
British Journal of Mathematics & Computer Science

10(4): 1-11, 2015, Article no.BJMCS.19014

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

Tridiagonal Matrices via k-Balancing Number

Arzu Özkoç1∗
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Abstract

In this paper, we give some relations in terms of k−Balancing number which generalize some

well known results concerning the relation between the determinant and Chebyshev polynomials

which is due to tridiagonal matrix B(n)(k). Also for the other tridiagonal matrix W(n)(k), we

deduce the cofactor matrix of it then we find another relations for k−Balancing number.
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1 Preliminaries

Recently, balancing numbers n ∈ Z+ as solutions of the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1.1)
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Özkoç; BJMCS, 10(4), 1-11, 2015; Article no.BJMCS.19014

for some positive integer r which is called balancer or cobalancing number. For example 6, 35, 204,
1189 and 6930 are balancing numbers with balancers 2, 14, 84, 492 and 2870, respectively. If n is a
balancing number with balancer r, then from ( 1.1) one has (n−1)n

2
= rn+ r(r+1)

2
and so

r =
−(2n+ 1) +

√
8n2 + 1

2
and n =

2r + 1 +
√

8r2 + 8r + 1

2
. (1.2)

Let Bn denote the nth balancing number and let bn denote the nth cobalancing number. Then
Bn+1 = 6Bn − Bn−1 and bn+1 = 6bn − bn−1 + 2 for n ≥ 2, where B1 = 1, B2 = 6, b1 = 0 and
b2 = 2. From (1.2), we see that Bn is a balancing number iff 8B2

n + 1 is a perfect square and bn is
a cobalancing number iff 8b2n + 8bn + 1 is a perfect square. So we set

Cn =
√

8B2
n + 1 and cn =

√
8b2n + 8bn + 1

which are called the nth Lucas-balancing number and nth Lucas-cobalancing number, respectively
[1], [2] and [3].

In [4] they generalized the theory of balancing numbers to numbers defined as: Let y, k, l ∈ Z+ such
that y ≥ 4. Then a positive integer x such that x ≤ y − 2 is called a (k, l)−power numerical center
for y if 1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l. They derived some algebraic relation on it.

Because of the concept of the balancing numbers; we generalized the balancing numbers to k−
balancing numbers: Bkn denote the n th k−balancing number, bkn denote the nth k− cobalancing
number, Ckn denote the nth k−Lucas balancing number and ckn denote the nth k−Lucas cobalancing
number which are the numbers defined by

Bk0 = 0, Bk1 = 1, Bkn+1 = 6kBkn −Bkn−1 for n ≥ 1 (1.3)

bk1 = 0, bk2 = 2, bkn+1 = 6kbkn − bkn−1 + 2 for n ≥ 2

Ck0 = 1, Ck1 = 3, Ckn+1 = 6kCkn − Ckn−1 for n ≥ 1

ck1 = 1, ck2 = 7, ckn+1 = 6kckn − ckn−1 for n ≥ 2

for some positive integer k ≥ 1, respectively. Also Binet formulas for k−balancing numbers are

Bkn =
αn − βn

2
√

9k2 − 1

bkn =
(α+ 1)αn−1 + (β + 1)βn−1 − 6k − 2

2(9k2 − 1)

Ckn =
(3− β)αn − (3− α)βn

2
√

9k2 − 1

ckn =
(7α− 1)αn−2 − (7β − 1)βn−2

2
√

9k2 − 1

for n ≥ 1, where α = 3k +
√

9k2 − 1 and β = 3k −
√

9k2 − 1.

A tridiagonal matrix is a matrix that is both upper and lower Hessenberg matrix. A general
tridiagonal matrix is not necessarily symmetric or Hermitian, many of those that arise when solving
linear algebra problems have one of these properties. Furthermore, if a real tridiagonal matrix A
satisfies ak,k+1ak+1,k > 0 for all k, so that the signs of its entries are symmetric, then it is similar
to a Hermitian matrix, by a diagonal change of basis matrix. Hence, its eigenvalues are real. If we
replace the the strict inequality by ak,k+1ak+1,k ≥ 0, then the eigenvalue are guaranteed to be real,
but the matrix need no longer be similar to a Hermitian matrix.
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T(n) be a family of n× n tridiagonal matrices, where

T(n) =



a1,1 a1,2
a2,1 a2,2 a2,3

a3,2
. . .

