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Abstract

Motivated by the Ekeland variational principle, we obtained a Metatheorem in 1985-87 stating that some well-
known existence of maximal elements can be equivalently formulated to existence theorems on fixed elements,
stationary points, common fixed points, common stationary points, and others. In the present article, we
introduce our new 2023 Metatheorem and its applications to various theorems due to Zermelo, Zorn, Ekeland,
Caristi, and related results. In fact, this is a historical supplement of our previous article entitled “Foundations
of Ordered Fixed Point Theory.”
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1 Introduction

Since the appearances of the Ekeland variational principle [1-3] in 1972-79 and the Caristi fixed point theorem
[4] in 1976, nearly one thousand works followed on their equivalents, generalizations, modifications, applications,
and related topics. Many of them are concerned with new spaces extending complete metric spaces, new metrics
or topologies on them, and new order relations extending the so-called Caristi order.

While the author was working on the Ekeland principle and the Caristi theorem in 1984-2000, in order to give
some equivalents of them, we obtained a Metatheorem [5-10] in 1985-2000 on fixed point theorems related to the
order theory. It claims that certain order theoretic maximal element statements are equivalent to theorems on
fixed points, stationary points, common fixed points, common stationary points of families of maps or multimaps.
As usual in the mathematical community, our Metatheorem was attracted a little for a long period.

Later in 2022, we came back to our Metatheorem after 22 years have passed and obtained its extended versions
in [11-15] with a large number of their consequences [11-20]. These are applied to the traditional order theoretic
results and, consequently, there have appeared the so-called Ordered Fixed Point Theory [15]. This can be
comparable to traditional several fields in the fixed point theory, that is, Analytical fixed point theory is
originated from Brouwer in 1912 and concerns mainly with topological vector spaces; Metric fixed point theory
is originated from Banach in 1922 and deals with generalizations of contractions and nonexpansive maps; and
Topological fixed point theory relates mainly with original works of Lefschetz, Nielsen, and Reidemeister.

In our previous work entitled “Foundations of Ordered Fixed Point Theory”[15] in 2022, we established a large
number of improved versions of historically well-known maximal element theorems and fixed point theorems
related to order structure. It is based on our 2023 Metatheorem and the Brøndsted-Jachymski Principle
established by ourselves in 2022.

In the present article, we introduce our new 2023 Metatheorem in [21,22], its short history, its applications to
various theorems of Zermelo, Zorn, Ekeland, Caristi, Takahashi, and related results. In fact, this is a historical
supplement of [15] and organized as follows.

Section 2 is to introduce the Brøndsted-Jachymski Principle and its applications to improve the Zermelo fixed
point theorem. In Section 3, we introduce improved versions of Zorn’s Lemma and an example. Section 4
devotes to introduce an improved Caristi fixed point theorem due to Chen-Cho-Yang [23] and its elementary
proof based on our new theorem in Section 2. Section 5 is concerned with the dual forms of the Caristi theorem
based on Lin-Du [24].

In Section 6, we derive Maximal (resp. Minimal) Element Principle in [18,19] from our new 2023 Metatheorem
and a similar theorem from Metatheorem∗ in [21]. We also improve Jachymski’s 2003 Theorem [25] on converses
to theorems of Zsrmelo and Caristi. Section 7 devotes equivalent formulations and extensions of the weak
Ekeland Principle, Caristi-Kirk’s Theorem, and Takahashi’s minimization principle. In Section 8, we analyze
how to apply general theorems in Section 6 to results of (1) Zermelo type, (2) Zorn type, (3) Caristi type, (4)
dual Caristi type, and (5) Ekeland type in this article.

Finally, Section 8 devotes to epilogue.

2 Extended Zermelo Fixed Point Theorem

A preorder is reflexive and transitive. A partial order is reflexive, antisymmetric, and transitive. A chain or a
simply ordered set is a partially ordered set with an extra condition that any two elements are comparable. A
well order is a simple order such that every subset has the first element.
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From now on, Max(�) (resp. Min(�)) denotes the set of maximal (resp. minimal) elements of a preordered set
(X,�), and Fix(f) (resp. Per(f)) denotes the set of all fixed (resp. periodic) points of a map f : X → X.

