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Abstract

By using fixed point theorem we studied the mild solution of fractional integro- differential

equations with non-local and impulsive conditions, also we studied the sufficient conditions of

controllability for this system.
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1 Introduction

In recent years, considerable interest in fractional calculus has been stimulated by the applications
it finds in numerical analysis and different areas of applied sciences like physics and engineering
[1-7].Fractal phenomena often can be centered in the field of linear viscoelasticity. One of the major
advantages of fractional calculus is that it can be considered as a super set of integer-order calculus.
Thus, fractional calculus has the potential to accomplish what integer-order calculus cannot. The
interested reader in this topic can consult the excellent books [8,9]. In particular the non-local
problems for impulsive fractional differential equations have been attractive to many researchers
the advantage of impulsive fractional differential equations is that they can describe the model
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which at certain moments change their state rapidly and which can’t be modeled by the classical
differential equations.

Controllability is an important property of a control system, and the controllability property plays
a crucial role in many control problems, such as stabilization of unstable systems by feedback, or
optimal control.Controllability and observability are dual aspects of the same problem. Roughly,
the concept of controllability denotes the ability to move a system around in its entire configuration
space using only certain admissible manipulations. The exact definition varies slightly within the
framework or the type of models applied. The following are examples of variations of controllability
notions which have been introduced in the systems and control literature: State controllability,
Output controllability, and Controllability in the behavioral framework ( see [10-15]) The main
purpose of this paper is to prove the existence of mild solutions and controllability for the following
impulsive fractional integro- differential equation with nonlocal condition in a Banach space X:

cDq
0[x(t)− F (t, x(t), x(b1(t)), ..., x(bm(t))] = A[x(t)− F (t, x(t), x(b1(t)), ..., x(bm(t))]

+f(t, x(t), x(a1(t)), ..., x(an(t)))+

∫ t

0

g(t, s, x(s), ψ(s)), t ∈ J = [0, T ], t 6= tk, k = 1, 2, 3......,m (1.1)

x(0) + h(x(t1), ..., x(tp)) = x0 (1.2)

∆x|t=tk = Ik(x(t−k )), k = 1, 2, 3, ......m (1.3)

The linear operator A generates an analytic semigroup (T (t))t≥0

where, (T (t))t≥0 is a compact analytic semigroup of uniformly bounded linear operators T (t) on
X, (T (t))t≥0 is a compact analytic semigroup of uniformly bounded linear operators (T (t)) on X

∆x|t=tk = Ik(x(t−k ))

where, x(t+k ) is the right limit of x(t) at (t = tk) , x(t−k ) is the left limit of x(t) at (t = tk). F ,
G and g are given functions to be specified later and cDq

0 is Caputo fractional derivative of order
0 < q < 1.

1.1 Preliminaries

Let X be a Banach space with norm ‖.‖ and A :D(A)→ X is the generator of a compact analytic
semigroup of uniformly bounded linear operators (T (t)) on X.

there exist M ≥ 1 such that ‖T (t)‖ ≤M, t ≥ 0

We need some basic definitions and properties of the fractional calculus theory which are used in
this paper

Definition 2.1 ( see[16],[17]) The fractional integral of order q with the lower limit 0 for a function
f is defined as:

Iqf(t) =
1

Γ(q)

∫ t

0

f(s)

(t− s)1−q ds,

t > 0, q > 0 where Γ is the gamma function.

Definition 2.2 (see[16],[17] ) The Caputo derivative of order q with the lower limit 0 for a function
f is defined as:

cDq
0f(t) =

1

Γ(n− q)

∫ t

0

f (n)(s)

(t− s)q+1−n ds,
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t > 0 , 0 ≤ n− 1 < q < n

Definition 2.3 a continuous solution x(t)of the integral equation

x(t) = Sq(t)[x0−h(x(t1), ..., x(tp))−F (0, x(0), x(b1(0)), ....., x(bm(0)))]+F (t, x(t), x(b1(t)), ..., x(bm(t))

