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Abstract
The dynamic behaviours of simply supported non-uniform Rayleigh beam under variable-magnitude
accelerating masses and resting on non-uniform bi-parametric foundation is investigated in this paper. A
partial differential equation of fourth order governs the situation. The governing equation is converted into
a series of coupled second order ordinary differential equations with variable coefficients using the Galerkin
approach, which is based on the series representation of the Heaviside function.Two instances are examined;(i)
the moving force problem when the inertia term is neglected and (ii) the moving mass case when the inertia
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term is considered. Variation of parameters are employed to get the transverse displacement response in
order to solve the moving force problem,the moving mass problem cannot be solved using the widely used
Struble’s asymptotic method due to the variability of the load magnitude. Therefore, a numerical technique,
specifically the Runge-Kutta of fourth order is used to obtain an approximate solution. The numerical
solution of the moving force problem is compared with the analytical solution in order to verify the accuracy of
the Runge-Kutta scheme, and it compares favorably. From the analytical and numerical result, it is observed
that the amplitude of the deflection profile of simply supported non-uniform Rayleigh beam decreases with
an increase in the value of some vital structural parameters such as rotatory inertia correction factor, axial
force, shear modulus and foundation modulus.

Keywords: Galerkin’s method; non-uniform beam; bi-parametric foundation; accelerating Masses; variation of
parameter.

1 Introduction

In structural engineering and mechanical systems, the study of beam dynamics is essential, especially when
dealing with complex loading and foundation conditions. Because it takes into account the effects of both rotating
inertia and shear deformation, the Rayleigh beam theory has become one of the most popular beam models and
a flexible framework for understanding beam behavior. The investigation of dynamic responses exhibited by
structural members resting upon elastic foundations when subjected to moving loads holds significant interest
and importance. Certain outcomes from this study can be applied to enhance our understanding of the dynamic
characteristics of roadways, aircraft, bridges, aircraft and machinery where vibration and deflection play a critical
roles. Noteworthy contributions to this field can be found in the works of Oni and Awodola (2010), Omolofe
and Adara (2020), Visweswara Rao (2000), Sadiku and LEIPHOLZ (1987), Oni and Omolofe (2010) and Oni
and Ogunyebi (2008). Remarkable advancements in the study of structures under moving loads have been made
by researchers such as Oni and Ogunbamike (2014) and Boreyri et al. (2014).

However, all the researchers mentioned considered only one parameter foundation model called winkler foundation
often used in pavement modelling. Since the characteristic features of the popular Winkler foundation model is
the discontinous behaviour of the surface displacement beyond the load layer, a more realistic elastic foundation
model known as the bi-parametric foundation model is considered in this paper. This foundation model
provides a comprehensive understanding of soil structures interaction, making it an essential tool for engineers
and researchers working on a complex projects, such as offshores structures, high-rise buildings
and geotechnical engineering . The dynamic behaviour of beams on foundations, exposed to moving loads of
varying magnitudes, presents a plethora of complexities that have been extensively explored by researchers in
engineering, applied mathematics, mathematical physics, particularly in the domains of railway engineering
and construction engineering. The rapid expansion of high-speed railway networks has further propelled
research efforts aimed at accurately predicting the vibration tendencies of railway tracks. Pioneering work in
the field of problems involving variable speeds was undertaken by Lowan (1935) ,who addressed the transverse
oscillations of beams subjected to moving variable loads. Afterwards, Gbadeyan and Aiyesimi (1990) examined
the dynamic response of finite beams with continuously applied visco-elastic foundations when loads are moving
in different directions. Notably, idealized models of concentrated loads that act at particular points along a
single line in space were adopted in these investigations, which frequently only took into account the force
impacts of moving loads (Visweswara Rao, 2000). However, it is recognized that loads are distributed over
small segments or the entire length of the structural member as they traverse it up to the present moment,
scanty attention has been directed towards scenarios involving beams on non-uniform bi-parametric foundations
exposed to moving loads with variable magnitudes. This can be attributed to the intricacies associated with the
model’s complexity and the challenges posed in estimating parameter values, particularly when dealing with a
non-uniform bi-parametric foundation. Therefore, this paper is devoted to exploring the dynamic behavior of
non-uniform simply supported Rayleigh beams when subjected to variable-magnitude accelerating masses, while
being supported by non-uniform bi-parametric foundations. Through this investigation, we aim to shed light on
the dynamics underlying such scenarios.
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2 Mathematical Model

Consideration is given to the flexural vibrations of a non-uniform simply supported Rayleigh beam sitting on
a bi-parametric foundation and subjected to a variable-magnitute accelerating load. The fourth order partial
differential equation Fryba is the corresponding governing equation.