. . .

. . .
. . .

. . .

. . .
. . . an−1,n

an,n−1 an,n


(for further details see [5], [6] and [7] ).

Theorem 1.1. The determinants of T(n) are defined to be with initial values

det(T(1)) = a1,1

det(T(2)) = a2,2a1,1−a2,1a1,2

det(T(n)) = an,n det(T(n−1))− an,n−1an−1,n det(T(n−2))

for n ≥ 3, where ai,j its ith row and jth column are non-zero integers such that D = a2n,n −
4an,n−1an−1,n 6= 0 (For the proof see [8]).

The characteristic equation of the recurrence relation is x2−an,nx+an,n−1an−1,n = 0 and hence

the roots of it are α =
an,n+

√
D

2
and β =

an,n−
√
D

2
. So their Binet’s formulas are det(T(n)) = αn−βn

α−β .

Let A be an n×n matrix and let Mij be the (n−1)×(n−1) matrix obtained with deleting the ith row
and jth column of the matrix then computing the determinant of the remaining matrix after deleting
the row and column. Also finding the cofactors of a matrix, just use the minor Cij = (−1)i+jMij

where Mij is the minor in the ith row and jth position of the matrix. The adjoint of a matrix
denoted by adj(A), to find the adjoint of a matrix transpose the cofactor matrix.

For finding inverses using the adjoint

A−1 =
1

det(A(n))
adj(A).

The cofactors feature prominently in Laplace’s formula for the expansion of determinants, which is
a method of computing larger determinants in terms of smaller ones. Given the n×n matrix (aij),
the determinant of A can be written as the sum of the cofactors of any row or column of the matrix
multiplied by the entries that generated them. The cofactor expansion along the jth column gives:

det(A(n)) = a1jC1j + a2jC2j + a3jC3j + · · ·+ anjCnj =

n∑
i=1

aijCij .

The cofactor expansion along the ith row gives:

det(A(n)) = ai1Ci1 + ai2Ci2 + ai3Ci3 + · · ·+ ainCin =

n∑
j=1

aijCij .

The inverse of an invertible matrix by computing its cofactors by using Cramer’s rule. The matrix
formed by all of the cofactors of a square matrix A is called the cofactor matrix

C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

. . .
...

Cn1 Cn2 · · · Cnn

 .
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Then the inverse of A is the transpose of the cofactor matrix times the inverse of the determinant
of A:

A−1 =
1

det(A(n))
CT (1.4)

which are discussed by [9] and [10].

The Chebyshev polynomials are a sequence of orthogonal polynomials appearing in approximation
theory and they have countless applications. The first and second kind of Chebyshev polynomials
satisfy the same recurrence relations. The Chebyshev polynomials of the first and second kind are
defined by T0(x) = 1, T1(x) = x for n ≥ 2 and U0(x) = 1, U1(x) = 2x for n ≥ 2,

Tn(x) = 2xTn−1(x)− Tn−2(x) (1.5)

Un(x) = 2xUn−1(x)− Un−2(x)

respectively. Also Chebyshev polynomials satisfying Tn(cos θ) = cosnθ for n = 0, 1, 2, · · · and

Un(cos θ) = sin(n+1)θ
sin θ

for n = 0, 1, 2, · · · . They have the determinant representation

Tn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

x z
y 2x z

y 2x
. . .

. . .
. . . z
y 2x

∣∣∣∣∣∣∣∣∣∣∣∣
and Un(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

2x z
y 2x z

y 2x
. . .

. . .
. . . z
y 2x

∣∣∣∣∣∣∣∣∣∣∣∣
where yz = 1. As discussed elsewhere [11].