+

∫ t

0

(t− s)q−1Tq(t− s)[f(s, x(s), x(a1(s)), ......, x(an(s)) +

∫ s

0

g(s, τ, x(τ), ψ(τ))dτ ]ds

+
∑

0<tk<t

Tq(t− tk)Ik(x(t−k ))

is called mild solution of the problem (1.1)-(1.3) where

Sq(t) x =

∫ ∞
0

ξq(θ)T (tqθ)xdθ

Tq(t) x = q

∫ ∞
0

θξq(θ)T (tqθ)xdθ

with ξq being a probability density function defined on (0,∞),that is
ξq(θ) ≥ 0, θ ∈ (0,∞) and

∫∞
0
ξq(θ)dθ = 1

letY = C(J,X) and define the sets

Xr = {x ∈ X : ‖x‖ ≤ r}, Yr = {y ∈ Y : ‖y‖ = supt∈J‖y(t)‖ ≤ r}

where r ,positive constant,is defined by:

r = M [‖x0‖+H +M0L1(k + 1) +
tα

Γ(α+ 1)
(M2 +M3) + α

m∑
k=1

λk] +M0L1(k + 1)

further we assume the following hypotheses:

(H1)F : J ×Xm+1 → X is continuous function there exist constant L1 > 0 such that:
‖AβF (t, x0, x1, ......, xm)‖ ≤ L1(max{‖xi‖ : i = 0, 1, ....,m}+ 1), holds for any (t, x0, x1, ......, xm) ∈
J ×Xm+1,‖A−β‖ ≤M0 ,where β is constant
(H2) the nonlinear operatorsf : J ×Xn+1 → X, g : 4×X ×X → X and
k : 4×X → X are continuous and there exist M2 > 0,M3 > 0 such that
we will show that φ(Y0) = S = (φx) : x ∈ Y0 is an equicontinuous family of functions for0 ≤ t ≤ s
we have

‖f(t, x(t), x(a1(t)), ..., x(an(t))‖ ≤ M2 for t ∈ J ,x ∈ Xr,‖g(t, s, x(s), y(s))‖ ≤ M3 for (t, s) ∈
4,x, y ∈ Xr
(H3) the operator h : Xp → X is continuous and there exist a constant H > 0 such that
‖h(x(t1), ....., x(tp)‖ ≤ H for x ∈ Yr
h(λx(t1) + (1− λ)y(t1), ...., λx(tp) + (1− λ)y(tp) = λh(x(t1), ....., x(tp)
+ (1− λ)h(y(t1), ....., y(tp) for x, y ∈ Yr
(H4) the set y(0) : y ∈ Yr, y(0) = x0 − h(y(t1, ....., y(tp)) is precompact in X

lemma 2.1. . the operators Sq(t) and Tq(t) have the following properties :
(I) for any fixed x ∈ X ,‖Sq(t)x‖ ≤M‖x‖,‖Tq(t)x‖ ≤ qM

Γ(q+1)
‖x‖

(II) Sq(t), t ≥ 0 and Tq(t), t ≥ 0 are strongly continuous
(III) For every t > 0,Sq(t) and Tq(t) are also compact operators if T (t), t > 0 is compact
(H5) Ik : X → X is completely continues and their exist continuous non-decreasing functions
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Lk : R+ → R+ Such that for each x ∈ X.

‖Ik(x)‖ ≤ Lk(‖x‖), Lk(.) = λkΓ(q + 1)

2 Existence of Mild Solutions

in this section we can prove the existence of mild solution ( see[18-20])

Theorem 3.1.[16] Let hypotheses (H1)− (H5) be satisfied then the system (1.1)-(1.3) has a mild
solution on J.

proof.
For simplicity we rewrite that

(t, x(t), x(b1(t), ......, x(bm(t))) = (t, v(t))

and
(t, x(t), x(a1(t), ......, x(an(t))) = (t, u(t))

we define the set Y0 in Y by:

