of the “shock” seen in vP (blue curve; the shock is
actually smoothed for a while after meeting the equipartition level) and the
shock in v⊥ (dashed orange curve) as well as the position of the a=c
equipartition level (red), for the case of the 30° inclined magnetic field. Clearly,
the equipartition level is advected with the slow shock for several seconds.

Figure 6. Exact linear transmission coefficients for vertical waves in an
isothermal atmosphere as function of frequency measured relative to the
acoustic cutoff frequency, for magnetic field inclinations θ=0°, 15°, 30°, and
60° (top to bottom). The adiabatic index γ=5/3 is assumed.
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successor to the incident fast shock below a=c, which is also
mainly acoustic. It is therefore unsurprising that density is
largely tied to these waves. On the other hand, the fast wave in
a>c is more weakly coupled to density, and in fact becomes
incompressive in the a?c limit. Irrespective of these broad
observations, the numerical solutions do suggest that the slow
wave in a>c accounts for most of the density contrast, and
therefore cannot shock until a increases sufficiently for a shock
solution to become available (see the 35 km s−1 lobe in
Figure 7).

Implications for solar and stellar chromospheres might include
reduced acoustic wave heating near and above the equipartition
level, both because the acoustic shock is smoothed and because
energy is removed from the acoustic wave. Any enhancement of
energy in the fast shock due to equipartition-level advection
might benefit Alfvén wave production by fast/Alfvén conver-
sion higher in the atmosphere.
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