Furthermore there are more relations between Tn(x) and Un(x), for example

2Tn(x) = Un(x)− Un−2(x) (1.6)

Tn(x) = Un(x)− xUn−1(x)

Tn+1(x) = xTn(x)− (1− x2)Un−1(x)

Un(x) = 2

n∑
j odd

Tj(x), where n is odd

Un(x) = 2

n∑
j even

Tj(x)− 1, where n is even.

2 Main Results

B(n)(k) and W(n)(k) be a family of n× n tridiagonal matrices for k−balancing number are defined
to be

W(n)(k) =



36k 6
1 6k 1

1 6k 1

1
. . .

. . .

. . .
. . . 1
1 6k


n×n

(2.1)
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and

B(n)(k) =



6k 1− 18k2

1 3k 1
1 6k 1

1
. . .

. . .

. . .
. . . 1
1 6k


n×n

. (2.2)

So we obtain six times of the (n + 1) − th, k−balancing number from the determinants of the
matrices

det(W(1)(k)) = 36k = 6Bk2

det(W(2)(k)) = 216k2 − 6 = 6Bk3

det(W(3)(k)) = 6k(216k2 − 6)− 36k = 6Bk4

...

det(W(n)(k)) = 6k det(W(n−1)(k))− det(W(n−2)(k)) = 6Bkn+1

and

det(B(1)(k)) = Bk2

det(B(2)(k)) = Bk3

det(B(3)(k)) = Bk4

...

det(B(n)(k)) = Bkn+1. (2.3)

Here one may wonder why we choice these two tridiagonal matrices, because note that det(B(n)(k)) =
Bkn+1 and det(W(n)(k)) = 6Bkn+1 in other words both of the determinantB(n)(k) and the determinant
of the W(n)(k) may be expressed in k−balancing number, even 6 times each. So we have to need
two tridiagonal matrices which is denoted with k−balancing number.

Also we define the odd k−balancing number from the determinant of the matrices

O(n)(k) =



36k2 − 1 1
1 36k2 − 2 1

1 36k2 − 2 1

1
. . .

. . .

. . .
. . .

. . .

. . .
. . . 1
1 36k2 − 2


.
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because det(O(n)(k)) = Bk2n+1, which is {1, 36k2− 1, 1296k4− 108k2 + 1, · · · } the odd k−balancing
number. Finally we define the even k−balancing number

E(n)(k) =



6k 0
1 36k2 − 2 1

1 36k2 − 2 1

1
. . .

. . .

. . .
. . .

. . .

. . .
. . . 1
1 36k2 − 2


which is det(E(n)(k)) = Bk2n.

Lemma 2.1. If B(n)(k) are tridiagonal matrices of the form (2.2), then the determinant of B(n)(k)
is

det(B(n)(k)) = 6kTn−1(3k)− (1− 18k2)Un−2(3k)

with Chebyshev polynomials and the characteristic polynomial of A is

pB(n)(k)
(λ) = (λ− 6k)Tn−1(λ− 3k)− (λ− 1 + 18k2)Un−2(λ− 3k) (2.4)

Proof. Let A(n)(k) and C(n)(k) be a tridiagonal matrix, so

det(A(n)(k)) =

∣∣∣∣∣∣∣∣∣∣∣∣

3k 1
1 6k 1

1
. . .

. . .

. . .
. . . 1
1 6k

∣∣∣∣∣∣∣∣∣∣∣∣
n×n

and

det(C(n)(k)) =

∣∣∣∣∣∣∣∣∣∣∣∣

6k 1
1 6k 1

1
. . .

. . .

. . .
. . . 1
1 6k

∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

In the light of the Laplace expression we expand theB(n)(k) with terms of the first kind of Chebyshev
polynomial Tn(x) and second kind of Chebyshev polynomial Un(x). By expanding the determinant
with the first columb, we have

det(B(n)(k)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6k 1− 18k2

1 3k 1
1 6k 1

1
. . .

. . .

. . .
. . . 1
1 6k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

6
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=6k

∣∣∣∣∣∣∣∣∣∣∣∣

3k 1
1 6k 1

1
. . .

. . .

