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Abstract
We present an open-source hardware and software ecosystem for optical atomic clocks. We
provide PCB schematics and fabrication files for manufacturing the most important electronic
systems together with the required software. The boards are designed for an active bad-cavity
superradiant strontium clock and a passive optical lattice strontium clock, but they can be easily
adapted to other atomic species’ optical atomic clocks or ultra-cold atoms’ systems like
magneto-optical traps or Bose–Einstein condensate setups.

Keywords: active superradiant optical clock, electronic components, optical atomic clocks,
rf electronics

(Some figures may appear in colour only in the online journal)

1. Introduction

Experimental systems in atomic, molecular and optical phys-
ics demandmore andmore complex and sophisticated require-
ments to see subtle effects like searching for dark matter [1, 2],
Bose–Einstein condensates [3, 4], gravitational wave detection
[5], spectroscopy of ultra-narrow transitions [6, 7] and other
ultra-cold atom experiments [8, 9]. Among them, one of
the most dominant examples is optical atomic clock exper-
iments [6]. In realising such high-accuracy measurements,
various non-standard solutions not available on the commer-
cial market must be implemented. The most challenging is
the design of electronic elements that can produce stable
radio frequency or magnetic field pulses. Another common
problem is adapting these devices to work with experiment
control systems such as Sinara/ARTIQ [10]. Usually, a local
electronic workshop is employed to prepare electronic devices
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and systems that are unique to only one particular experiment
within a group. With their unprecedented precision, optical
atomic clocks need many custom-made components to drive
experiments correctly. While most existing laboratories have
developed their own solutions for operating complex optical
clocks, there are few papers that report their electronic cir-
cuits in detail [11–14]. At the same time, autonomously oper-
ated optical atomic clocks are becoming more common and in
demand for new technology applications [15–17] and the new
definition of the SI second [18, 19].

In this paper, we present an electronic system aimed at sup-
porting the operation of optical clocks. While the electronic
components presented here are designed for optical atomic
clocks, they are also suitable for many other types of ultra-
cold atom experiments, such as Feshbach resonance spectro-
scopy [20], optically pumped magnetometers [21], cold atom
gravimetry [22] and quantum computing [23]. The presen-
ted electronic devices are suitable for both present-generation
passive optical lattice atomic clocks and future-generation
continuous active optical clocks based on superradiance [24–
27]. They are composed of high-current drivers for con-
trolling the magnetic field coils, a relocking system for
the lasers’ frequency stabilisation, direct digital synthesizer
controllers, a phase and frequency comparator for laser–laser
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or laser–optical frequency comb (OFC) relative locks, and a
cooling fluid flow-based interlock control circuit. Most of the
presented devices can be configured using Ethernet and fast-
switched using analog or transistor-transistor logic (TTL) sig-
nals. The designs are adapted to the electronic components
currently available on the market.

All presented components are open-source hardware and
software. In the open data repository we provide all PCB
schematics and fabrication files required to manufacture the
most important electronic systems together with the required
software.

2. Components

2.1. Magneto-optical traps and offset field controller
15A/100A

Collecting atoms into optical lattices requires first laser cool-
ing them down to several tens of µK temperatures. This
is commonly performed in magneto-optical traps (MOTs)
[28–30]. A quadrupole magnetic field, used in the MOT, is
usually generated by a pair of anti-Helmholtz circular coils.
Laser cooling and trapping of strontium are generally realised
in two consecutive MOTs operating on two different atomic
transitions [31, 32]. Therefore, two different values of current
flowing through the coils need to be optimised in each of the
MOTs, and ramping of themagnetic field gradients is required.
This, together with fast turning on and off of the field, must be
provided by the current controller.

Operating an optical lattice strontium clock after load-
ing atoms into the lattice requires a static and homogeneous
magnetic field either for defining a quantisation axis for the
atoms and resolving clock transition hyperfine components
needed for optical pumping and clock interrogation in fermi-
onic 87Sr isotope or for magnetic-induced spectroscopy [33]
in the bosonic 88Sr isotope [6].

The aforementioned conditions require the capability to
switch the direction of the current in one of the coils to
move from an anti-Helmholtz configuration to a Helmholtz
configuration.