∂2

∂x2

[
EI(x)

∂2Y (x, t)

∂x2

]
−N ∂2Y (x, t)

∂x2
+ µ(x)

∂2Y (x, t)

∂t2
− µ(x)R0

∂4Y (x, t)

∂x2∂t2
+GK(x, t) = P (x, t) (1)

The structure’s changeable flexural stiffness is denoted by EI(x), the time coordinate is denoted by t, the
geographical coordinate by x, the transfer displacement is Y (x, t), the variable mass per unit length of the non-
uniform beam is µ(x). R0 is the rotatory inertial factor, N is the constant axial force, the variable foundation
reaction is Gk(x, t), and the translating load is P (x, t).

The foundation response and the lateral deflection Y (x, t) have the following relationship:

GK(x, t) = S(x)Y (x, t)− ∂

∂x

[
k(x)

∂Y (x, t))

∂x

]
(2)

where the two variable parameters of the elastic foundation are S(x) and K(x), which stand for variable shear
modulus and variable foundation stiffness, respectively.

When taking into account how the moving load affects the beam’s reaction, the following is the shape of the
load P (x, t).

P (x, t) = Pf (x, t)

[
1− d2

dt2

[
Y (x, t)

g

]]
(3)

where the moving force Pf (x, t) operating continuously on the beam model is expressed as

Pf (x, t) = Mg cosωtH(x− f(t)) (4)

that is
0 ≤ f(t) ≤ L (5)

The Heaviside function, H(x− f(t)), is defined as

H(x− f(t)) =

{
0, x < f(t);
1, x ≥ f(t).

(6)

The convective acceleration defined by [1] is d2

dt2
, and g is the acceleration caused by gravity.

d2

dt2
=

∂2

∂t2
+ 2

d

dt
f(t)

∂2

∂x∂t
+

(
df(t)

dt

)
∂2

∂x2
+

d2

dt2
f(t)

∂

∂x
(7)

The distance traveled by the load at any given time is denoted by f(t).

f(t) = xo + ct+
1

2
at2 (8)

where c is the initial velocity, a is the constant acceleration of motion, and x0 is the location of application of
force P (x, t) at the instance t = 0.

As an illustration, S(x) and K(x) in the problem Timoshenko (1921) have the form

S(x) = S0(4x− 3x2 + x3) and K(x) = K0(12− 13x+ 6x2 + x3) (9)
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S0 is the foundation constant and K0 is a constant shear Modulus.

Additionally, I(x) and µ(x) are assumed to be of the form Biot (1937).

I(x) = I0(1 + sin
πx

L
)3 and µ(x) = µo(1 + sin

πx

L
) (10)

using the equations (2)-(10) in (1), After simplications one obtains
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L
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Y (x, t)+

M cosωtH

[
x−

(
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1

2
at2
)][

∂2

∂t2
+ 2(c+ at)

∂2

∂x∂t
+ (c+ at)2 ∂

2

∂x2
+ a

∂

∂x

]
Y (x, t)

= Mg cosωtH

[
x−

(
xo + ct+

1

2
at2
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(11)

In this analysis, it is assumed that the non-uniform Rayleigh beam is simply supported. Hence, the following
are the boundary conditions:

Y (0, t) = Y (L, t) = 0;
∂2Y (0, t)

∂x2
=
∂2Y (L, t)

∂x2
(12)

In order to maintain generality, we assumed that the beam start from rest, with no initial deflection or velocity.
the initial conditions is taken to be

Y (x, 0) = 0 =
∂Y (x, 0)

∂t
(13)

Equation (11) represents a fourth order partial differential equation including variable coefficients for a non-
uniform Rayleigh beam sitting on a non-uniform bi-parametric foundation and subjected to variable-magnitude
accelerating masses. Along the length L of the beam, the beam’s properties, such as its moment of inertia and
mass per unit length, are thought to vary.