. . .
. . . 1
1 6k

∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

−

∣∣∣∣∣∣∣∣∣∣∣∣

1− 18k2 0
1 6k 1

1
. . .

. . .

. . .
. . . 1
1 6k

∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

=6k

∣∣∣∣∣∣∣∣∣∣∣∣

3k 1
1 6k 1

1
. . .

. . .

. . .
. . . 1
1 6k

∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

− (1− 18k2)

∣∣∣∣∣∣∣∣∣∣∣∣

6k 1
1 6k 1

1
. . .

. . .

. . .
. . . 1
1 6k

∣∣∣∣∣∣∣∣∣∣∣∣
(n−2)×(n−2)

=6kdet(A(n−1)(k))− (1− 18k2) det(C(n−2)(k)).

Determinants in the expression are obtained a special case of the Chebyshev polynomials first and
second kind in (1.5). So we get

det(B(n)(k)) = 6kTn−1(3k)− (1− 18k2)Un−2(3k).

The characteristic polynomial are

pB(n)(k)
(λ) = det(λI −B(n)(k)) = (λ− 6k)Tn−1(λ− 3k)− (λ− 1 + 18k2)Un−2(λ− 3k)

where I is the identity matrix.

Consequently we can give the following theorem, B(n)(k) satisfies.

Theorem 2.2. The eigenvalues of the tridiagonal matrix B(n)(k) are

λi = 3k + cos
iπ

n+ 1
, (i = 1, 2, · · · , n)

and the nth k−balancing number is denoted by

Bkn =

n−1∏
i=1

(
3k + cos

iπ

n

)
.

Proof. From recurrence relations of Un(x) and (1.6)

det(B(n)(k)) = 6kTn−1(3k)− (1− 18k2)Un−2(3k)

= 3kUn−1(3k)− 3kUn−3(3k)− (1− 18k2)Un−2(3k)

= Un(3k) + 3k(6kUn−2(3k)− Un−3(3k))− 3kUn−1(3k)

= Un(3k).

Hence the eigenvalues of B(n)(k) can be obtained through computing the zeros of the characteristic
polynomial (2.4). In view of the roots of Un(x) = 0 are θi = iπ

n+1
, (i = 1, 2, · · · , n) or equally

xi= cos θi = cos iπ
n+1

and the eigenvalues of B(n)(k) are

pB(n)(k)
(λi) = det(λiI −B(n)(k))

= Un(λiI − 3k)

So

λi = 3k + cos
iπ

n+ 1
, (i = 1, 2, · · · , n)

7
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Moreover we know the equation det(B(n)(k)) = Bkn+1 from (2.3) and the definition of the determinant
of the matrix

Bkn =

n−1∏
i=1

(
3k + cos

iπ

n

)
result is clear.

From this result, we can obtain the following conclusions.

Corollary 2.3. Let Bkn denote the nth k−Balancing number and B(n)(k) is a tridiagonal matrices,
then

1. det(B(n)(k)) =
∏n−1
i=1

(
3k + cos iπ

n

)
2. If 3k 6= − cos iπ

n+1
, (i = 1, 2, · · · , n− 1) then B(n)(k) is invertible

3. det(W(n)(k)) = 6
∏n−1
i=1

(
3k + cos iπ

n

)
.

Now we can obtain the relation between the matrix W(n)(k) and B(n)(k) given by k−Balancing
number.

In order to determine the inverse of matrix W(n)(k), we have to formulate the cofactor matrix of
W(n)(k). For this reason, we can give C(n)(k) cofactor matrix of W(n)(k) are expressed in terms of
k−Balancing number, which can be proved by induction on n.

Lemma 2.4. Let Bkn denote the nth k-balancing number and W(n)(k) are the tridiagonal matrices.
C(n−1)(k), the cofactor matrices of W(n)(k) whose elements are given by

and the other terms

with j is the jth columb and i is the ith row of W(n)(k) for n ≥ 4 is even and

mnj =

{
−6Bkj if 2 ≤ j ≤ n is even

6Bkj if 3 ≤ j ≤ n is odd
,min =

{
−6Bki if 2 ≤ i ≤ n− 1 is even

6Bki if 3 ≤ i ≤ n− 1 is odd

mi1 =

{
−Bkn−(i−1) if 2 ≤ i ≤ n− 1 is even

Bkn−(i−1) if 1 ≤ i ≤ n− 1 is odd
,m1j =

{
−6Bkn−(j−1) if 2 ≤ j ≤ n is even

6Bkn−(j−1) if 3 ≤ j ≤ n is odd

and the other terms

8
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with j is the jth columb and i is the ith row of W(n)(k) for n ≥ 5 is odd.