In the case of a passive optical lattice strontium clock, the
presence of the magnetic field induces systematic shifts to
the atomic clock line, such as first- and second-order Zeeman
shifts. The achievable stability of the magnetic field determ-
ines the uncertainty of these systematic shifts and, thus, the
clock’s accuracy. Moreover, the fluctuations of the magnetic
field will directly deteriorate the clock’s stability.

In a first-order Zeeman shift, a magnetic field, B, gives
a linear shift of the sub-levels, which for π-transitions
(∆mF = 0) shifts the transition frequency, f, by ∆flin =
−mFB(ge− gg)µB/h, where µB is the Bohr magneton and
ge and gg are the g-factors of the excited and ground state,
respectively. For 87Sr, a linear Zeeman shift has been determ-
ined experimentally to be∆flin = 1.084(4)mFBHzµT−1 [34].

A second-order Zeeman shift determination depends on
the structure of the atomic levels, and in the case of stron-
tium, the shift is dominated by the interaction of the excited
triplet clock state with the other nearest triplet state, ∆fquad ≈

−2B2µ2
B/(3∆νth2), where h∆νt is the energy separation

between the two triplet states.
For strontium, the quadratic Zeeman shift is ∆fquad ≈

−2.46× 10−5B2 HzµT−2 [35].
Assuming B= 60µT in state-of-the-art 87Sr clocks [35, 36]

a fractional accuracy of 10−18 requires a stability of the B field
better than ∆B< 0.000 087 µT, i.e. ∆B/B< 1.45× 10−6.
For a bosonic 88Sr clock, the bias field is usually higher,
for instance B= 210 µT in one of the best transportable
clocks [37]. There is, however, no linear Zeeman shift. The
quadratic Zeeman shift sets the requirements ∆B<0.04 µT,
i.e. ∆B/B< 1.9× 10−4.

In contrast to passive clocks, an active superradiant clock
uses the radiation collected directly from the clock transition
as a reference. The atoms are correlated in the superradiant
emission, creating a collective atomic dipole. To a first approx-
imation, superradiance may occur if the relative frequency
shifts, δf, between atoms are below the atomic line width.
The space and time inhomogeneity, δB , of the magnetic field
applied to the ensemble of superradiating atoms leads to dif-
ferent frequency shifts of the upper lasing state. For the 1 mHz
line of fermionic 87Sr and a field of 60 µT the field’s required
space and time homogeneity due to the linear Zeeman shift is
on the order of δB/B∼ 3× 10−6. In the bosonic isotope 88Sr
the induced line width is extremely small and depends quad-
ratically on the value of the offset field B [38]. For instance,
B= 200 µT induces a line width of ∼1.2 nHz. Therefore, the
quadratic Zeeman shift imposes extremely high space and time
homogeneity requirements at the level of δB/B≈ 10−9.

However, as was shown in [39], the superradiance of an
atomic ensemble in a bad-cavity regime is allowed for less
restrictive conditions, i.e. δf < Ng2/κ, where N is the num-
ber of atoms, g is the coupling strength of the lasing transition
with the cavity mode and κ is the decay rate of the cavity field.
Based on this, one can estimate the required homogeneity of
the magnetic field over the atomic ensemble. For instance, for
105 88Sr atoms collected in a cavity with a finesse of 105, the
estimation yields δB/B< 10−5.

A finite-element method simulation of the magnetic field
homogeneity for a magnetic field generated from in-vacuum
coils surrounded by Mu-metal shields is presented in figure 1.
It shows that such homogeneity is possible even with the
highly inhomogeneous field from MOT coils present just out-
side the shields. This particular setup is designed for an active
continuous optical clock based on the idea of a moving magic-
wavelength lattice scheme, as proposed in [26, 40].