3 Approximate Solution

The Generalized Galerkin Method (GGM), defined in Timoshenko (1921), is one of the approximation techniques
most appropriate for addressing various issues in the dynamics of structures. According to this approach, the
solution to equation (11) take the form:

Yn(x, t) =

∞∑
m=1

Wm(t)Um(x) (14)
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where Um(x) is selected so as to satisfy the relevant elastic boundary condition. Substituting (14) into (11) and
after some simplifications and arrangements, one obtains

N∑
i=1

[(
(Um(x) + sin
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L
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L
U
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2
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3
U
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2
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1
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(15)

where the first derivatives of Um(x) and Wm(t) with respect to x and t, respectively, are U ′m(x) and Ẇm(t). The
expression on the right hand side of equation (15) must be orthogonal to function Uk(x) in order to determine
Wm(t). Therefore, following arrangement and simplification, one gets

N∑
m=0

{
D0(m, k)Ẅm(t) +D1(m, k)Wm(t) +

M cosωt

µ0

(
V25(m, k)Ẅm(t) + 2(c+ at)V26(m, k)Ẇm(t)

+ (c+ at)V27(m, k)Wm(t) + aV28(m, k)Wm(t)

)}
=
Mg cosωt

µ0
V29(t)

(16)

where

D0(m.k) = (V0(m, k) + V1(m, k))−R0(V2(m, k) + V3(m, k))

D1(m, k) =

(
QA

(
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30π

L
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π
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)
−QD

(
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+ 12V21(m, k)− 13V22(m, k)− 6V23(m, k)− V24(m, k)
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QA =

4I̧0

µ0

, QB =
N0

µ0

, QC =
S0

µ0

and QD =
K0

µ0

V0(m, k) =

∫ L
0
Um(x)Uk(x)dx

V1(m, k) =

∫ L
0

sin
πx

L
Um(x)Uk(x)dx

V2(m, k) =

∫ L
0
U

′′
m(x)Uk(x)dx

V3(m, k) =
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0
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U
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U
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cos
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sin
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U
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m (x)Uk(x)dx
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V8(m, k) =

∫ L
0

cos
πx

L
U

′′′
m (x)Uk(x)dx
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sin 2
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L
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∫ L
0

cos 2
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L
U

′′
m(x)Uk(x)dx
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∫ L
0
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L
U

′′
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∫ L
0
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∫ L
0
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0
x
2
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x
3
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U

′
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V19(m, k) =
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0
xU
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x
2
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0
x
3
U
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[
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(
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1
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H
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(
xo + ct +

1

2
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2
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U

′
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H

[
x−

(
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1

2
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U
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V29(m, k) =

∫ L
0
H

[
x−

(
xo + ct +

1

2
at

2
)]
Uk(x)dx (17)

With basic supports at edges x = 0 and x = L in our elastic system, we select

Um(x) =
sinmπx

L
and Uk(x) =

sin kπx

L
(18)

Equation (17) is solved by substituting expressions for Um(x) and Uk(x), and by using the Heaviside unit step
function’s Fourier series representation, specifically;

H =
1

4
+

1

π

∞∑
0

sin(2n+ 1)π(x− (x0 + ct+ 1
2
at2))

(2n+ 1)
, 0 < x < L (19)
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Several reductions in complexity and reorganizations gives

D0(m, k)Ẅm(t) +D1(m, k)Wm(t) + Γ0 cosωt

{
L

(
1

4
Q1 +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q1A

− 1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q1B

)
Ẅm(t) + 2L(c+ at)

(
1

4
Q2

+
1

π

∞∑
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2
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Q2A −

1

π

∞∑
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2
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+
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1

4
Q3 +

1
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∞∑
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2
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∞∑
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2
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)
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1

4
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+
1

π

∞∑
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2
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(2n+ 1)
Q2A −

1

π

∞∑
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2
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}
=
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kπµ0

(
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L
(x0 + ct+

1

2
at2)

)

(20)

where

Q1 =

∫ L

0

sin
mπx

L
sin

kπx

L
dx

Q1A =

∫ L

0

sin(2n+ 1)πx sin
mπx

L
sin

kπx

L
dx

Q1B =

∫ L

0

cos(2n+ 1)πx sin
mπx

L
sin

kπx

L
dx

Q2 =
mπ

L

∫ L

0

cos
mπx

L
sin

kπx

L
dx

Q2A =
mπ

L

∫ L

0

sin(2n+ 1)πx cos
mπx

L
sin

kπx

L
dx

Q2B =
mπ

L

∫ L

0

cos(2n+ 1)πx cos
mπx

L
sin

kπx

L
dx

Q3 = −(
mπ

L
)2

∫ L

0

sin
mπx

L
sin

kπx

L
dx

Q3A = −(
mπ

L
)2

∫ L

0

sin(2n+ 1)πx sin
mπx

L
sin

kπx

L
dx

Q3B = −(
mπ

L
)2

∫ L

0

cos(2n+ 1)πx sin
mπx

L
sin

kπx

L
dx

Γ0 =
M

µ0L
(21)