We obtained the following in [12,15]:

Brøndsted-Jachymski Principle. Let (X,�) be a partially ordered set and f : X → X be a progressive map
(that is, x � f(x) for all x ∈ X). Then we have

Max(�) ⊂ Fix(f) = Per(f).

Similarly, if f : X → X is a anti-progressive map (that is, f(x) � x for all x ∈ X), then

Min(�) ⊂ Fix(f) = Per(f).

Let (X,�) be a partially ordered set and

S+(x) := {y ∈ X : x � y} (resp. S−(x) := {y ∈ X : y � x})

for any x ∈ X. Then we have the following:

Theorem 1. Let (X,�) be a partially ordered set, x0 ∈ X such that (S+(x0),�) (resp. (S−(x0),�)) has an
upper bound v ∈ S+(x0) (resp. a lower bound v ∈ S−(x0)).

Then the following statements hold:

(1) v is a maximal (resp. minimal) element, that is, v 6� w (resp. w 6� v) for all w ∈ X\{v}.

(2) For each chain C in S+(v) (resp. S−(v)), we have
⋂
x∈C S+(x) 6= ∅ (resp.⋂

x∈C S−(x) 6= ∅).

(3) Any map f : X → X satisfying x � f(x) (resp. f(x) � x) for all x ∈ S+(x0) (resp. x ∈ S−(x0)) has a
fixed point v ∈ S+(x0) (resp. v ∈ S−(x0)) and

Fix(f) = Per(f) ⊃ Max(�) 6= ∅ (resp. Fix(f) = Per(f) ⊃ Min(�) 6= ∅).

Proof. It suffices to prove the maximal case only.

(1) For any w ∈ X\{v}, if v � w, then x0 � v � w, that is, w ∈ S+(x0). Since v is an upper bound of
S+(x0), we have w � v. Hence v = w, a contradiction. Therefore v 6� w and v is a maximal element of X.

(2) For the maximal v ∈ S+(x0) in (1), we have C = {v} is the unique chain in S+(v) and
⋂
x∈C S+(x) =

S+(v) 6= ∅, which proves (2).

(3) Since the maximal v ∈ S+(x0) and v � f(v), we have f(v) ∈ S+(x0). Therefore, v = f(v) by the
antisymmetry of �. Now the conclusion holds by the Brøndsted-Jachymski Principle. 2

Remark 2. (1) In Theorem 1, actually (1)-(3) are equivalent; see Metatheorem∗ in [21,22].

(2) For the motivation of Theorem 1 and its proof, we have a long story as shown in [22]. For the origin of
maximal cases of statements (2) and (3), see ([26], Theorem 5.1) and ([22], Theorem 5.1∗).

Note that (3) implies the following Zermelo type fixed point theorem:
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Theorem 3. For every partially ordered set (X,�) if every well-ordered subset has a least upper bound then
every progressive map f : X → X has a fixed point and

Fix(f) = Per(f) ⊃ Max(�) 6= ∅.

See Zermelo [27] in 1908, Abian [28] in 1980, and Manka [29] in 1988. Theorem 3 is equivalently formulated in [13].

Recall that a fundamental fixed point theorem of Zermelo (see, e.g., Dunford-Schwartz ([30], p.5) says that

Proposition 4. If (X,�) is a partially ordered set in which every chain has a supremum and a selfmap
f : X → X is progressive, then f has a fixed point.

This was given implicitly in Zermelo [27] in 1908 and formulated by Bourbaki [31] in 1949-50. Later Amann in
1977 derived several fixed point theorems from Proposition 4. For example, Tarski’s fixed point theorem, fixed
point theorems for condensing maps and nonexpansive maps.