The device presented schematically in figure 2 has two sep-
arate controllers, for currents up to 15 A and 100 A, respect-
ively, to increase resolution in the low-current regime. The act-
ive controller is selected by a TTL signal. A block diagram of
a controller is presented in figure 3 on the basis of the 100 A
controller. An output current is set by analogue input. The
analogue signal is converted to digital and digitally filtered
to remove any input noise. A digital proportional-integral-
derivative (PID) controller and a digital–analogue converter
(DAC) stabilise the current output sensed by a LEM IT 200S
Ultrastab current sensor. The digital–analogue converter is
referenced to an external ultra-stable ADR4540BRZ voltage
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Figure 1. Magnetic field distribution simulations for the set of MOT field coils and bias field coils for the superradiance experiment. The
superradiant area is surrounded by a magnetic shield. Left: Numerical simulations of the magnetic field in the area of superradiance
performed for the following parameters: I= 40A, six windings per coil, internal radius 8 mm, distance between coils 4 mm, copper wire
thickness 3.175 mm, permeability of the shields 87 000, thickness of the shields 1 mm. The external magnetic field generated by the MOT
coils has been taken into account. Right: Distribution of the magnetic field in the MOT and superradiance area (inside of a two-layer
magnetic shield, shown in the bottom-right). Cross-sections of the Mu-metal shields and copper windings are visible.

Figure 2. Concept of 15 A/100 A current controller.

Figure 3. 100 A part of the current controller.
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Figure 4. Compensation coils controller. © 2022 IEEE. Reprinted, with permission, from [44].

reference with the relative noise below 6.6× 10−7 and relative
temperature drift coefficient below 5× 10−7 ◦C−1. Both or
only one of the coils can be connected by an H-bridge to
allow changing of the current direction in both coils, or only in
one of them, enabling switching between Helmholtz and anti-
Helmhotz configurations. The full PCB schematics together
with fabrication files for the PCB design and manufacturing
are available at [41, 42].

2.2. Compensation coils controller (3× 3A)

In any cold atom experiment, precise control over the mag-
netic field is necessary. It is especially important to have a
3D control to compensate for the Earth’s magnetic field and
any stray magnetic fields in the laboratory. On the other hand,
transferring atoms between different traps, such as between
a MOT and an optical lattice, is usually enhanced by adding
static offset fields, for instance to compensate imbalances of
laser light intensity in retro-reflected beams. Three pairs of
different Helmholtz coils usually ensure all these conditions.
Due to experimental space constraints, usually the pairs are
not identical and require different currents.

The current controller for the compensation coils should
be able to tune the currents’ values and change their direc-
tions independently for each pair. Assuming that the Earth’s
and stray magnetic fields are below 100 µT in each direction,
a fractional clock accuracy of 10−18 requires the same level
of stability of the magnetic field as described in the previous
section.

The presented device can be programmed by Ethernet con-
nection over Telnet protocol. Programming allows presetting
in memory 32 values of the current on each of the com-
pensation coils. Fast addressing and setting the output val-
ues is performed by TTL signals (five addressing bits and
one clock/set bit). An output in the range of −3 A to 3 A is

provided by a 16-bit digital–analogue converter stabilised to
the ultra-stable ADR443BRZ voltage reference. Additionally,
an arbitrary-length linear ramp can be programmed, triggered
by a clock/set TTL.

A conceptual diagram is presented in figure 4. The full PCB
schematics and fabrication files for the PCB design and man-
ufacturing are available at [43]. For each channel, the current
is stabilised to the digital–analogue converter output by sens-
ing the current using high-quality shunt resistors. The coils are
connected through a TTL-controlled H-bridge.

We also provide open-source software (see appendix A)
that allows presetting up to eight values for the current, but
it can be easily adapted to the full capabilities of the control-
ler, including USB and microSD card inputs. The presented
device is a continuation of our previous work reported in [44].

2.3. Autonomous relocking system

The operation of an optical clock depends on the simultan-
eous correct operation of many subsystems, including dozens
of systems for precise stabilisation of the lasers’ frequencies
to external references such as spectrometers, optical cavities,
OFCs and atomic lines. As a result of mechanical, thermal
and electrical disturbances, laser controllers may lose their
optimal working conditions and remain in a state that makes it
impossible to maintain the lock, thus interrupting the clock’s
operation. The remedy for this type of issue is an electronic
autonomous relocking system. Most of the time, their oper-
ation is based on continuous observation of selected signals,
detecting an approaching unstable working condition and cor-
recting the settings of the appropriate device, as necessary.
However, if a loss of lock is detected, an attempt is made to
restore the lock, and the event is added to a log.

In a real system, each laser has individual operating para-
meters, behaviours and relocking algorithms. Therefore, the
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Figure 5. Relock board.

relocking device should be based on a programmable setup.
Both the output and input signals could be analogue or digital
(an example of digital input signals may be data from a
wavelength meter or an OFC); therefore, analog to digital
converters (ADC) and digital to analog converters (DAC) are
required as well as digital communication ports.

