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Abstract

Consider any positive integer n. If n is even, halve it. If n is odd, multiply it by 3 and add 1. This
algorithm is then repeated indefinitely. It has been conjectured by Collatz that this process, which
is also known as Hasse’s algorithm, eventually reaches 1. A new perspective on this problem is
offered by considering Hasse’s algorithm in binary representation. Some important consequences
are used to establish that no proof of the Collatz conjecture exists.
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1 Introduction

Take any positive integer n and perform the following arithmetic operations. If n is even, halve it to
get 7. If n is odd, multiply it by 3 and add 1. It has been conjectured (see [1, Guy]) by Collatz and
others that if this procedure (which is also known as Hasse’s algorithm) is repeated indefinitely, then
the number 1 will eventually be reached. An informative background on this topic has been provided
by [2, Lagarias]. We begin by considering this algorithm in its binary representation which we then
use to obtain a proof that the Collatz conjecture cannot be proved to be true.

2 Formulation of Hasse’s Algorithm

Definition 2.1. Without loss of generality, we assume that n is an odd integer. Suppose that ng = n.
Define the k*" step, where 1 < k < N for some positive integer N, to be given by

_ 3nga+1
- 2k ’
where ny, is an integer and 27! t (3n;_; + 1) for some positive integer j, provided that ny_ # 1.

If np, = 1 is reached then we make this particular value of k£ equal to N, so that the final step is given
by

g (2.1)

nN = 1. (22)

*Corresponding author: E-mail: rn73@kent.ac.uk


www.sciencedomain.org

British Journal of Mathematics and Computer Science 4(21), 3023-3027, 2014

By considering n in binary, we convert this procedure into an algorithm in binary. Note that any
explicit value of nj, where 0 < j < N, will be taken in its binary representation.

Example 2.1. Suppose we apply Hasse’s algorithm to n = 21 = 2* + 22 + 2°. Now we rewrite n in
binary, so that n = 10101. We also perform all subsequent calculations for this particular example in
binary. Then by considering 2n = 101010, it follows that 3n+1 = 010101+ 101010+1 = 11111141 =
1000000. The operation of removing an even binary number’s final digit which is necessarily zero is
equivalent to halving the given even binary number. The last six binary digits of 3n + 1 are all zeros.
It follows immediately that if 3n + 1 is divided by 2°, the resulting number is 1. Therefore n, = 1.

Example 2.2. Suppose we apply Hasse’s algorithm ton = 5 = 2% + 2°. Now we rewrite n. in binary,
so thatn = 101. As before, all subsequent calculations for this particular example in binary. Then by
considering 2n = 1010, it follows that 3n + 1 = 0101 4+ 1010 + 1 = 1111 + 1 = 10000. The operation
of removing an even binary number’s final digit which is necessarily zero is equivalent to halving the
given even binary number. The last four binary digits of 3n + 1 are all zeros. It follows immediately
that if 3n + 1 is divided by 2*, the resulting number is 1. Therefore n, = 1.

3 Deductions from Binary Arithmetic

In this section, we show how binary arithmetic can be used to determine some important results
involving Hasse’s algorithm. We make use of the following definitions.

Definition 3.1. Define the number of digits of any given binary number to be equivalent to the total
number of digits of that binary number such that its first digit (counting from left to right) is a nonzero
digit.

Definition 3.2. Define a string to be any collection of one or more consecutive adjacent binary digits
which form either part or the whole of a given binary number. For example, 10 is a string inside 1011.

Definition 3.3. Define 11...1 to represent a string in which every digit is nonzero, so that there is
at least one such digit. Define 011...1 to represent a string in which every digit except the first is
nonzero, so that there is at least one nonzero digit.

Definition 3.4. Define the end digits of any binary number with a digits to be its last b digits, such that
a > b and that the ¢'* end digit (where 1 < ¢ < b) is the (b— t)*" digit from the final digit of the original
binary number. We say that the original binary number with a digits ends with its last b digits, where
the t*" end digit appears before (i.e. to the left of) the ¢ — 1** end digit. For instance, in Example 1.1,
we say that n ends with 101, or alternatively, that its last three digits are given by 101.

Definition 3.5. Define an endstring to represent a string which is part of a binary number, such that
all digits in this string appear at the end of the afore-mentioned binary number. For example, we may
select 0111 and 111 as possible endstrings of n = 100111.

