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ABSTRACT 
 

This article uses the odd Lomax-G family of distributions to study a new extension of the 
Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the 
density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and 
studied with many other properties of the distribution such as the ordinary moments, moment 
generating function, characteristic function, quantile function, reliability functions, order statistics 
and other useful measures. The model parameters are estimated by the method of maximum 
likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data 
sets. 
 

 

Keywords: Lomax-G family; Kumaraswamy distribution; odd Lomax-Kumaraswamy distribution; 
statistical properties; parameter estimation; goodness-of-fit.  
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1. INTRODUCTION  
 
The Kumaraswamy distribution describes a 
distribution in which outcomes are limited to a 
specific range, the probability density function 
within this range being characterized by two 
shape parameters. It is similar to the beta 
distribution but possibly easier to use because it 
has simpler analytical expressions for its 
probability density function and cumulative 
distribution function. The Kumaraswamy 
probability distribution was originally proposed by 
[1] for double bounded random processes for 
hydrological applications. The Kumaraswamy 
distribution is a family of continuous                
probability distributions defined on the interval 
[0,1] with cumulative distribution function (cdf) 
given by 
 

 ( ) 1 1G x x
                                           (1) 

 
And the corresponding probability density 
function (pdf) given by 
 

 
1

1( ) 1g x xx



                                  (2) 

 

For 10  x , where 0   and 0   are the 
shape parameters.  
 
There are several methods of extending standard 
distributions and among the very recent ones are 
Logistic-X family [2], a new Weibull-G family [3], 
a Lindley-G family [4], a Gompertz-G family [5], 
an odd Lindley-G family [6] and an odd Lomax 
generator of distributions (Odd Lomax-G family) 
[7].  

 
Due to this families and many others, numerous 
compound models have been introduced for 
modeling statistical data and these compound 
distributions are found to be skewed, flexible and 
more better in statistical modeling than the 
standard counterparts [8-22]. 

 
These families of distribution have also led to the 
development of some generalizations of the 
Kumaraswamy distribution in the literature such 
as the transmuted Kumaraswamy distribution 
[23], the exponentiated Kumaraswamy 
distribution [24], the Kumaraswamy- 
Kumaraswamy distribution [25] and the Lomax-
Kumaraswamy distribution [26].  

The following is the arrangement of remaining 
sections in this article: The new model with 
graphical representation is given in section 2. 
Section 3 derived some properties of the new 
distribution. The distribution of order statistics is 
presented in section 4. The estimation of 
unknown parameters of the distribution using 
maximum likelihood estimation is provided in 
section 5. An application of the new model to two 
real life data sets is done in section 6 and a 
summary and conclusion of the study is given in 
section 7. 
 
2. ODD LOMAX-KUMARASWAMY 

DISTRIBUTION (OLomKumD) 
 
According to [7], the cumulative distribution 
function (cdf) and the probability density function 
(pdf) of the odd Lomax generator (Lomax-G 
family) of distributions with two extra                    

shape parameters ( 0   and 0  ) are 

defined by:  
 

 

 
   

 

1

1

0

( ) 1
1

G x

G x G x
F x t dt

G x



    




    
     

  


     (3) 

and 

 

 

 
 

 1

2
( )

11

g x G x
f x

G xG x



 

 
  

  
     

      (4)  

 

respectively, where ( )g x and ( )G x
 
represent 

the pdf and the cdf of the continuous distribution 
to be modified respectively.  
 
Substituting equation (1) and (2) in (3) and (4) 
above and simplifying, we obtain the cdf and pdf 
of the OLomKumD for a random variable X as: 
 

   1 1 1F x x
  

       
            (5)

 
And 

 

     
111 1 1 1f x x x x

      
         

     
(6) 

 

“respectively, for , , , 0      and 10  x .    