Γ0 is the mass ratio

Equation (20) is the basic transformed equation of the non-uniform Rayleigh beam with simple support that is
subjected to an accelerating force of varying size and rests on a bi-parametric foundation. We will address two
instances of the equation in the sections that follow.
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CASE I: Non-uniform Rayleigh beam Traversed by Moving Force

The classic situation of a moving force problem arises if we neglect the inertia factor. With a few simplifications
and reorganizations, equation (20), under this supposition Γ0 = 0, becomes

Ẅm(t) + γ2
fWm(t) = Pm cosωt

{
− (−1)k + cos

kπ

L
(x0 + ct+

1

2
at2)

}
(22)

where.

Pm =
LMg

kπµ0D0(m, k)
and γ2

f =
D0(m, k)

D1(m, k)
(23)

The approach of variation of parameters is used to solve equation (22). Firstly, it can be easily demonstrated
that the homogeneous component of (22) has a generic solution that is provided by

Wc(t) = C1 cos γf t+ C2 sin γf t (24)

where C1 and C2 are constants. Thus a particular solution to equation (22) takes the form

Wp(t) = τ1(t) cos γf t+ τ2(t) sin γf t (25)

The functions that need to be determined are τ1(t) and τ2(t). It is easy to demonstrate from equation (22) that

τ1(t) = −−Pm
γf

{∫
cosωt

(
− (−1)k + cos

kπ

L
(x0 + ct+

1

2
at2)

)
sin γf t

}
dt (26)

τ2(t) = −−Pm
γf

{∫
cosωt

(
− (−1)k + cos

kπ

L
(x0 + ct+

1

2
at2)

)
cos γf t

}
dt (27)

By truncating the power series of sine and cosine at order 2, equations (26) and (27) becomes.

τ1(t) = − Pm
2γf

∫ {
θf (sin Θ1t+ sin Θ2t) + (sin Θ1t+ sin Θ2t)(β0 + β1t+ β2t

2 + β3 + β4t
4)

}
dt (28)

and,

τ2(t) = − Pm
2γf

∫ {
θf (cos Θ1t+ cos Θ2t) + (cos Θ1t+ cos Θ2t)(β0 + β1t+ β2t

2 + β3 + β4t
4)

}
dt (29)

where

Uf = (
Kπ

L
)2, β0 = Ufxo

2, β1 = 2cUfxo
2, β2 = Uf (axo2 + c2), β3 = acUf β4 =

1

4
a2Uf

θf = −(−1)k, Θ1 = γf + ω, Θ2 = γf − ω (30)

After simplification and arrangement, one obtains

τ1(t) = − Pn
2θf

{
θf (J0 +U0) + (β0J0 + β1J1 + β2J2 + β3J3 + β4J4 + β0U0 + β1U1 + β2U2 + β3U3 + β4U4)

}
(31)

τ2(t) = − Pn
2θf

{
θf (V0 + ξ0) + (β0V0 + β1V1 + β2V2 + β3V3 + β4V4 + β0ξ0 + β1ξ1 + β2ξ2 + β3ξ3 + β4ξ4)

}
(32)

where 2

J0 =

∫
sin Θ1tdt

J1 =

∫
t sin Θ1tdt

J2 =

∫
t2 sin Θ1tdt
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J3 =

∫
t3 sin Θ1tdt

J4 =

∫
t4 sin Θ1tdt

U0 =

∫
sin Θ2tdt

U1 =

∫
t sin Θ2tdt

U2 =

∫
t2 sin Θ2tdt

U3 =

∫
t3 sin Θ2tdt

U4 =

∫
t4 sin Θ2tdt

V0 =

∫
cos Θ1tdt

V1 =

∫
t cos Θ1tdt

V2 =

∫
t2 cos Θ1tdt

V3 =

∫
t3 cos Θ1tdt

V4 =

∫
t4 cos Θ1tdt

ξ0 =

∫
cos Θ2tdt

ξ1 =

∫
t cos Θ2tdt

ξ2 =

∫
t2 cos Θ2tdt

ξ3 =

∫
t3 cos Θ2tdt

ξ4 =

∫
t4 cos Θ2tdt (33)

solving the indefinate integrals in equation (33) and substitute into equations (31) and (32), one obtains