Y0 = {x ∈ y : x(0) + h(x(t1), ....., x(tp) = x0, ‖x(t)‖ ≤ r for 0 ≤ t ≤ T}
it is clear that Y0 is a bounded closed convex subset of Y .

define a mapping φ : Y → Y0 by:

(φx)(t) = Sq(t)[x0 − h(x(t1), ..., x(tp))− F (0, v(0))] + F (t, v(t))
+

∫ t
0

(t− s)q−1Tq(t− s)[f(s, u(s) +
∫ s

0
g(s, τ, x(τ), ψ(τ))dτ ]ds+

∑
0<tk<t

Tq(t− tk)Ik(x(t−k ))

since , ‖(φx)(t)‖ ≤ ‖Sq(t)x0‖+ ‖Sq(t)h(x(t1), ..., x(tp))‖+ ‖Sq(t)F (0, v(0))‖+ ‖F (t, v(t))‖+
∫ t

0
(t−

s)q−1‖Tq(t− s)‖[‖f(s, u(s)‖+
∫ s

0
‖g(s, τ, x(τ), ψ(τ))‖dτ ]ds+

∑
0<tk<t

‖Tq(t− tk)Ik(x(t−k ))‖
‖(φx)(t)‖ ≤ ‖Sq(t)x0‖+‖Sq(t)h(x(t1), ..., x(tp))‖+‖Sq(t)A−βAβF (0, v(0))‖+‖A−βAβF (t, v(t))‖+∫ t

0
(t− s)q−1‖Tq(t− s)‖[‖f(s, u(s)‖+

∫ s
0
‖g(s, τ, x(τ), ψ(τ))‖dτ ]ds

+
∑

0<tk<t
‖Tq(t− tk)‖‖Ik(x(t−k ))‖

‖(φx)(t)‖ ≤M‖x0‖+MH +MM0L1(k + 1) +M0L1(k + 1) + tq

Γ(q+1)
M(M2 +M3)

+ qM
Γ(q+1)

∑m
k=1 Lk

‖(φx)(t)‖ ≤M [‖x0‖+H +M0L1(k + 1) + tq

Γ(q+1)
(M2 +M3) + q

∑m
k=1 λk]

+M0L1(k + 1) = r

then ‖φ‖ ≤ r this is mean that φ maps Y0 into Y0 further the continuity of φ fromY0 into Y0 follows
from the fact that (f, g, k, F, h) are continuous.

moreover φ maps Y0 into a precompact subset of Y0

we prove that the set
Y0(t) = {(φx)(t) : x ∈ Y0} is precompact in X , for t = o ,the setY0(0) is precompact in X this is
from the condition (H4)

let t > 0 be fixed define , for 0 < ε < t,
(φεx)(t) = Sq(t)[x0 − h(x(t1), ..., x(tp))− F (0, v(0))] + F (t, v(t))
+

∫ t−ε
0

(t− s)q−1Tq(t− s)[f(s, u(s) +
∫ s

0
g(s, τ, x(τ), ψ(τ))dτ ]ds

+
∑

0<tk<t
Tq(t− tk)Ik(x(t−k ))

since T (t) is compact analytic semigroup of uniformly bounded linear operators (T (t)) on X for
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every t > 0, the setYε(t) ={(φεx)(t) : x ∈ Y0}is precompact in X for every ε ,0 < ε < t
Further , for x ∈ Y0 we have

‖(φx)(t)− (φεx)(t)‖ ≤ ‖
∫ t
t−ε(t− s)

q−1Tq(t− s)[f(s, u(s) +
∫ s

0
g(s, τ, x(τ), ψ(τ))dτ ]ds

+
∑
t−ε<tk<t

Tq(t− tk)Ik(x(t−k ))‖
‖(φx)(t)− (φεx)(t)‖ ≤ εα

Γ(α+1)
M(M2 +M3) +

∑
t−ε<tk<t

Lk(·)
if ε > 0 then there are relatively compact sets close to the set {φ(t) : φ ∈ C(J,X)} thenY0(t) is
precompact in X

we will show that φ(Y0) = S = {(φx)(t) : x ∈ Y0} is an equicontinuous family of functions for
0 ≤ t ≤ s we have
‖(φx)(t)− (φx)(s)‖ ≤ ‖Sq(t)− Sq(s)‖‖x0‖+ ‖Sq(t)− Sq(s)‖‖h(x(t1), ..., x(tp))‖
+ ‖