 
The plot of the pdf of the OLomKumD using 
some parameter values are displayed in Fig. 1 as 
follows. 
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Fig. 1. PDF of OLomKumD 
 

3. PROPERTIES OF ODD LOMAX-KUMARASWAMY DISTRIBUTION 
 
This section contains derivations and discussions of some properties of the proposed distribution. 
These are presented as follows:  
 
3.1 Moments 
 

 

Let X denote a continuous random variable, the nth moment of X is given by; 
 

  

 '

0

( )
nn

n
E f x dxxX



  
                                                                                                 (7) 

 
where f(x), the pdf of the OLomKumD is as given in equation (6) as: 
 

     
111 1 1 1f x x x x

    
             

 
Simplifying the pdf above results in the following: 
 

        
1

11 1 11 1 1 1 1f x x x x x


       
 

          
  

                                     (8) 

 
Before substituting (8) in (7), we perform the expansion and simplification and linear representation of 
the pdf as follows:

     
First, by using power series expansion on the last term in (8), we obtain: 
 

        
1

1

0

1
1 1 1 1 1 1 1

kkk

k

x x x x
k


      

 
    



                     
            (9) 
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Making use of the result in (9) above and simplifying, equation (8) becomes 
 

   
 

 
1 11

1
0

1
1 1 1

kk

k
k

f x x x x
k

    



   




            
                         (10) 

 
Also using generalized binomial expansion gives: 
 

  

     
0

1 1 1 1
k mm

m

k
x x

m

  




           
                                                                (11) 

 
Making use of the result in (11) above in equation (10) and simplifying, we obtain: 
 

 
 

 
 1 11

1
0 0

1
1

1

m k

m k
k m

k
f x x x

m k

  



 
  

 
 

   
   

  


                             

(12) 

 

Now, let  
 

1
0 0

1 1
m

km k
k m

k

m k

 




 


 

    
   

  
  be a constant, which implies that the pdf in (12) can also 

be written in its simple and linear form as: 
 

   
 1 11 1
m k

kmf x x x
  

                                                                (13) 

 

Now, using the linear representation of the pdf of the OLomKumD in equation (13), the n
th
 ordinary 

moment of the OLomKumD is represented as: 

 

     
 

1 1
1 1

' 1

0 0

1
m k

n n n
n kmE X x f x dx x x dx

   
  

                                          (14) 

Recall that for the Kumaraswamy distribution, the r
th ordinary moment is given as: 

 

     
1 1

11'

0 0

( ) 1 1,
r rr

r
rE X f x dx x dx Bx x

    


 
      

                  (15)  
 

Therefore, the nth ordinary moment of the OLomKumD can be expressed from (15) as:  

 

   
 

 
1

1 1' 1
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 

 


 

      
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

                          (16) 
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The mean (
'
1 ), variance (

2 ), coefficient of variation ( CV ), coefficient of skewness ( CS ) and 

coefficient of kurtosis ( CK ) can be calculated from the ordinary and non-central moments using 
some well-known relationships such as: 
 

 '
1 E X  ,  

22 ' '
2 1( )Var X      , 

 

1
2

2

2'
1

CV 



  
  
  

   

3'
31
3( )

x
CS E



 

 
  

 
    

and 
 

4'
1 4

4( )

x
CK E

 

 

 
  

   

. 

 

3.2 Moment Generating Function 
 
The moment generating function of a random variable X can be obtained as 
 

( ) ( )tx tx
xM t E e e f x dx





                                                                                          (17) 

 
Recall that by power series expansion, 
 

  
 

0 0! !

r r
tx r

r r

tx t
e x

r r

 

 

                                                                                                       (18) 

 
Therefore, the moment generating function can also be expressed as: 
 

     
1

'

0 0 00
! ! !

r r r
r r

x r
r r r

t t t
M t x f x dx E X

r r r


  

  

       
 

 
Using the result in equation (18) and simplifying the integral in (17) therefore we have: 
 

 
 

 1
0 0 0

1 1
1, 1

!

mr

x k
r k m

kt r
M t B m k

m kr

 
 

 

  


  

       
        

     
                                   (19) 

 

3.3 Characteristic Function 
 

A representation for the characteristic function is given by 
 

     
1

0

itx itx
x t E e e f x dx                                                                                     (20) 

Recall that by power series expansion, 
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0 0

e
! !

r r

itx r

r r

itx it
x
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 
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                                                                                             (21) 
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Hence, simple algebra and use of (21) above produces the following results: 
 

 
 

 
     1
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 
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 
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 1
0 0 0

1 1
1, 1

!

r m

x k
r k m

kit r
t B m k

m kr

 
  

 
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
  

       
        

     
                               (22) 

 