τ1(t) =
−Pm
2γf

{
−
(
θf + β0 + β1t+ β2t

2 + β3t
3 + β4t

4

)(
cos Θ1t

Θ1
+

cos Θ2t

Θ2

)
+

(
β1 + 2β2t+ 3β3t

2 + 4β4t
3

)(
sin Θ1t

Θ2
1

+
sin Θ2t

Θ2
2

)
+

(
2β2 + 6β3t+ 12β4t

2

)(
cos Θ1t

Θ3
1

+
cos Θ2t

Θ3
2

)
−
(

6β3 + 24β4t

)(
sin Θ1t

Θ4
1

+
sin Θ2t

Θ4
2

)
− 24β4

(
cos Θ1t

Θ5
1

+
cos Θ2t

Θ5
2

)} (34)
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τ2(t) =
−Pm
2γf

{(
θf + β0 + β1t+ β2t

2 + β3t
3 + β4t

4

)(
sin Θ1t

Θ1
+

sin Θ2t

Θ2

)
+

(
β1 + 2β2t+ 3β3t

2 + 4β4t
3

)(
cos Θ1t

Θ2
1

+
cos Θ2t

Θ2
2

)
−
(

2β2 + 6β3t+ 12β4t
2

)(
sin Θ1t

Θ3
1

+
sin Θ2t

Θ3
2

)
−
(

6β3 + 24β4t

)(
cos Θ1t

Θ4
1

+
cos Θ2t

Θ4
2

)
+ 24β4

(
sin Θ1t

Θ5
1

+
sin Θ2t

Θ5
2

)} (35)

subtituting equations (34) and (35) into equation (25), the particular solution of the non-homogeneous second
order differential equation takes the form

Wp(t) =
−Pm
2γf

{(
−
(
θf + β0 + β1t+ β2t

2 + β3t
3 + β4t

4

)(
cos Θ1t

Θ1
+

cos Θ2t

Θ2

)
+

(
β1 + 2β2t+ 3β3t

2 + 4β4t
3

)(
sin Θ1t

Θ2
1

+
sin Θ2t

Θ2
2

)
+

(
2β2 + 6β3t+ 12β4t

2

)(
cos Θ1t

Θ3
1

+
cos Θ2t

Θ3
2

)
−
(

6β3 + 24β4t

)(
sin Θ1t

Θ4
1

+
sin Θ2t

Θ4
2

)
− 24β4

(
cos Θ1t

Θ5
1

+
cos Θ2t

Θ5
2

))
cos γf t

+

((
θf + β0 + β1t+ β2t

2 + β3t
3 + β4t

4

)(
sin Θ1t

Θ1
+

sin Θ2t

Θ2

)
+

(
β1 + 2β2t+ 3β3t

2 + 4β4t
3

)(
cos Θ1t

Θ2
1

+
cos Θ2t

Θ2
2

)
−
(

2β2 + 6β3t+ 12β4t
2

)(
sin Θ1t

Θ3
1

+
sin Θ2t

Θ3
2

)
−
(

6β3 + 24β4t

)(
cos Θ1t

Θ4
1

+
cos Θ2t

Θ4
2

)
+ 24β4

(
sin Θ1t

Θ5
1

+
sin Θ2t

Θ5
2

))
sin γf t

}

(36)

Consequently,

WG(t) = Wc(t) +Wp(t) (37)

Applying the initial conditional (13) to (37), the constants are found to be

C1 =
Pm
2γf

{
−
(
θf + β0

)(
1

Θ1
+

1

Θ2

)
+ 2β2

(
1

Θ3
1

+
1

Θ3
2

)
− 24β4

(
1

Θ5
1

+
1

Θ5
2

)}
(38)

and

C2 =
Pm
2γf

{
β1

(
1

Θ2
1

+
1

Θ2
2

)
− 6β3

(
1

Θ4
1

+
1

Θ4
2

)}
(39)

after certain simplifications and rearrangements, substituting (36), (38) and (39) into (37) and inverting the
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result yields