We have developed a compact ADC/DAC card compatible
with a Nucleo-H743ZI2 board (figure 5). By default the card
is adapted to work with Toptica external cavity diode laser
(ECDL) drivers, but it may also be used with other devices.
The card requires a +/−15 V power supply delivered from
the controlled device to avoid electrical disturbances. The sig-
nal from the analogue input port is amplified and directly con-
nected to the built-in microcontroller 16-bit ADC converter.
The input signal is used to observe transmission through the
optical cavity and detect the loss of a lock by the signal fall-
ing to zero. When used with an injection-locking system [45],
the transmission signal can be observed through an optical
filter. It can also be used to monitor for single/multi-mode
laser operation when used with a Fabry–Pérot interferometer.
The analogue output signal is generated by the built-in micro-
controller DAC converter, and then, with the use of opera-
tion amplifiers, the range of generated voltages is extended
to −3 V to 3 V instead of the 0 V to 3 V range produced
by the microcontroller. Operating around zero voltage is of
great practical importance and allows the device to be easily
switched from automatic to manual operation. The board is
equipped with manual switches allowing for smooth connec-
tion and disconnection to an already working laser driver. Out-
put analogue signals are usually used for slow compensation
of laser diode current or external cavity piezo voltages with
modulation ports on the laser drivers, which are very sens-
itive to any electrical noise. For this reason, a low-pass fil-
ter is used to cut potential high-frequency noise derived from
the DAC.

The Nucleo-H743ZI2 board is equipped with an Ethernet
communication port, which extends the functionality of the
relock board. The board can act as a remote DAC and ADC
controlled via a local network if the relocking algorithm is
run on a computer in the lab. On the other hand, the relocking
program (written in the C language) can be run on the micro-
controller, making the system autonomous. In this case, Eth-
ernet connectivity is very useful, for example if data from a
wavelength meter is required.

The complete PCB schematics and fabrication files for the
PCB design and manufacturing are available at [46].

2.4. Direct digital synthesizer controller

Many parts of optical clocks require precise control of the
laser frequency. This is especially important in clock transition
spectroscopy, for capturing cold atoms in optical traps, when
operating on the magic wavelength, for frequency transfer and
for conversion from the optical to the RF domain. For all
of these tasks, acousto-optical modulators or electro-optical
modulators driven by RF generators are used. Therefore, pre-
cise frequency generators are essential. For the best per-
formance, the resolution of the frequency control should be
on the order of the µHz level, with the possibility to use
an external precise clock, such as a H-maser, as a refer-
ence. It is often required to switch between different fre-
quencies in a short time (i.e. less than 1 µs) and to have the
ability to change parameters by other programs via a LAN
network. Most of the frequency generators available on the
market do not meet all these requirements, and custom solu-
tions are needed. Commercial direct digital synthesizer eval-
uation boards from Analog Devices (such as the AD9912 or
AD9959) have proven to be a good choice. However, they
need to be controlled via fast serial peripheral interface (SPI)
interfaces.

We have developed a compact module compatible with the
AD9959 and AD9912 evaluation boards based on a micro-
controller, which significantly extends the capabilities of these
boards, makes them easier to use and has the vast majority of
the functionality needed in an optical atomic clock laboratory.
A schematic of the device is presented in figure 6. The module
communicates with the direct digital synthesizer (DDS) board
via the fast SPI. It is equipped with an Ethernet port, allow-
ing easy control of the device from anywhere in the laborat-
ory (see appendix B). Analogue and digital ports can be used,
among others, for reading the voltage from a photodetector,
fast switching of RF signal parameters using TTL signals,
quick switching of other clock modules and for synchronisa-
tion. Different algorithms useful in optical clocks have been
implemented in the microcontroller, such as a digital lock to
the spectral profile, scanning a spectral profile, optical cavity
linear drift cancellation and fast switching between different
RF frequencies triggered by a TTL signal, with the option
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Figure 6. Block diagram of the direct digital synthesizer controller.

of soft switching using a ramp. The module requires a 5 V
power supply and provides all the necessary power for the
DDS board. If a homemade 1 GHz voltage-controlled crystal
oscillator (VCXO) is used as the external reference clock sig-
nal, the device may be used as a voltage-controlled generator
with digitally tunable centre frequency. Such functionality is
often used for fibre noise cancellation [47, 48].