3.4 Quantile Function, Median and Simulation 
 

According to [27], the quantile function for any distribution is defined in the form    1Q u F u  

where  Q u  is the quantile function of F(x) for 0 1u   
 

To derive the quantile function of the OLomKumD, the cdf of the OLomKumD is considered and 
inverted according to the above definition as follows: 
 

   1 1 1F x x u
  

        
                                                                  (23)

          

Simplifying equation (23) above gives: 
 

   
1

1 1 1x u 
  

 
    

                                                                               (24) 
 

Collecting like terms in equation (24) and simplifying the result, the quantile function of the 
OLomKumD is obtained as: 
 

   
1

1
1

1 1 1Q u u



 


         

                                                                              

(25) 

 

where u is a uniform variate on the unit interval (0,1).  
 

Using (25) above, the median of X from the OLomKumD is simply obtained by setting u=0.5 and this 

substitution of 0.5u  in Equation (25) gives: 
 

 
1

1
1

1 1 0.5MD



 


        

                                                                                    (26) 

 

Similarly, random numbers can be simulated from the OLomKumD by setting  Q u X  and this 

process is called simulation using inverse transformation method. This means for any values of the 

parameters , , , 0      and  0,1u : 

 
1

1
1

1 1 1X u



 


         

                                                                            (27) 

 

“where u is a uniform variate on the unit interval (0,1).  
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Again from the above quantile function, the quantile based measures of skewness and kurtosis are 
obtained as follows: 
 

[28] defined the Bowley’s measure of skewness based on quartiles as: 
 

     
   

3 1 12
4 2 4
3 1
4 4

Q Q Q
SK

Q Q

 




                                                                                            (28)

  

 

And [29] presented the Moors’ kurtosis based on octiles as: 
 

    

       
   

7 5 3 1
8 8 8 8

6 1
8 8

Q Q Q
KT

Q Q

  




                                                                                          (29)  

 

“where  .Q  is calculated by using the quantile function from equation (25).  

 

3.5 Reliability Analysis of the OLomKumD 
 
In this section, the survival (or reliability) function, 
the hazard (or failure) rate function, the 
cumulative hazard function, the reverse hazard 
function and the odds function are obtained for 
the OLomKumD as follows: 
 
The Survival function describes the probability 
that a unit, component or an individual will not fail 
after a given time. Mathematically, the survival 
function is given by: 
 

 
   1S x F x                                    (30) 

 
Using the cdf of the OLomKumD in (30) and 
simplifying the result, the survival function for the 
OLKD is obtained as: 
 

   1 1S x x
  

      
                        (31) 

 
The figure below presents some plots for the 
survival function of the OLomKumD using 
different parameter values.  

 
 

Fig. 2. Survival function of OLomKumD 
 

Hazard function is also called failure rate function and it represents the likelihood that a component 
will fail for an interval of time. The hazard function is defined as: 
 

 
 
 

 
 1

f x f x
h x

S x F x
 


                                                                                                   

(32)
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Making use of the pdf and cdf of OLomKumD, an expression for the hazard rate of the OLomKumD is 
simplified and given by: 
 

  

 
   

 

111 1 1 1

1 1

x x x
h x

x
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  

 

   



    
  

   
    

 

     
11

1 1 1 1h x x x x
    

  
      

  
                                                            (33)  

             

 

where 0, , , 0x     . 

 

The following figure displays useful plots of the hazard function of OLomKumD for some arbitrary 

parameter values.  

 

 
 

Fig. 3. The hazard function of OLomKumD 
 

The cumulative hazard function of a variable or unit is a function that generates a cumulative 
hazard value which corresponds to the sum of all the hazard values for failed units with ranks up to 
and including that failed unit. The cumulative hazard function is defined as:   
 

   
 
 

 
0 0

ln
1

x x f t
H x h x dt dt S x

F t
   

                                                            (34) 

 

Substituting the cdf of the OLomKumD in (34), the cumulative hazard function for the OLomKumD is 
obtained as:  
 

   ln 1 1H x x
  

          
                                                                  (35) 
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The reversed hazard rate (Rh(x)) is defined as the ratio of the density function to the 
distribution function of a random variable. The reversed hazard function of a variable is 
mathematically defined as: 
 

 
 