∫ t
0

(t− τ)q−1Tq(t− τ)− (s− τ)q−1Tq(s− τ)[f(τ, x(τ)) +
∫ τ

0
g(τ, η, x(η), ψ(η))dη]dτ ]

+ ‖
∫ s
t

(s− τ)q−1Tq(s− τ)[f(τ, x(τ)) +
∫ τ

0
g(τ, η, x(η), ψ(η))dη]dτ ]‖

+
∑

0<tk<s
‖Tq(t− tk)− Tq(s− tk)‖‖Ik(x(t−k ))‖+

∑
s<tk<t

‖Tq(t− tk)‖‖Ik(x(t−k ))‖

‖(φx)(t)−(φx)(s)‖ ≤ ‖Tq(t)−Tq(s)‖‖x0+H‖+(M2+M3)

∫ t

0

‖(t−τ)q−1Tq(t−τ)−(s−τ)q−1Tq(s−τ)‖dτ

+
M

Γ(α+ 1)
(s− t)α(M2 +M3) +

M

Γ(α+ 1)

∑
0<tk<s

(t− s)‖Ik(x(t−k )‖+
M

Γ(α+ 1)

∑
s<tk<t

‖Ik(x(t−k ))‖

the right hand side of this inequality tends to zero as s → t then the compactness of (T (t))t≥0

implies the continuity in the uniform operator topology , then S is bounded in Y by using the
(Arzela -Ascoli theorem) S is precompact hence by the Schauder fixed point theorem φ has a fixed
point in Y0 and any fixed point is a mild solution of the non-local and impulsive system (1.1)-(1.3)

2.1 Controllability Results

in this section we will introduce a sufficient conditions for controllability of nonlinear fractional
integrodifferential system with nonlocal and impulsive conditions in the following form:

cDq
0[x(t)− F (t, x(t), x(b1(t)), ..., x(bm(t))] = A[x(t)− F (t, x(t), x(b1(t)), ..., x(bm(t))]

+f(t, x(t), x(a1(t)), ..., x(an(t))) +Bu(t)

+

∫ t

0

g(t, s, x(s), ψ(s))ds, t ∈ J = [0, T ], t 6= tk, k = 1, 2, 3......,m (4.1)

x(0) + h(x(t1), ..., x(tp)) = x0 (4.2)

∆x|t=tk = Ik(x(t−k )), k = 1, 2, 3, ......m (4.3)

where the state x(.) takes values in Banach space X and the control function u(.) is given in L2(J, U),
a Banach space of admissible control functions with U as a Banach space .Here B is a bounded linear
operator from U into X. For system (4.1), there exist a mild solution of the following form (see [21]):

x(t) = Sq(t)[x0−h(x(t1), ..., x(tp))−F (0, x(0), x(b1(0)), ....., x(bm(0)))]+F (t, x(t), x(b1(t)), ..., x(bm(t))+

∫ t
0

(t−s)q−1Tq(t−s)[f(s, x(s), x(a1(s)), ......, x(an(s))+Bu(s)+
∫ s

0
g(s, τ, x(τ), ψ(τ))dτ ]ds+

∑
0<tk<t

Tq(t−
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tk)Ik(x(t−k ))is called mild solution of the problem (4.1)-(4.3)

Definition 4.1. System (4.1) is said to be controllable with nonlocal and impulsive conditions on
the interval J if , for every x0, xT ∈ X there exist a control function u ∈ L2(J, U) such that the
mild solution x(.) of (4.1) satisfies
x(0) + h(x(t1), ...., x(tp)) = x0, x(T ) = x1

toestablishtheresult, weneedthefollowingadditionalhypothesis
(H6)thelinearoperator W fromL2(J, U) into X , defined by