Ym(x, t) =

∞∑
n=0

{
− Pm

2γfΘ5
1Θ5

2

{(
−
(
θf + β0

)(
Θ4

1Θ5
2 + Θ5

1Θ4
2

)
+ 2β2

(
Θ2

1Θ5
2 + Θ5

1Θ2
2

)
− 24β4

(
Θ5

2 + Θ5
1

))
cos γf t+

(
β1

(
Θ3

1Θ5
2 + Θ5

1Θ3
2

)
− 6β3

(
Θ1Θ5

2 + Θ5
1Θ2

))
sin γf t

+

((
−
(
θf + β0 + β1t+ β2t

2 + β3t
3 + β4t

4

)(
Θ4

1Θ5
2 cos Θ1t+ Θ5

1Θ4
2 cos Θ2t

)
+

(
β1 + 2β2t+ 3β3t

2 + 4β4t
3

)(
Θ3

1Θ5
2 sin Θ1t+ Θ5

1Θ3
2 sin Θ2t

)
+

(
2β2 + 6β3t+ 12β4t

2

)(
Θ2

1Θ5
2 cos Θ1t+ Θ5

1Θ2
2 cos Θ2t

)
−
(

6β3 + 24β4t

)(
Θ1Θ5

2 sin Θ1t+ Θ5
1Θ2 sin Θ2t

)
− 24β4

(
Θ5

2 cos Θ1t+ Θ5
1 cos Θ2t

))
cos γf t

+

((
θf + β0 + β1t+ β2t

2 + β3t
3 + β4t

4

)(
Θ4

1Θ5
2 sin Θ1t+ Θ5

1Θ4
2 sin Θ2t

)
+

(
β1 + 2β2t+ 3β3t

2 + 4β4t
3

)(
Θ3

1Θ5
2 cos Θ1t+ Θ5

1Θ3
2 cos Θ2t

)

−
(

2β2 + 6β3t+ 12β4t
2

)(
Θ2

1Θ5
2 sin Θ1t+ Θ5

1Θ2
2 sin Θ2t

)
−
(

6β3 + 24β4t

)(
Θ1Θ5

2 cos Θ1t+ Θ5
1Θ2 cos Θ2t

)
+ 24β4

(
Θ5

2 sin Θ1t+ Θ5
1 sin Θ2t

))
sin γf t

)}}
× sin

mπ

L
x

(40)

The transverse displacement response of a non-unifom simply supported Raleigh beam under varying magnitudes
of accelerating loads while resting on a biparametric foundation is represented by equation (40).

CASE 2: Non-uniform Rayleigh beam Traversed by Moving Mass

The problem is known as the moving mass problem if the inertia term is kept in. In this instance, the full
equation (20) must be solved. That is, if Γ0 6= 0.

It appears that due to the load magnitude fluctuation, the widely utilized Struble’s asymptotic method was
unable to solve the coupled second order ordinary differential equation. Consequently, we turn to the Runge-
Kutta of fourth order approximate numerical solution method. Consequently, we rearrange equation (20)

D0(m, k)Ẅm(t) +D1(m, k)Wm(t) + Γ0 cosωt

{
Z1(n,m, k)Ẅm(t) + 2L(c+ at)Z2(n,m, k)Ẇm(t)

+

(
L(c+ at)Z3(n,m, k) + aLZ2(n,m, k)

)
Wm(t)

}
=
LMg cosωt

kπµ0

(
− (−1)k + cos

kπ

L
(x0 + ct+

1

2
at2)

) (41)

where

Z1(n,m, k) =
1

4
Q1 +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q1A −

1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q1B (42)

Z2(n,m, k) =
1

4
Q2 +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q2A −

1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q2B (43)
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Z3(n,m, k) =
1

4
Q3 +

1

π

∞∑
n=0

cos(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q3A −

1

π

∞∑
n=0

sin(2n+ 1)π(x0 + ct+ 1
2
at2)

(2n+ 1)
Q3B (44)

futher simplification and arrangments of equation (41), one obtains

Ẅm(t) +DC1Ẇm(t) +DC2Wm(t) = DC3 (45)

DC1 =
2L(c+ at)Γ0 cosωtZ2(n,m, k)

D0(m, k) + Γ0 cosωtZ1(n,m, k)
(46)

DC2 =
D1(m,K)LΓ0(C + at)2 cosωtZ3(n,m, k) + aLΓ0 cosωtZ2(n,m, k)

D0(m, k) + Γ0 cosωtZ1(n,m, k)
(47)

DC3 =
LMg cosωt(

D0(m, k) + Γ0 cosωtZ1(n,m, k)