 

f x
Rh x

F x
                                                                                                                     (36)    

 
Again, substituting the pdf and cdf of the OLomKumD in (36) and simplifying, the reverse hazard 
function of the OLomKumD is expressed as: 
 

   

 

111 1 1 1
( )

1 1 1

x x x
Rh x

x

   

 

 

 

   



      
      

                                                   (37) 

 
The odds function of a random variable X is a measure of the ratio of the probability that the variable 
or unit will survive beyond x to the probability that it will fail before x. It is obtained by dividing the cdf 
by the reliability (survival) function. That is: 
 

 
 
 

 
 1

F x F x
O x

F x S x
 


                                                                                                   (38) 

 
Using the cdf of the OLomKumD in (38), the odds function for the distribution is given as: 
 

 ( ) 1 1 1O x x
  


      

  
                                                                             

(39) 

 

where , , , 0      and 0 1x  . 

 

4. ORDER STATISTICS 
 

Suppose 1 2, ,....., nX X X  is a random sample from the OLomKumD and let 1: 2: :, ,.....,n n i nX X X  

denote the corresponding order statistic obtained from this same sample. The pdf, ��:�(�) of the a
th
 

order statistic can be obtained by: 
 

 
   

   
1

:
0

!
( 1)

1 ! !

n a k ak

a n
k

n an
x f x F xf

ka n a

  



 
   

   
                                              (40) 

 
Using (5) and (6), the pdf of the ath order statistics��:�, can be expressed from (40) as: 
 

 
   

 

 
 

1
1 1

: 1
0

1!
1 1 1( 1)

1 ! !
1 1

k a
n a

k

a n
k

x xn an
x xf

ka n a
x

    


 
 



 
   



 
                        

    

 (41) 

 
Hence, the pdf of the minimum order statistic �(�) and maximum order statistic �(�) of the OLomKumD 

are respectively given by: 
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 
 

 

 
 

11
1

1: 1
0

11!
1 1 1( 1)

1 !
1 1

k
n

k

n
k

x xnn
x xf

kn
x

    


 
 



   



 
                        

    

          (42) 

 
and

 

  

 
 

 
 

11 1

: 1

1
1 1 1

1 1

n

n n

x x
x n xf

x

    


 
 



  



 
                  

    

                                        

(43) 

 
5. MAXIMUM LIKELIHOOD ESTIMATION (MLE) OF THE UNKNOWN PARAMETERS 

OF THE OLomKumD 
 

Let nXXX .,,........., 21  be a sample of size ‘n’ independently and identically distributed random 

variables from the OLomKumD with unknown parameters,  ,  , 
 
and 

 
defined previously.  

 

The likelihood function of the OLomKumD using the pdf is given by: 
 

       
111

1

| , , , 1 1 1
n

n

i i i
i

L X x x x
          

   



          
                                 (44) 

 

Let the natural logarithm of the likelihood function be,  log | , , ,l L X    
, 

therefore, taking the 

natural logarithm of the function equation (44) above gives: 
 

         
1 1 1

log log log log 1 log 1 log 1 1 log 1 1
n n n

i i i
i i i

l n n n n x x x
         



  

                  

(45) 
 

Differentiating l  partially with respect to  ,   ,   and   respectively gives the following results:  

 

 
1

log log 1 1
n

i
i

l n
n x

 
 





       
  

                                                                 (46) 

 

   
1

1

1 1 1
n

i
i

l n
x


 

 





       
  

                                                                      (47) 
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 
                                    

(49) 

 
Making equation (46), (47), (48) and (49) equal 
to zero (0) and solving for the solution of the non-
linear system of equations produce the maximum 

likelihood estimates of parameters
  ,   ,  and 

 . Note that it is difficult to solve the above 
equations analytically and therefore the Newton-
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Raphson’s iteration method is applied using 
computer packages such as Maple or R or other 
software.   
 

6. APPLICATIONS  
 

In this section, two applications to real life                     
data are provided to illustrate the flexibility               
of the OLKD (odd Lomax-Kumaraswamy 
distribution, OLomKumD) distribution introduced 
in Section 2 compared to the Lomax-
Kumaraswamy distribution (LomKumD), 
Transmuted Kumaraswamy distribution 
(TransKumD), Kumaraswamy-Kumaraswamy 
distribution (KumKumD and the conventional 
Kumaraswamy distribution (KumD). The 
maximum likelihood estimates (MLEs) of the 
model parameters are determined and                  
some goodness-of-fit statistics for this  
distribution are compared with other competitive 
models. 