The full PCB schematic of the comparator, together with
the required fabrication files for manufacturing and software
for the microcontroller, are available at [49, 50].

2.5. Phase and frequency comparator with frequency divider

A phase and frequency comparator is an indispensable com-
ponent whenever the laser beam frequency stabilisation step
employs beat-note detection and a phase-locking setup. In
passive optical atomic clocks this includes stabilisation of
lasers to an OFC [51, 52], phase stabilisation between two
lasers by optical offset phase locking [53, 54] and active Dop-
pler shift cancellation in optical fibres [47, 48].

In an active optical clock based on superradiance, a phase
and frequency comparator is necessary to provide the length
stabilisation of the superradiant cavity. To achieve superradi-
ance conditions in a bad-cavity regime, one of the optical cav-
ity modes has to be tuned to the atomic transition frequency.
A superradiant cavity that can sustain superradiance in both
fermionic 87Sr and bosonic 88Sr isotopes of strontium requires
a finesse on the order of 100 000. Assuming a length of 15 cm,
the full width at half maximum of the cavity mode is 5 kHz.
This implies that the frequency of the chosen mode of the cav-
ity has to be tuned and stabilised with a precision of 1 kHz or
better. The cavity mode frequency is determined by the cavity
length, and the length, in turn, can be locked to some external
laser [55] with absolute frequency stability. Tuning can then
be achieved with an acousto-optic modulator (AOM) and sta-
bilisation to an external reference, such as the OFC.

A simple offset lock for the laser frequency to an OFC is
depicted in figure 7. An error signal for laser stabilisation is
generated by comparing the phase difference between a stable
RF generator and an optical beat note between the OFC tooth
and the laser. A phase difference detection is made by a phase
and frequency comparator with a variable dividing the ratio

of the input frequency signal. This frequency divider allows
adjustment of the sensitivity of the system. The generated error
signal is applied through a PID controller to the laser.

A schematic diagram of a comparator is presen-
ted in figure 8. A digital phase frequency detector
(HMC439QS16G), used in our comparator, provides an out-
put voltage proportional to the phase difference between the
inputs when this difference is smaller than ±π. For higher
phase differences, the output voltage saturates at the posit-
ive or negative value, depending on which input frequency
is higher. This particular property provides a high capture
range for the lock system. The values of the frequency
dividers are set over a SPI from a simple microcontroller.
The microcontroller itself is programmed manually by two
arrays of jumpers. The full PCB schematic of the compar-
ator together with the required fabrication files for manu-
facturing and software for the microcontroller are available
at [56].

2.6. Water flow sensor interlock

In both active and passive optical atomic clocks, the high-
current coils require water cooling. This includes MOTs and
offset coils, and the Zeeman slower coils if not based on
permanent magnets. Overheating of these coils can be cata-
strophic to the experiment. An interlock control circuit verify-
ing the returningwater flow provides an instantaneous fail-safe
protection by turning off the power supply.

Figure 9 presents a diagram of the device. The interlock
control’s design is kept simple on purpose, and any faults in
its operation should switch off the power supply to prevent
overheating of the coils. Flow sensor impulses are converted
to voltage, and this voltage is compared by a differential amp-
lifier with a pre-adjusted discriminating level. The output of
the differential amplifier is sent through a flip-flop latch to a
relay that changes the interlock state in a power supply. If the
flow drops below the discriminated level, the latch will cut the
power to the relay, and will not bring it back online before
a human operator checks the system and resets the flip-flop
latch. The complete PCB schematic of the interlock sensor
together with the required fabrication files for manufacturing
are available at [57].
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Figure 7. A simple offset lock to an optical frequency comb with a phase and frequency comparator.

Figure 8. Phase and frequency comparator.

Figure 9. Diagram of a flow sensor interlock.