Wu =
∫ T

0
(T − s)q−1Tq(T − s)Bu(s)ds u ∈ L2(J, U) has an inverse operator W−1 defined on

L2(J, U) into X , defined on L2(J, U)/kerW and there exist a constant M4 > 0 such that‖BW−1‖ ≤
M4

Theorem 4.1 if the hypotheses (H1)-(H6) are satisfied ,then the system (4.1)-(4.4) is controllable
on J

Proof. For simplicity we rewrite that

(t, x(t), x(b1(t), ......, x(bm(t))) = (t, v(t))

and
(t, x(t), x(a1(t), ......, x(an(t))) = (t, u(t))

using the hypothesis (H6) ,for an arbitrary function x(.),define the control

u(t) = W−1{xT − Sq(t)[x0 − h(x(t1), ..., x(tp))− F (0, x(0), x(b1(0)), ....., x(bm(0)))]+

F (t, x(t), x(b1(t)), ..., x(bm(t))−
∫ T

0

(T − s)q−1Tq(t− s)[f(s, x(s), x(a1(s)), ......, x(an(s))+

∫ s

0

g(s, τ, x(τ), ψ(τ))dτ ]ds}(t)

now we will show that , when using this control the operator defined by
(φx)(t) = Sq(t)[x0 − h(x(t1), ..., x(tp))− F (0, v(0))] + F (t, v(t)) +∫ t

0
(t− s)q−1Tq(t− s)[f(s, u(s) +Bu(s) +

∫ s
0
g(s, τ, x(τ), ψ(τ))dτ ]ds+∑

0<tk<t
Tq(t − tk)Ik(x(t−k )) this operator has a fixed point. this fixed point is then a solution of

(4.1)

since (φx)(T ) = xT i.e
(φx)(T ) = Sq(t)[x0 − h(x(t1), ..., x(tp))− F (0, v(0))] + F (t, v(t)) +∫ T

0
(T − s)q−1Tq(T − s)BW−1 × {xT − Sq(T )[x0 − h(x(t1), ..., x(tp)) − F (0, v(0))] + F (t, v(t)) −∫ T

0
(T−τ)q−1Tq(T−τ)[f(τ, u(τ)+

∫ τ
0
g(τ, η, x(η), ψ(η))dη]dτ}(η)ds+

∫ t
0

(t−s)q−1Tq(t−s)[f(s, u(s)+∫ s
0
g(s, τ, x(τ), ψ(τ))dτ ]ds+∑
0<tk<t

Tq(t− tk)Ik(x(t−k )) = xT ,which means that the control u steers the semilinear fractional
integrodifferential system from the initial state x0 to final state xT in time T provided we can obtain
a fixed point of the nonlinear operator φ
let Y0 = {x ∈ Y : x(0) + h(x(t1), ..., x(tp)) = x0, ‖x(t)‖ ≤ r′, fort ∈ J}
where r′ is positive constant . then Y0 is clearly bounded , closed and convex subset of Y .

Define a mapping φ : Y → Y0 by :

(φx)(T ) = Sq(t)[x0 − h(x(t1), ..., x(tp))− F (0, v(0))] + F (t, v(t)) +∫ t
0

(t−η)q−1Tq(t−η)BW−1××{xT −Sq(T )[x0−h(x(t1), ..., x(tp))−F (0, v(0))]+F (t, v(t))−
∫ T

0
(T−

s)q−1Tq(T − s)[f(s, u(s) +
∫ s

0
g(s, τ, x(τ), ψ(τ))dτ ]ds}dη +

6
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∫ t
0

(t− s)q−1Tq(t− s)[f(s, u(s) +
∫ s

0
g(s, τ, x(τ), ψ(τ))dτ ]ds+∑

0<tk<t
Tq(t− tk)Ik(x(t−k ))