The model selection is carried out based upon 
the value of the log-likelihood function evaluated 
at the MLEs (ℓ), Akaike Information Criterion, 
AIC, Consistent Akaike Information Criterion, 
CAIC, Bayesian Information Criterion, BIC, 
Hannan Quin Information Criterion, HQIC, 
Anderson-Darling (A*), Cramѐr-Von Mises (W*) 
and Kolmogorov-smirnov (K-S) statistics. The 
details about the statistics A*, W* and K-S are 
discussed in [30]. Meanwhile, the smaller these 
statistics are, the better the fit of the distribution 
is. The required computations are carried out 
using the R package “AdequacyModel” which is 
freely available from http://cran.r-
project.org/web/packages/AdequacyModel/Adeq
uacyModel.pdf. 
 
Data set I: This data is flood data with 20 
observations obtained from [31] and it has been 
used by [23]. The summary of dataset I is also 
provided in Table 1. as follows: 

 
Table 1. Summary statistics for the dataset I 

 
n Minimum 

1Q  Median 
3Q  Mean Maximu

m 
Variance Skewness Kurtosis 

20 0.265 0.3345 0.4070 0.4578 0.4232 0.7400 0.0157 1.0677 0.5999 
 

Table 2. Maximum likelihood parameter estimates for dataset I 

 
Distribution ̂  ̂  ̂  ̂

 
OLomKumD 6.83963927 4.51446180 1.29483209 0.01381898 
LomKumD 6.83963927  4.51446180  1.29483209  0.01381898 
TransKumD 2.4464420  9.6294406  -0.9917593  
KumKumD 1.4886322  8.0584351  8.6670875  0.9112175  
KumD 3.034985  9.140995    

  
Table 3. The statistics ℓ, AIC, CAIC, BIC and HQIC for dataset I 

 
Distribution ̂  

AIC CAIC  BIC  HQIC Ranks 

OLomKumD -15.00556  -22.01111 -19.34444  -18.02818 -21.2336 2
nd

   
LomKumD -15.09483 -22.18967 -19.523 -18.20674  -21.41216 1st  
TransKumD -13.80434  -21.60868  -20.10868  -18.62149  -21.02555 3

rd
  

KumKumD -14.73712  -21.47423  -18.80757  -17.4913  -20.69672  5
th
  

KumD -12.70427  -21.40853  -20.70265  -19.41707  -21.01978  4th  

 
Table 4. The A*, W*, K-S statistic and P-values for dataset I 

 

Distribution A* W* K-S P-Value (K-S) Ranks 
OLomKumD 0.3891962 0.05917019 0.13095 0.8827 2nd   
LomKumD 0.364724  0.05454672 0.13262 0.8733 1

st
  

TransKumD 0.7982341  0.1337387  0.18869  0.4747  3rd  
KumKumD 0.529415  0.08648492  0.21196  0.3301  5

th
  

KumD 0.9272041  0.1575337  0.19794  0.4134  4
th
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Fig. 4. Histogram and plots of the estimated densities and cdfs of the OLomKumD and other 
fitted distributions to dataset I 

 

 

 
 
Fig. 5. Probability plots for the fit of the OLomKumD and other fitted models based on dataset I 

 
Table 5. Summary statistics for dataset II 

 
n Minimum 

1Q  Median 
3Q  Mean Maximum Variance Skewness Kurtosis 

48 0.0903 0.1623 0.1988 0.2627 0.2181 0.4641 0.0069 1.1694 1.1099 
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Table 6. Maximum likelihood parameter estimates for dataset II 
 

Distribution ̂  ̂  ̂  ̂
 

OLomKumD 2.605155  9.966554  8.054591  1.751369  
LomKumD 2.605155  9.966554  8.054591  1.751369 
TransKumD 2.064456  9.658148  0.976459   
KumKumD 1.220560  5.931575  3.360720  3.327903  
KumD 1.773324  9.608201    