Jachymski [32] in 2001 noted: “Under the Axiom of Choice, the assumption of Proposition 4 can be weakened
to “each nonempty well-ordered subset has an upper bound. This improves Kneser’s fixed point theorem [33] in
1950, which turns out to be equivalent to the Axiom of Choice as shown by Abian [34] in 1985.”

Proposition 5. Let (X,4) be a partially ordered set in which each nonempty well-ordered subset has a
supremum. Then every progressive map f : X → X has a fixed point.

Propositions 4 and 5 are consequences of our Theorem 3 and their conclusions can be improved to Fix(f) =
Per(f) ⊃ Max(�) 6= ∅.

According to Toyoda [35] in 2021-22, “the Zermelo fixed point theorem is also known as the Bourbaki fixed point
theorem or the Bourbaki-Kneser fixed point theorem. It implies the Bernstein-Cantor-Schröder theorem, the
Caristi fixed point theorem, the Ekeland variational principle, the Takahashi minimization theorem, Nadler’s
fixed point theorem, and others. Moreover, under the Axiom of Choice, it implies Zorn’s Lemma.”

3 Extended Zorn’s Lemma

A partially ordered set (X,�) is said to be inductive (resp. complete) if every non-empty chain in X has an
upper bound (resp. a least upper bound).

The following was given in [15]:

Theorem 6. Let (X,�) be a partially ordered set satisfying one of the following:

(a) a nonempty chain in X has an upper bound (⇐ X is inductive),

(b) a nonempty chain in X has a least upper bound (⇐ X is complete),

(c) a nonempty well-ordered subset of X has an upper bound,

(d) a nonempty well-ordered subset of X has a least upper bound,

Then there exists a maximal element v ∈ X, that is, v 6� w for any w ∈ X\{v}.

From the Brøndsted-Jachymski Principle and Theorem 6, we have the following improvement of Zorn’s Lemma:
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Theorem 7. Let (X,�) be a partially ordered set satisfying one of (a)-(d) in Theorem 6. If f : X → X is
progressive, then we have

Fix(f) = Per(f) ⊃ Max(�) 6= ∅.

Dual statements of Theorems 6 and 7 for the minimal case also hold.

The following is an example of Theorems 6 and 7, but Zorn’s Lemma can not be applicable.

Example 8. Let C = [0, 1] × {1} and D = R × {0} in R2 with their natural orders. Let X = C ∪ D be the
partially ordered set and f : X → X a progressive map defined by

f(x, y) =

{
( 1

2
(x+ 1), 1) if (x, y) = (x, 1) ∈ C;

(x+ 1, 0) if (x, y) = (x, 0) ∈ D.
(1)

Then the chain or totally ordered subset A = S+(0, 1) has an upper bound or a supremum (1,1) ∈ A, which is
a maximal element and a fixed point of a progressive map f . Note that any progressive map on C has a fixed
point and that the chain D does not have any upper bound.

4 Generalized Caristi Fixed Point Theorem

The following is well-known by Caristi [4] in 1976:

Theorem 9. (Caristi) If (X, ρ) is a complete metric space and φ : X → R+ lower semi-continuous, then in the
Brøndsted order (x � y iff ρ(x, y) ≤ φ(x)− φ(y)) every progressive map f : X → X has a fixed point.

Recall that Kirk-Saliga [36] in 2001 and Chen-Cho-Yang [23] in 2002 introduced the following concept of lower
semicontinuity from above:

Definition 10. [23] Let X be a metric space. A function f : X → R∪{+∞} is said to be lower semicontinuous
from above if, for any point x ∈ X, xn → x as n → ∞ and f(x1) ≥ f(x2) ≥ · · · ≥ f(xn) ≥ · · · imply
limn→∞ f(xn) ≥ f(x).

Obviously, at any point, the usual lower semicontinuity implies lower semicontinuity from above, but the converse
does not hold. In fact, Chen-Cho-Yang [23] gave an example of a function which is lower semicontinuous from
above at a point, but not lower semicontinuous at that point.