Corollary 2.5. Let Bkn denote the nth k-balancing number and C(n)(k) are the cofactor matrices
of W(n)(k),

1. The determinant of C(n)(k) is the (n − 1)th power of the six times of the terms of the (n +
1)th k−balancing number

det(C(n)(k)) = (6Bkn+1)n−1

2. The nth power of the six times of the terms of the (n+ 3)th k−balancing number is denoted
by the ratio of the determinants of the C(n+2)(k) and W(n+2)(k)

det(C(n+2)(k))

det(W(n+2)(k))
= (6Bkn+3)n.

Theorem 2.6. Let Bkn denote the nth k-balancing number and C(n)(k) are the cofactor matrices of
W(n)(k), then the inverse of matrix W(n)(k) is denoted by

and the other terms

with j is the jth columb and i is the ith row of W(n)(k) for n ≥ 4 is even and

and the other terms

9
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with j is the jth columb and i is the ith row of W(n)(k) for n ≥ 5 is odd.

Proof. We know the truth from (1.4) that

(W(n)(k))−1 =
1

det(W(n)(k))
C(n)(k)T

(W(n)(k))−1 =
1

6Bkn+1

C(n)(k)T

We know its transpoze of C(n)(k) from Lemma 2.4

mnj =

{
6Bkj if 2 ≤ j ≤ n is even

−6Bkj if 3 ≤ j ≤ n is odd
,min =

{
6Bki if 2 ≤ i ≤ n− 1 is even

−6Bki if 3 ≤ i ≤ n− 1 is odd

mi1 =

{
−Bkn−(i−1) if 2 ≤ i ≤ n− 1 is even

Bkn−(i−1) if 1 ≤ i ≤ n− 1 is odd
,m1j =

{
−6Bkn−(j−1) if 2 ≤ j ≤ n− 1 is even

6Bkn−(j−1) if 3 ≤ j ≤ n− 1 is odd

and the other terms

with j is the jth columb and i is the ith row of W(n)(k) for n ≥ 4 is even and

mnj =

{
−6Bkj if 2 ≤ j ≤ n is even

6Bkj if 3 ≤ j ≤ n is odd
,min =

{
−6Bki if 2 ≤ i ≤ n− 1 is even

6Bki if 3 ≤ i ≤ n− 1 is odd

mi1 =

{
−Bkn−(i−1) if 2 ≤ i ≤ n− 1 is even

Bkn−(i−1) if 1 ≤ i ≤ n− 1 is odd
,m1j =

{
−6Bkn−(j−1) if 2 ≤ j ≤ n is even

6Bkn−(j−1) if 3 ≤ j ≤ n is odd

and the other terms

with j is the jth columb and i is the ith row of W(n)(k) for n ≥ 5 is odd.

So we product the terms of these matrice with 1

6Bk
n+1

, then we get the result.

3 Conclusions

We proved some formulas differently to the traditional form by the k−balancing numbers concept.
We discussed the relations between the k−balancing number and other results in this paper, for
example trace, determinants, eigenvalues and so on. The two concepts balancing numbers and
tridiagonal matrix in this work, have applications as in [12] and [13]. Therefore we obtained the
applications to k−balancing numbers.

Some further investigations are as follows.

10
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1. We consider only Bkn defined from the determinant of the matrices, if possible we can discuss
the other k−balancing numbers which are defined in (1.3) : bkn , Ckn and ckn.

2. The results found in this paper can be used on the applications of k−balancing number.
Also k−balancing numbers have connection between Pell numbers with the help of the Binet
formulas.
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