)
µ0kπ

(
− (−1)k + cos

kπ

L
(x0 + ct+

1

2
at2)

)
(48)

The fourth order Runge-Kutta scheme is used to solve (48)

4 Numerical Results and Discussions

The non-uniform beam with length L = 12.29m, load velocity c = 8.12m/s, modulus of elasticity E =
2.10924 × 10−3N/m2, and moment of inertia I0 = 2.87698 × 109kgm2 are used to demonstrate the analysis
presented in this work. Fig. 1 and Fig. 2 shows the deflection profile of the simply supported non-uniform

Fig. 1. Moving force deflection for a simply supported non-uniform Rayleigh beam under
variable-magnitude accelerating masses and sitting on a bi-parametric foundation for fixed

values of S0, K0, and N , for different amounts of rotatory inertia.

Rayleigh beam under variable magnitude acelerating masses for various values of rotatory inertia and fixed
value of foundation stiffness S0, shear modulus K0 and axial force N for moving distributed force and moving
distributed mass respectively . It is observed that the higher values of rotatory inertia reduce the deflection of
the beam for both moving mass and moving force.

Similarly, Fig. 3 and Fig. 4 shows the deflection profile of the simply supported non-uniform Rayleigh beam
under variable magnitude accelerating masses for various values of shear modulus and fixed value of foundation
stiffness S0, rotatory inertia R0 and axial force N for moving distributed force and moving distributed mass
respectively. It is observed that the higher values of shear modulus reduce the deflection of the beam for both
moving mass and moving force.
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Fig. 2. Moving mass deflection for a simply supported non-uniform Rayleigh beam under
variable-magnitude accelerating masses and sitting on a bi-parametric foundation for different

values of the rotatory inertia, for fixed values of S0, K0, and N

Fig. 3. Moving force deflection for a simply supported non-uniform Rayleigh beam under
variable-magnitude accelerating masses and sitting on a bi-parametric foundation for fixed

values of R0, S0 and N , for different amounts of Shear modulus.

Fig. 4. Moving mass deflection for a simply supported non-uniform Rayleigh beam under
variable-magnitude accelerating masses and sitting on a bi-parametric foundation for different

values of the shear modulus, for fixed values of S0, R0 and N .

Fig. 5 show the comparison of the moving mass and force of a simply supported non-uniform Rayleigh beam
with fixed values of foundation stiffness S0, rotatory inertia R0, shear modulus K0 and axial force N . The
moving distributed force problem has a larger response amplitude than the moving distributed mass problem,
and its critical speed is smaller than that of the moving distributed mass problem, according to the graphs.
Therefore, in moving distributed forces as opposed to moving distributed masses, resonance is obtained earlier,
highlighting the critical importance of considering both load types in beam design to ensure structural integrity
and vibration control, ultimately enhancing bridge safety, building resilence and industrial machinery efficiency.
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Fig. 5. Comparing the deflection profile of the moving mass and force of a simply supported
non-uniform Rayleigh beam under variable-magnitude accelerating masses and sitting on a

bi-parametric foundation with fixed values of K0, N , R0, and S0.

Fig. 6. Comparison of the displacement response of analytical solution and numerical solution
of a simply supported non-uniform Rayleigh beam under variable-magnitude accelerating

masses and sitting on a bi-parametric foundation for fixed values K0, N , R0, and S0.

Finally, Fig 6. show the comparison between the numerical solution and approximate analytical solution for the
deflection response of the moving distributed force of simply supported non-uniform Rayleigh beam resting on
a bi-parametric foundation and under a variable-magnitude accelerating mass. Given that the amplitude of the
two graph profiles is almost equal, it can be concluded that the Runge-Kutta method is a suitable approach for
handling such a dynamic situation.

5 Conclusion

This paper presents a solution approach for the simply supported non-uniform Rayleigh beam resting on a bi-
parametric foundation and under a variable-magnitude accelerating mass. The approximation procedure based
on the generalized Galerkin method. The non-uniform Rayleigh beam’s governing fourth-order differential
equation with variable and singular coefficients is given closed-form solutions. Considerable attention is paid
to the impact of relevant factors such the shear modulus, axial force, rotatory inertia correction factor, and
foundation stiffness. Plotted curve analysis reveals that a decrease in the deflection of the simply supported
non-uniform Rayleigh beam occurs with an increase in structural parameters. Bi-parametric foundations, thus,
guarantee the safety of accelerating loads of varying magnitude while simultaneously reducing vibration.
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