The following lemmas provide us with some fundamental insights which are used to initiate our
approach.

Lemma 3.1. Suppose thatn # 1, and that we reachny = 1. Thennn_1 is given by 10. .. 1, in which
each digit differs in value from any other digit adjacent to it.

Proof. Since ny = 1, itis evident that 3n(x_1) = 11...1. The desired result follows easily. O
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Lemma 3.2. Every odd positive integer n can be expressed as a binary number with an endstring
given by 011 ... 1, which contains r nonzero digits such thatr > 1. Then, ifr > 1 we have

Nr—x = (3n7‘7(l'€+1) + 1)/27 (31)
where the positive integer k. satisfies 1 < k <r — 1, and ifr > 1 we have

ne < (3ne_1 +1)/4, (3.2)

so that a division by a number greater than or equal to 4 is not made until the r*"

step is performed.
Proof. Without loss of generality, it may be assumed that the last two binary digits of the odd integer
n are given by either 01 or 11. If the latter instance applies, then the last three binary digits of n
are given by either 011 or 111. This provides us with three different cases, for which we apply the
formulation of Hasse’s algorithm given in Definition 2.1.

(i) Suppose that n ends with 01. Then 2n contains exactly the same digits as n as well as an extra zero
digit at the end. It follows that the last two binary digits of 2n are given by 10. Then, by considering
that 3n = n + 2n, the last two digits of 3n are given by 11, and so the last two digits of 3n + 1 are
given by 00. This means that if n ends with 01, then n; < (3n +1)/4.

(i) Suppose that the last three binary digits of n are given by 011. Then, because 2n contains exactly
the same digits as n as well as an extra zero digit at the end, the last four binary digits of 2n are
given by 0110. Then, by considering that 3n = n + 2n, the last three digits of 3n are given by 001,
and so the last three digits of 3n + 1 are given by 010. This means that if n ends with 011, then the
binary representation of n; ends with 01. Therefore, by considering the preceding case, it follows
immediately that n < (3n; +1)/4.

(iii) Suppose that the last three binary digits of n are given by 111. Then, because 2n contains exactly
the same digits as n as well as an extra zero digit at the end, the last four binary digits of 2n are
given by 1110. Then, by considering that 3n = n + 2n, the last three digits of 3n are given by 101,
and so the last three digits of 3n + 1 are given by 110. This means that if n ends with 111, then
the binary representation of n; ends with 11. Therefore, it follows immediately that n, = (3n + 1)/2.
Because the last three binary digits of n are given by 111, it can be assumed without loss of generality
that » ends with » + 1 digits given by 011...1 (i.e. a zero digit followed by exactly r digits, each of
which are nonzero), such that » > 3. Note that if n = 11...1 then we may write n = 011...1. By
considering that 3n = n + 2n, the binary representation of 3n contains a zero digit which is derived
by adding the afore-mentioned zero digit in n to the corresponding nonzero digit from 2n and the
nonzero carry digit from adding the afore-mentioned r — 1 pairs of nonzero digits. This zero digit in
the binary representation of 3n is the first of » + 1 end digits (of 3n) which are given by 011...101,
and so the binary representation of 3n + 1 ends with 110. It follows that the binary representation of
n1 ends with r digits which are given by 011...1. Consider the K step, suchthat 1 < x <r—1. It
follows by an easy inductive argument that the binary representation of n,, ends with r — (x — 1) digits
which are given by 011...1. At the (r — 2)*" step, we have reduced this case to that of ii). Therefore,
we eventually reach the (r — 1)t" step for which the binary representation of n,_; ends with 01, and
so (3.1) holds. It follows that we have reduced this case to that of i), so that n, < (3n,—1 +1)/4.

The statement of the lemma now follows easily. O

It was conjectured by Catalan and proved in [3, Mihailescu (2004)] that 8 and 9 are the only two
positive perfect powers which are also consecutive integers. We make use of this famous result in
the following theorem.

Theorem 3.3. Let the odd binary numbern = 11...1 contain d digits, such thatd > 2. Thenn; # 1,
where i is any integer such that 0 < i < d. Moreover, if N exists then we have N > d.
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Proof. Since n is odd, it is evident from Definition 1.1 that n; -+ 1 as d — co. By applying Lemma 3.2,
we have ng_. = (3n4—(wt1) + 1)/2 > ng_(x+1), Where the positive integer « satisfies 1 < x < d — 1.
It follows that nq—1 is given by an integer which ends with 01, such that nq—,. cannot exceed nq_1 for
any permissible .