  
Table 7. The statistics ℓ, AIC, CAIC, BIC and HQIC for dataset II 

 
Distribution ̂  

AIC CAIC 
 

BIC 
 

HQIC Ranks 

OLomKumD -49.35205  -90.70411  -89.77387  -83.2193  -87.87559  4th  
LomKumD -52.91954  -97.83908  -96.90885  -90.35428  -95.01056  2

nd
  

TransKumD -49.74191  -93.48382  -92.93836  -87.87021  -91.36243  3rd  
KumKumD -54.66335  -101.3267  -100.3965  -93.8419  -98.49818  1st  
KumD -44.85103  -85.70206  -85.43539  -81.95966  -84.2878  5

th
  

 
Table 8. The A

*
, W

*
,
 
K-S statistic and P-values for dataset II 

 
Distribution A* W* K-S P-Value (K-S) Ranks 
OLomKumD  1.571814  0.2548545  0.15772  0.1835  4th  
LomKumD 0.9413881  0.1556414  0.1506  0.2264  2

nd
  

TransKumD 1.015258  0.1662217  0.19559  0.05082  3
rd

  
KumKumD 0.11685  0.9102744   0.11685 0.5287 1st  
KumD 0.9136833  0.1497096 0.17698  0.09887  5

th
  

 

  
 

Fig. 6. Histogram and plots of the estimated densities and cdfs of the OLomKumD and other 
fitted distributions to dataset II 

 
Data set II: The second data set is on shape 
measurements of 48 rock samples from a 
petroleum reservoir. This data was extracted 
from BP research, image analysis by Ronit Katz, 
u Oxford and has been used for analysis [24]. 
The summary of dataset II is also provided in 
Table 2 as follows; 

Tables 2 and 6 list the values of the MLEs of the 
model parameters for both datasets, whereas the 
values of AIC, CAIC, BIC and HQIC are listed in 
Tables 3 and 7 for datasets I and II respectively. 
Also, the values of A*, W* and K-S for datasets I 
and II are provided in Tables 4 and 8 
respectively. 
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Fig. 7. Probability plots for the fit of the OLomKumD and other competing models based on 
dataset II 

 
The plots of the fitted OLomKumD density and 
cumulative distribution with those of competing 
distributions for datasets I and II are displayed in 
Figures 5 and 7 respectively. The PP-plots of the 
fitted distributions are also given in Figures 6 and 
7 for datasets I and II respectively. From the 
results in all the measures above, it was 
observed that there is no much difference 
between the Lomax-Kumaraswamy and the odd 
Lomax-Kumaraswamy distributions despite the 
slight variation in the two families. The results 
also show that the two distributions are better 
compared the three other fitted distributions 
(transmuted Kumaraswamy, Kumaraswamy-
Kumaraswamy and the conventional 
Kumaraswamy distributions). Also, there is no 
big difference between the results from dataset I 
and Dataset II and therefore it is proven that the 
proposed distribution (odd Lomax-
Kumaraswamy) is a more flexible distribution 
than the other existing distributions. These 
results are clearly confirmed by the estimated 
density plots and also the probability plots of the 
fitted distributions as shown in the figures      
above. 

7. SUMMARY AND CONCLUSION 
 
In this study, a four-parameter extension of the 
Kumaraswamy distribution is proposed called 
“odd Lomax-Kumaraswamy distribution”. This 
study has looked at many important properties of 
the new distribution including explicit expressions 
for the moments, generating function, 
characteristics function, quantile function and 
related measures, reliability functions and order 
statistics. The maximum likelihood method has 
been used to estimate the parameters of the 
proposed distribution. The graphs of the pdf of 
the distribution revealed that it is flexible and that 
its shape various as the values of the parameters 
are changed. Also, the plots of the survival and 
hazard functions of the proposed model indicate 
that it will be useful for real events where 
probability of survival decreases with increase in 
age or time while that of failure increases with 
time. The proposed distribution with other 
existing distributions is fitted to two real life 
datasets to prove their flexibility compared to 
existing models. Based on some standard model 
selection criteria, it was found that the proposed 
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distribution provides good fit to these datasets. 
The results obtained show that the odd Lomax-
Kumaraswamy distribution consistently exhibits 
good performance than some of the other 
competing models. Hence, it is recommended for 
applications in data science and other areas of 
statistical research.  
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