‖(φx)(T )‖ ≤ [‖x0‖ + H + M0L1(k + 1)] + M0L1(k + 1) + M1
Γ(q+1)

tq(M2 + M3) + qM1

∑k=m
k=1 λk +∫ t

0
(t− η)q−1‖Tq(t− η)‖‖BW−1‖ ×

{‖xT ‖+ ‖Sq(t)‖[‖x0‖+H +M0L1(k + 1)] +M0L1(k + 1) +∫ T
0

(T − s)q−1‖Tq(T − s)‖[f(s, u(s) +
∫ s

0
g(s, τ, x(τ), ψ(τ))dτ ]ds}dη +∫ t

0
(t− s)q−1‖Tq(t− s)‖[‖f(s, u(s)‖+

∫ s
0
‖g(s, τ, x(τ), ψ(τ))dτ‖]ds+∑

0<tk<t
‖Tq(t− tk)‖‖Ik(x(t−k ))‖

‖(φx)(T )‖ ≤M [‖x0‖+H +M0L1(k + 1)] +M0L1(k + 1) +
M

Γ(q + 1)
tq(M2 +M3) + qM

k=m∑
k=1

λk+

M

Γ(q + 1)
tqM4[‖xT ‖+M(‖x0‖+H +M0L1(k + 1) +M0L1(k + 1) +

M

Γ(q + 1)
T q(M2 +M3)]

‖(φx)(T )‖ ≤M{‖x0‖+H +M0L1(k + 1) +M0L1(k + 1) +
tq

Γ(q + 1)
(M2 +M3) + q

k=m∑
k=1

λk +

tqM4

Γ(q + 1)
[‖xT ‖+M0L1(k+1)(1+M)+M(‖x0‖+H)+

M

Γ(q + 1)
T q(M2 +M3)]}+M0L1(k+1) = r′

since f and g are continuous and ‖(φx)(T )‖ ≤ r′ ,it follow that φ is continuous and maps Y0 into
itself .moreover ,φ maps Y0 into a precompact subset of Y0 . To prove this , we first show that every
fixed t ∈ J the set Y0(t) = {(φx)(T ) : x ∈ Y0} is precompact in X. This is clear for t = 0 since
Y0(0) is precompact by assumption (H4)

let t > 0 be fixed and for 0 < ε < t, define :

(φεx)(t) = Sq(t)[x0 − h(x(t1), ..., x(tp))− F (0, v(0))] + F (t, v(t))
+

∫ t−ε
0

(t− η)q−1Tq(t− η)BW−1×
{xT − Sq(T )[x0 − h(x(t1), ..., x(tp))− F (0, v(0))] + F (t, v(t))−∫ T

0
(T − s)q−1Tq(T − s)[f(s, u(s) +

∫ s
0
g(s, τ, x(τ), ψ(τ))dτ ]ds}(η)dη +∫ t−ε

0
(t−s)q−1Tq(t−s)[f(s, u(s)+

∫ s
0
g(s, τ, x(τ), ψ(τ))dτ ]ds+

∑
0<tk<t

Tq(t−tk)Ik(x(t−k ))+
∫ t−ε

0
(t−

s)q−1Tq(t− s)[f(s, u(s) +
∫ s

0
g(s, τ, x(τ), ψ(τ))dτ ]ds+

∑
0<tk<t

Tq(t− tk)Ik(x(t−k ))
since T (t) is compact for t > 0, the set Yε(t) = {(φεx)(t) : x ∈ Y0} is precompact in X for every ε ,
0 < ε < t . Furthermore for x ∈ Y0 we have

‖(φx)(t)− (φεx)(t)‖ ≤
∫ t
t−ε(t− η)q−1‖Tq(t− η)‖‖BW−1‖×

{‖xT ‖+ ‖sq(T )‖[‖x0 +H +A−βAβF (0, v(0))] + ‖A−βAβF (t, v(t))‖+∫ T
0

(T − s)q−1‖Tq(T − s)‖[‖f(s, u(s)‖+ ‖
∫ s

0
g(s, τ, x(τ), ψ(τ))dτ‖]ds}(η)dη +∫ t

t−ε(t− s)
q−1‖Tq(t− s)‖[‖f(s, u(s)‖+ ‖

∫ s
0
g(s, τ, x(τ), ψ(τ))dτ‖]ds}+∑

t−ε<tk<t
‖Tq(t− tk)‖‖Ik(x(t−k ))‖

‖(φx)(t)− (φεx)(t)‖ ≤ MM4
Γ(q+1)