Recall the following due to Kirk-Saliga [36] and Chen-Cho-Yang [23]:

Theorem 11. (Caristi’s Fixed Point Theorem) Let (D, d) be a complete metric space and a function φ : D → R+

be lower semi-continuous from above. Suppose that a mapping f : D → D satisfies the following:

d(x, f(x)) ≤ φ(x)− φ(f(x)) for all x ∈ D.

Then there exists x0 ∈ D such that f(x0) = x0.

Note that (D, d) can be made into a partially ordered set by defining

x � y ⇐⇒ φ(y) ≤ φ(x)

for x, y ∈ D.

64



Park; J. Adv. Math. Com. Sci., vol. 38, no. 5, pp. 60-73, 2023; Article no.JAMCS.97080

Here we give a new proof of the Caristi Theorem 11 due to Kirk-Saliga [36] and Chen-Cho-Yang [23]:

Proof. Since φ : D → R+ is l.s.c. from above at any z ∈ D, for any {xn} converging to z such that

φ(x1) ≥ φ(x2) ≥ · · · ≥ φ(xn) ≥ · · · =⇒ lim
n→∞

φ(xn) ≥ φ(z)

and hence x1 � x2 � · · · � xn � · · · � z. Note that C = {z} ⊂ S+(x1) is a chain in S+(z). Let v = z ∈ C.
Then C = {v} ⊂

⋃
x∈C S+(x) 6= ∅. Hence, Theorem 1(2) holds, v is maximal by (1), and our Caristi theorem

(3) holds in Theorem 1. 2

The original Caristi theorem is equivalent to Zorn’s Lemma. For its earlier proofs, see Kirk [37]. However, the
extended version, Theorem 11, has an elementary proof as above. For, further generalizations of the Caristi
theorem, Cobzaş [38] is a rich source of information.

5 Dual of Caristi Fixed Point Theorem

Until now, certain results are related to the maximality. We can obtain their dual formulations for the minimality.
In this section, we obtain dual forms of the Caristi theorem.

We define the following motivated by Lin-Du [24]:

Definition 10.∗ Let X be a metric space. A function f : X → R is said to be upper semicontinuous from below
if, for any point x ∈ X, xn → x as n→∞ and f(x1) ≤ f(x2) ≤ · · · ≤ f(xn) ≤ · · · imply limn→∞ f(xn) ≤ f(x).

The following is a dual of Theorem 11; see also [18].

Theorem 11.∗ Let (X,�) be a partially ordered complete metric space, and a function ϕ : X → R+ be upper
semicontinuous from below and bounded from above such that

y � x iff d(x, y) ≤ ϕ(y)− ϕ(x) for x, y ∈ X.

Then the dual of Theorem 11 hold, that is,

(α) There exists a minimal element v ∈ X; that is, w 6� v for any w ∈ X\{v}.

Theorem 11∗ is the dual to the Caristi fixed point theorem 11 and can be stated as follows:

Theorem 12. Let (X,�) be a partially ordered complete metric space, and a function ϕ : X → R+ be upper
semicontinuous from below and bounded from above such that

y � x iff d(x, y) ≤ ϕ(y)− ϕ(x) for x, y ∈ X.

Then every anti-progressive map f : X → X has

Fix(f) = Per(f) ⊃ Min(�) 6= ∅.

Note that there are nearly one thousand papers related to the Caristi theorem for its extensions, modifications,
and applications. However, this article has something different to them.
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6 Unified Generalizations

All of the key results in the above can be unified by applying our Metatheorem and its variants. In fact, from our
new 2023 Metatheorem in [21], we deduced the following prototype of Extreme Element Principles for non-empty
valued multimaps:

Theorem 13. Let (X,�) be a preordered set and A be a nonempty subset of X. Then the following statements
are equivalent:

(α) There exists a maximal (resp. minimal) element v ∈ A, that is, v � w (resp. w � v) for any w ∈ X\{v}.