3. Conclusions

In this paper, we detail an open-source hardware and software
ecosystem designed for optical atomic clocks. These designs
include a wide range of electronic circuits optimised for pre-
cision control of magnetic fields (controllers up to 100 A
and compensation coils), maintaining and distribution of fre-
quencies (relocking system for lasers, DDS controller, phase
and frequency comparator), and for water cooling (water flow
sensor interlock). The presented systems allow us to meet the
challenging conditions required in passive and superradiant
active optical atomic clocks. They are also suitable for many
other ultra-cold atom experiments.
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Appendix A. Software for the compensation coils
driver

The compensation coils driver is programmed by presetting
into its memory the values of the output currents over the
Telnet protocol. During operation, the output currents can be
changed between preset values by input TTL signals. This
method is compatible with DIO cards and RT computers used
in the laboratory environment to control experiments. Addi-
tional parameters stored in the memory together with current
values allow either fast switching between desired levels or a
linear ramp of arbitrary time.

A.1. Pre-programming memory

The format of commands used in Telnet programming is

< parameter address>: < value1>; < value2>;
< value3>; < time>

where ‘parameter address’ sets the logical address in the
memory , ‘valueX’ are the preset current values for the respect-
ive coils, and ‘time’ is the length of a linear ramp in milli-
seconds; a value of 1 means the fastest possible switching.

Multiple parameters may be set with a single command by
separating them with an ‘&’ sign:

< parameter address>: < value1>; < value2>;
< value3>; < time>; &< address>: < value1>;
< value2>; < value3>; < time>; & . . .

Two additional commandsmay used to get help and to close
the connection:

help
exit

The most common parameters and addresses are presented
below:

DAC: 000 set values for memory 1

DAC: 001 set values for memory 2
DAC: 010 set values for memory 3
000 address of memory 1
001 address of memory 2
010 address of memory 3

© 2022 IEEE. Reprinted, with permission, from [44].

After making a connection, if the connection is success-
ful a help message will be sent by the driver. This message
guides the operator how to communicate with the driver. For
example, the command to pre-program the first two memory
values is

DAC: 000: −1.25 684; 0.5; 0.0; 1; & 001:
0.52; −2.1; −1.0; 50;

Switching to the first memory (000) levels takes 1ms, while
switching to the second memory levels (001) is made using a
50 ms long linear ramp.

A.2. Switching between pre-programmed levels

In the current version of the software, switching between
pre-programmed values is made by four TTL signals, but
it can be easily expanded to use all six available TTL
inputs. Three TTL signals address the required memory,
and one TTL is a set/clock signal that triggers switch-
ing outputs to the new memory levels. TTL 1 is the
least significant bit, and TTL 3 is the most significant
bit [44].

For instance, the following pattern switches the controller
output to the pre-programmed value stored inmemory location
2 (001).

TTL 1 TTL 2 TTL 3 TTL 4

1 0 0 ⊓
© 2022 IEEE. Reprinted, with permission, from [44].

Appendix B. Software for dds

The device is controlled by setting the appropriate paramet-
ers using the Telnet protocol. The format for writing the
parameters is

< parameter name> < value>.

Multiple parameters may be set in one command by separ-
ating them with a ‘;’ sign:

< parameter name> < value>;< parameter name>
< value>; . . ..

The command bellow is used to read the value of a
parameter:

< parameter name>?

8
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The most common commands are presented below:

DDS:CH0:FREQ
set frequency of the ch0 dds output (value
in MHz)

DDS:CH0:AMP set amplitude of the ch0 dds output (value
from 0 to 1)

DDS:CH0:PH set phase of the ch0 dds output (value in
deg)

SCAN:ON turn on/off (value 1/0) the frequency scan
SCAN:RANGE scan range in MHz
SCAN:STEP scan step in MHz
SCAN:CH the number of the dds output channel on

which the scan is performed
SCAN:GNDCMP turn on/off (value 1/0) removing

background form spectroscopy (additional
setup driven by TTL for turnning on and off
the signal required)

SCAN:VOLT the value of the measured signal (value in
bits of ADC)

SCAN:DT dead time between setting the frequency
and measurement

DLOCK:ON turn on/off (value 1/0) digital lock
DLOCK:JUMP amplitude of frequency detuning for digital

lock
ADC:CH0:AVR number of ADC measurements executed for

voltage measurement (the value is an
average of ADC measurements)

For each of the parameters, apart from the value, one can
set the maximum and minimum value and enable saving of
the parameter values to the microcontroller memory with the
following commands:

< parameter name > :MAX: maximum allowable value
of the parameter.