εq{‖xT ‖+M(‖x0‖+H +M0L1(k + 1) +

M0L1(k + 1) + MΓ(q+1)
T

q
(M2 +M3)}+ εq

Γ(q+1)
(M2 +M3) +

∑
t−ε<tk<t

Tq(t− tk)Lk(·)
If ε→ 0 then there exist relatively compact sets close to the set φ(t) then y0(t) is precompact in X
We want to show that φ(Y0) = {φx : x ∈ Y0} is an equicontinuous family of functions . For that,
let t2 > t1 > 0
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‖(φx)(t1)− (φx)(t2)‖ ≤ ‖sq(t1)− sq(t2)‖[‖x0‖+H − F (0, v(0))] +∫ t1
0
‖Tq(t1 − η)(t1 − η)q−1 − Tq(t2 − η)(t2 − η)q−1‖BW−1 ×

{xT − Sq(T )[x0 − h(x(t1), ..., x(tp))− F (0, v(0))] + F (t, v(t))−∫ T
0
Tq(T − s)(T − s)q−1[f(s, u(s) +

∫ s
0
g(s, τ, x(η), ψ(η))dη]dτ}(η)ds+∫ t

0
(t− s)q−1Tq(t− s)[f(s, u(s) +

∫ s
0
g(s, τ, x(τ), ψ(τ))dτ ]ds}dη +∫ t1

0
‖Tq(t1 − s)(t1 − s)q−1 − Tq(t2 − s)(t2 − s)q−1‖[f(s, u(s) +∫ s

0
g(s, τ, x(η), ψ(η))dη]dτ}ds−

∫ t2
t1
‖Tq(t2 − η)(t2 − η)q−1‖BW−1 ×

{xT − Sq(T )[x0 − h(x(t1), ..., x(tp))− F (0, v(0))] + F (t, v(t))−∫ T
0
Tq(T − s)(T − s)q−1[f(s, u(s) +

∫ s
0
g(s, τ, x(η), ψ(η))dη]dτ}(η)ds}dη −∫ t2

t1
‖Tq(t2 − s)(t2 − s)q−1‖[f(s, u(s)) +

∫ s
0
g(s, τ, x(η), ψ(η))dη]dτ}ds+∑

0<tk<t1
‖Tq(t2 − tk)− Tq(t1 − tk)‖‖Ik(x(t−k ))‖+∑

t1<tk<t2
‖Tq(t2 − tk)− Tq(t1 − tk)‖‖Ik(x(t−k ))‖

‖(φx)(t1)−(φx)(t2)‖ ≤ ‖sq(t1)−sq(t2)‖[‖x0‖+H+M0L1(k+1)]+
∫ t1

0
‖Tq(t1−η)(t1−η)q−1−Tq(t2−

η)(t2−η)q−1‖×M4{‖xT ‖+M(‖x0‖+H+M0L1(k+ 1) +M0L1(k+ 1) + M
Γ(q+1)

T q(M2 +M3)}dη+∫ t1
0
‖Tq(t1 − s)(t1 − s)q−1 − Tq(t2 − s)(t2 − s)q−1‖(M2 + M3)ds + MM4(t2−t1)q

Γ(q+1)
[‖xT ‖ + M(‖x0‖ +

H +M0L1(k + 1)) +M0L1(k + 1) +
M1(T )q

Γ(q+1)
(M2 +M3) +

∑
0<tk<t1

‖Tq(t2 − tk)− Tq(t1 − tk)‖‖Ik(x(t−k ))‖+∑
t1<tk<t2

‖Tq(t2 − tk)− Tq(t1 − tk)‖‖Ik(x(t−k ))‖

the compactness of Sα(t), Tα(t), t > 0 and (T (t))t≥0 is continuous in the uniform operator topology.