(β) If F is a family of maps f : A→ X such that, for any x ∈ A with x 6= f(x), there exists a y ∈ X\{x}
satisfying x � y (resp. y � x), then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(γ) If F is a family of maps f : A → X satisfying x � f(x) (resp. f(x) � x) for all x ∈ A with x 6= f(x),
then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(δ) Let F be a family of multimaps F : A ( X such that, for any x ∈ A\F (x), there exists y ∈ X\{x}
satisfying x � y (resp. y � x). Then F has a common fixed element v ∈ A, that is, v ∈ F (v) for all F ∈ F.

(ε) If F is a family of multimaps F : A ( X such that x � y (resp. y � x) holds for any x ∈ A and any
y ∈ F (x)\{x}, then F has a common stationary element v ∈ A, that is, {v} = F (v) for all F ∈ F.

(η) If Y is a subset of X such that, for each x ∈ A\Y , there exists a z ∈ X\{x} satisfying x � z (resp.
z � x), then there exists a v ∈ A ∩ Y .

Remark 14. (1) When F is a singleton, (β) − (ε) are denoted by (β1) − (ε1), respectively, and these are also
equivalent to (α)− (η). Hence, Theorem 13 implies 10 equivalent statements.

(2) Note that, in Theorem 13, (α)⇐⇒ (γ1) implies the Brøndsted-Jachymski Principle.

For multimaps permitting empty values, we derive the following Extreme Element Principle from the old 2023
Metatheorem:

Theorem 13∗. Let (X,�) be a preordered set and A be a nonempty subset of X. Then the following statements
are equivalent:

(α) There exists a maximal (resp. minimal) element v ∈ A, that is, v � w (resp. w � v) for any w ∈ X\{v}.

(ζ1) If a multimap F : A ( X such that, for all x ∈ A with setF (x) 6=, there exists y ∈ X\{x} satisfying
x � y (resp. y � x), then there exists v ∈ A such that F (v) = ∅.

(ζ2) Let F be a family of multimaps F : A ( X such that, for all x ∈ A with F (x) 6= ∅, there exists
y ∈ X\{x} satisfying x � y (resp. y � x). Then there exists v ∈ A such that F (v) = ∅ for all F ∈ F.

From Theorem 13(γ1), we can deduce many examples of maps f : X → X satisfying Per(f) = Fix(f) 6= ∅; see
[20]. Such sets X can have more rich properties by the following main theorem of Jachymski ([25], Theorem 2):

Theorem 15. [25] Let X be a nonempty abstract set and f : X → X. The following statements are equivalent:
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(a) Per(f) = Fix(f) 6= ∅.

(b) (Zermelo) There exists a partial order � such that every chain in (X,�) has a supremum and f is
progressive with respect to �.

(c) (Caristi) There exists a complete metric d and a lower semicontinuous function ϕ : X → R+ such that f
satisfies Caristi’s condition.

(d) There exists a complete metric d and a d-Lipschitzian function ϕ : X → R+ such that f satisfies Caristi’s
condition and f is nonexpansive with respect to d; i.e.

d(fx, fy) ≤ d(x, y) for all x, y ∈ X.

(e) (Hicks-Rhoades) For each α ∈ (0, 1), there exists a complete metric d such that f is nonexpansive with
respect to d and

d(fx, f2x) ≤ αd(x, fx) for all x ∈ X.
(f) There exists a complete metric d such that f is continuous with respect to d and for each x ∈ X, the

sequence (fnx)∞n=1 is convergent (the limit may depend on x).

(g) There exists a partition of X, X =
⋃
γ∈Γ Xγ , such that all the sets Xγ are nonempty, f-invariant and

pairwise disjoint, and for all γ ∈ Γ, f |Xγ has a unique periodic point.

(h) For each α ∈ (0, 1), there exists a partition of X, X =
⋃
γ∈Γ Xγ , and complete metrics dγ on Xγ such

that all the sets Xγ are nonempty; f-invariant and pairwise disjoint; and

dγ(fx, fy) ≤ αdγ(x, y) for all x, y ∈ X.