< parameter name > :MIN: minimum allowable value of
the parameter.

< parameter name > :TABON: turn on/off (value 1/0)
saving data to memory.

< parameter name > :MES:SIZE: size of the table in
memory.
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[57] Ledziński A 2022 Water flow interlock RepOD (https://doi.
org/10.18150/ZDZQD3)

10

https://doi.org/10.1038/s41586-020-3009-y
https://doi.org/10.1038/s41586-020-3009-y
https://doi.org/10.1103/PhysRevLett.102.163601
https://doi.org/10.1103/PhysRevLett.102.163601
https://doi.org/10.1103/PhysRevApplied.12.044014
https://doi.org/10.1103/PhysRevApplied.12.044014
https://doi.org/10.1103/PhysRevA.87.013821
https://doi.org/10.1103/PhysRevA.87.013821
https://doi.org/10.1126/sciadv.1601231
https://doi.org/10.1126/sciadv.1601231
https://doi.org/10.1103/RevModPhys.70.721
https://doi.org/10.1103/RevModPhys.70.721
https://doi.org/10.1103/RevModPhys.70.707
https://doi.org/10.1103/RevModPhys.70.707
https://doi.org/10.1103/RevModPhys.70.685
https://doi.org/10.1103/RevModPhys.70.685
https://doi.org/10.1103/PhysRevLett.82.1116
https://doi.org/10.1103/PhysRevLett.82.1116
https://doi.org/10.1103/PhysRevLett.93.073003
https://doi.org/10.1103/PhysRevLett.93.073003
https://doi.org/10.1103/PhysRevLett.101.193601
https://doi.org/10.1103/PhysRevLett.101.193601
https://doi.org/10.1103/PhysRevA.76.022510
https://doi.org/10.1103/PhysRevA.76.022510
https://doi.org/10.1088/1681-7575/ab4089
https://doi.org/10.1088/1681-7575/ab4089
https://doi.org/10.1038/s41566-020-0619-8
https://doi.org/10.1038/s41566-020-0619-8
https://doi.org/10.1103/PhysRevA.98.053443
https://doi.org/10.1103/PhysRevA.98.053443
https://doi.org/10.1103/PhysRevLett.101.193601
https://doi.org/10.1103/PhysRevLett.101.193601
https://doi.org/10.1103/PhysRevA.95.023839
https://doi.org/10.1103/PhysRevA.95.023839
https://doi.org/10.18150/CAEGTJ
https://doi.org/10.18150/CAEGTJ
https://doi.org/10.18150/0MJ6GO
https://doi.org/10.18150/0MJ6GO
https://doi.org/10.18150/YHSPTP
https://doi.org/10.18150/YHSPTP
https://doi.org/10.1063/1.1754502
https://doi.org/10.1063/1.1754502
https://doi.org/10.18150/G2FT3P
https://doi.org/10.18150/G2FT3P
https://doi.org/10.1364/OL.19.001777
https://doi.org/10.1364/OL.19.001777
https://doi.org/10.18150/YCLR91
https://doi.org/10.18150/GCW9EQ
https://doi.org/10.1364/OE.10.000515
https://doi.org/10.1364/OE.10.000515
https://doi.org/10.1038/nphoton.2008.79
https://doi.org/10.1038/nphoton.2008.79
https://doi.org/10.1143/JJAP.38.6102
https://doi.org/10.1143/JJAP.38.6102
https://doi.org/10.1364/OE.21.029744
https://doi.org/10.1364/OE.21.029744
https://doi.org/10.1007/BF00702605
https://doi.org/10.1007/BF00702605
https://doi.org/10.18150/SZEQYO
https://doi.org/10.18150/ZDZQD3
https://doi.org/10.18150/ZDZQD3

	Open-source electronics ecosystem for optical atomic clocks
	1. Introduction
	2. Components
	2.1. Magneto-optical traps and offset field controller 15A/100A
	2.2. Compensation coils controller (33A)
	2.3. Autonomous relocking system
	2.4. Direct digital synthesizer controller
	2.5. Phase and frequency comparator with frequency divider
	2.6. Water flow sensor interlock

	3. Conclusions
	Appendix A. Software for the compensation coils driver
	A.1.  Pre-programming memory
	A.2.  Switching between pre-programmed levels

	Appendix B. Software for dds
	References