The right hand side is independent of x ∈ Y0 tends to zero as t2 → t1 then φ(Y0) is equicontinuous
family of functions

φ(Y0) is bounded in Y and so by (Arzela-Ascoli) theorem , φ(y0 is precompact hence from the
Schauder fixed point theorem φ has a fixed point in Y0

any fixed point of φ is a mild solution of the system we are study it on J satisfying (φx)(t) = x(t) ∈ X
then the system (4.1)is controllable on J

5. Example

Consider the fractional nonlocal impulsive integro-partial differential control system of the form
∂q

∂tq
[w(x, t)− F (t, w(x, t), w(x(b1(t), ......, x(bm(t), t)] =

a(x, t, w(x, t)) ∂2

∂x2
[w(x, t)−F (t, w(x, t), w(x(b1(t), ......, x(bm(t), t)]+ζ(x, t)+Ψ(t, x arctanφ(x, t, w))+∫ t

0
e−φ(x,s,w)ds (5.1)

w(x, 0) +
∑m
k=1 ckw(x, tk) = w0(x), x ∈ [0, π] (5.2)

w(0, t) = w(π, t) = 0, t ∈ J (6.3)
∆w(tk, x) = −w(tk, x), x ∈ (0, 1), k = 1, ....,m (5.4)
where α ≤ 1, 0 < t1 < ..... < tm < T the functions Ψφ and a(x, t, w(x, t)) are continuous functions.
let us take

X = L2[0, π] , PC = PC(J, sδ) , sδ = {y ∈ L2[0, π] : ‖y‖ ≤ δ}
put (Bw)(x, t) = ζ(x, t), x ∈ (0,Π) where w(t) = ζ(., t) and ζ : [0, π]× J → [0, π] is continuous
h(w(., t)) =

∑m
k=1 ckw(., tk) the functions f(t, w(x, t), w(x(b1(t), ......, x(bm(t), t) = x arctanφ(x, t, w))
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and g(t, s, x(s),Ψ(s))ds = e−φ(x,s,w)

we define A(t, .) : X → X by (A(t, .)w)(x) = a(x, t, .)w
´́

withw ∈ D(A)
since the operator A is the infinitesimal generator of an compact analytic semigroup T (t)
the equation (6.1) can be reformulated as the following abstract equation in X :

cDq
0[u(t)− F (t, u(t), u(b1(t)), ..., u(bm(t))] = A[u(t)− F (t, u(t), u(b1(t)), ..., u(bm(t))] +

f(t, u(t), u(a1(t)), ..., u(an(t)))+Bu(t)+
∫ t

0
g(t, s, x(s), ψ(s))ds, t ∈ J = [0, T ], t 6= tk, k = 1, 2, 3......,m

that is u(t)− F (t, u(t), u(b1(t)), ..., u(bm(t)) = w(t, .) and u(t)(x) = w(t, x), t ∈ [0, T ]
f : [0, T ]×X → X is given by

f(t, u(t), u(a1(t)), ..., u(an(t))) = f(t, x arctanw(u, t)), g(u) = e−φ(x,s,w) since the functions f(t, u)
and g(u) are continuous from the previous conditions (H1)-(H5) on X
assume that the linear operator W is given by :

Wu(x) =
∫ T

0
(T −s)q−1Tq(T −s)Bu(s)ds has a bounded invertible operator W−1 in L2(J, U)/kerW

further all conditions (H1)-(H5) are satisfied hence by using theorem (4.1) the system (5.1)-(5.3) is
controllable on J .

3 Conclusions

In this paper, we have presented by using semigroup and Schauder fixed point theorem the existence
of mild solutions of fractional integrodifferential equations with nonlocal and impulsive conditions
in Banach spaces also sufficient conditions for controllability of fractional integrodifferential systems
are established.
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