From Theorem 15, we obtained the following useful theorem in [15]:

Theorem 16. Let (X,�) be a nonempty partially ordered set and f : X → X. The following statements are
equivalent:

(a) Per(f) = Fix(f) ⊃ Max(�) 6= ∅.

(b) (Zermelo) There exists an x0 ∈ X such that S(x0) = {x ∈ X : x0 � x} has an upper bound and f is
progressive with respect to �.

(c) (Caristi) There exists a complete metric d and a lower semicontinuous function ϕ : X → R+ from above
such that f satisfies the Caristi condition

x 4 f(x)⇐⇒ d(x, f(x)) ≤ ϕ(x)− ϕ(f(x))

for all x ∈ X.

Note that this theorem implies several of the Caristi type and the Zermelo type theorems in this article; see also
[11-22].
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7 Ekeland Principle

In order to obtain some equivalents of the well-known central result of Ivar Ekeland [11-3] on the variational
principle for approximate solutions of minimization problems, we obtained a Metatheorem in [5-10] and related
works in 1983-2000. Later in 2022 we found an extended version of the Metatheorem and, finally, the 2023
version in [15]. Our Theorem 13 can be applied to give equivalencies for various situations as we have shown in
our previous works. Motivated by this, we derive the following; see also [20]:

Theorem 17. Let (X, d) be a complete metric space and a proper function ϕ : X → R l.s.c. from above and
bounded from below (resp. u.s.c. from below and bounded from above). Let A = domϕ = {x ∈ X : −∞ <
ϕ(x) <∞}.

Then the following equivalent statements hold:

(α) There exists a ‘maximal’ (resp. ‘minimal’) element v ∈ A, that is,

d(v, w) > ϕ(v)− ϕ(w) (resp. d(v, w) > ϕ(w)− ϕ(v))

for any w ∈ X\{v}.

(β) If F is a family of maps f : A→ X such that, for any x ∈ A with x 6= f(x), there exists a y ∈ X\{x}
satisfying

d(x, y) ≤ ϕ(x)− ϕ(y) (resp. d(x, y) ≤ ϕ(y)− ϕ(x)),

then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(γ) If F is a family of maps f : A→ X satisfying

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)) (resp. d(x, f(x)) ≤ ϕ(f(x))− ϕ(x))

for all x ∈ A\{f(x)}, then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(δ) Let F be a family of multimaps T : A ( X such that, for any x ∈ A\T (x), there exists y ∈ X\{x}
satisfying

d(x, y) ≤ ϕ(x)− ϕ(y) (resp. d(x, y) ≤ ϕ(y)− ϕ(x)),

then F has a common fixed element v ∈ A, that is, v ∈ T (v) for all T ∈ F.

(ε) If F is a family of multimaps T : A( X such that

d(x, y) ≤ ϕ(x)− ϕ(y) (resp. d(x, y) ≤ ϕ(y)− ϕ(x))

holds for any x ∈ A and any y ∈ T (x)\{x}, then F has a common stationary element v ∈ A, that is, {v} = T (v)
for all T ∈ F.

(η) If Y is a subset of X such that, for each x ∈ A\Y , there exists a z ∈ X\{x} satisfying

d(x, z) ≤ ϕ(x)− ϕ(z) (resp. d(x, z) ≤ ϕ(z)− ϕ(x)),

then there exists a v ∈ A ∩ Y .

(θ1) There exists v ∈ A such that, for each chain C in S(v), we have
⋂
x∈C S(x) 6= ∅.

(θ2) There exist v ∈ A and a maximal chain C∗ in S(v), we have
⋂
x∈C∗ S(x) 6= ∅.
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In Theorem 16, (X, d) can be made into a partially ordered set (X,�) by defining

x 4 y ⇐⇒ ϕ(y) ≤ ϕ(x) (resp. x � y ⇐⇒ ϕ(x) ≤ ϕ(y))

for x, y ∈ X.

Theorem 17 includes various earlier results and is very useful as shown in [20]. Especially, (α) for maximal case
is called the weak Ekeland Principle and that (γ1) extends the Caristi theorem.