When performing Hasse’s algorithm on n, as executed in Definition 1.1, we find that n1 =
1011...1, in which the endstring 11 . .. 1 consists of d—1 digits which are each nonzero. By continuing
with this algorithm, we find that n, = 100011...1, in which the endstring 11...1 consists of d — 2
nonzero digits.

Now if we remove the largest possible endstring 11...1 (which, by considering Lemma 3.2,
consists of d — (d — k) = s nonzero end digits) from the binary number n,_., we assert that the
remaining digits constitute the binary representation of a decimal number which is given by 3=~ — 1.
We prove this last statement by easy induction as follows. If x = d — 1, then removing the endstring
11...1 from n,; leaves behind 10 which is the binary representation of 2 = 3¢~ (=1 _ 1, Therefore
the assertion holds for the case when x = d — 1. Let us assume as our inductive hypothesis that
if we remove the endstring 11...1 consisting solely of d — (d — k) = x nonzero digits (for which
k > 1), from the binary number n,_., then the remaining digits constitute the binary representation
of a number which is equal to 3=~ — 1. When performing the next step of the algorithm in Definition
1.1, so that ng_(.—1) = 3na—~ + 1, we are multiplying the previous step’s afore-mentioned remaining
digits (which, by themselves alone, constitute 3¢=" — 1) by 3 and adding 1 (since 2n4_,. is obtained
by shifting the digits of the largest possible endstring 11...1 of nq_x) plus a carry digit obtained by
adding the pair of strings given by 11...1 consisting of d — (d — k) — 1 = k — 1 nonzero digits. It
follows that after removing the endstring 11...1 consisting of d — (d — (x — 1)) = k — 1 nonzero
digits from ng4_(,.—1), the remaining digits in this step constitute the binary representation of a decimal
number given by 3(3%" — 1) 4141 = 39~ (*~1 _1. This completes the proof of the earlier assertion
concerning the remaining digits by induction.

Suppose that ¢ is any integer satisfying 0 < « < d — 1. We recall that n, ends with 11, and that
both no and nq—,. cannot exceed nq—1, for any integer « satisfying 1 < x < d— 1. Thenno > 1 and
n, > 1, and so we must have N > d — 1. Suppose that ng = 1. It follows from Lemma 3.1 that n,_1
must be given by 1010...101. We have already established that if we remove the largest possible
endstring (which consists of d — (d — 1) = 1 nonzero end digit) from the binary number n4_1, then the
remaining digits constitute the binary representation of a decimal number which is given by 347! — 1.
It follows that 3¢~ — 1 must have a binary representation given by 1010...10, i.e.

m—1
3= 2 (3.3)
k=0

for some positive integer m. By considering Lemma 3.1 or otherwise, it is easy to see that

m—1 m—1
% Z 92k+1 _ Z (22k+1 + 22k) —92m _ 1 (3.4)
k=0 k=0

It follows from (3.3) and (3.4) that
2

3 1= 5(22’” —1), (3.5)
ie.

34 gl — (3.6)
where m and d are positive integers, and d > 2. It is well-known that this diophantine equation has
no solution, because it is a special case of Catalan’s conjecture, which was proved in [3, Mihailescu
(2004)]. We therefore have a contradiction, and so our assumption that n4 = 1 must be false. The
statement of the theorem now follows immediately. O
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Corollary 3.4. Suppose that n = 11...1 contains an unbounded number of binary digits. Then
n; # 1 for any nonnegative integer i.

Proof. We apply the preceding theorem in the case as d — co. The desired result follows. O

4 Conclusion

Suppose that u is any positive integer. We remark that we have not discounted the possibility that the
Collatz conjecture is true for any finite positive integer n. By taking the specific case where n = 2% —1
and by considering the previous statement about not having found any finite counterexample for the
Collatz conjecture, we conclude from Corollary 3.4 that it is impossible to prove that the number 1
can be reached if Hasse’s algorithm is applied to n. In other words, the Collatz conjecture cannot
be proved to be true. We have demonstrated how a direct elementary algorithmic approach involving
binary numbers with concrete inductive arguments can be used to explain exactly why this major
unsolved conjecture has resisted attempts at its proof for several decades.
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