In 1989, by using Ekeland’s variational principle, Mizoguchi-Takahashi [39] derived the following Caristi-Kirk
theorem [40], which is the set-valued version of the Caristi fixed point theorem:

Theorem 18. (Caristi-Kirk) Let (X, d) be a complete metric space and T : X ( X be a multimap with nonempty
values such that for each x ∈ X, there exists y ∈ T (x) satisfying d(x, y) +ϕ(y) ≤ ϕ(x), where ϕ : X → R∪ {∞}
is a proper, lower semicontinuous and bounded below functional. Then, T has a fixed point, that is, there exists
x̄ ∈ X such that x̄ ∈ T (x̄).

Here the lower semicontinuous function can be replaced by the one from above. Moreover, so does the following
extended form of the Takahashi Principle [41-45]:

Theorem 19. (Takahashi) Let (X, d) be a complete metric space and ϕ : X → R∪{∞} a proper function lower
semicontinuous from above and bounded from below. If for every x ∈ domϕ with ϕ(x) > inf ϕ(X) there exists
an element y ∈ domϕ\{x} such that ϕ(y) + d(x, y) ≤ ϕ(x), then ϕ attains its minimum on X, i.e., there exists
z ∈ domϕ such that ϕ(z) = inf ϕ(X).

Further, from Theorem 17(α), (γ) and the Brøndsted-Jachymski Principle, we have the following:

Theorem 20. Let (X, d) be a complete metric space and ϕ : X → R ∪ {∞} a proper function l.s.c. from above
and bounded from below (resp. u.s.c. from below and bounded from above). If f : X → X is a map such that

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)) (resp. d(x, f(x)) ≤ ϕ(f(x))− ϕ(x))

for any x ∈ X. Then we have

Fix(f) = Per(f) ⊃ Max(�) 6= ∅ (resp. Fix(f) = Per(f)) ⊃ Min(�) 6= ∅.

Consequently, this section demonstrates the usefulness of our Metatheorem. Until now, we gave more than one
hundred examples or applications of our Metatheorem, and each of them might have useful consequences.

8 Analysis of Applications of Principles

In this section, we analyze certain situations in the present article such that Theorems 1 and 13 are applicable:

(1) (Zermelo type) Let x0 ∈ X and A = S+(x0) (resp. A = S−(x0)) have an upper bound, or more general
assumptions.

Theorems 1, 3, Propositions 4, 5 and Theorem 15 belong to this case.

The Zermelo fixed point theorem implies the Caristi fixed point theorem, the Bernstein-Cantor-Schröder theorem,
the Ekeland variational principle, the Takahashi minimization theorem, and others. Moreover, under the Axiom
of Choice, it implies Zorn’s Lemma.

69



Park; J. Adv. Math. Com. Sci., vol. 38, no. 5, pp. 60-73, 2023; Article no.JAMCS.97080

(2) (Zorn type) Let X = A satisfy one of (a)-(d) in Theorem 6.

Theorems 6, 7, and their minimal cases belong to this case.

The 29 references of [8] show the origins, variants, consequences, applications of a particular form of Theorem
6, and we will only indicate names of their authors like Abian (1971), Ekeland [3](1979), Bishop-Phelps (1961),
Turinici (1980-1984), Smithon (1971, 1973), Hoft-Hoft (1976), Tuy (1981), Kasahara (1975), Maschler-Peleg
(1976), Phelps (1964), Caristi [4](1976), Banach (1922), and others. Recall that Tasković (1986) showed an
equivalent form of Zorn’s lemma.

(3) (Caristi type) Let (X, d) be a complete metric space and a function φ : X → R+ be lower semicontinuous
from above. Define partial order on X using φ.

Examples are Theorems 9, 11, 15, 16 and 18.

Equivalent formulations of the Caristi theorem were originally given in Park [5, 6] in 1985-1986. The Caristi
theorem implies the Banach contraction principle and numerous applications.

(4) (dual Caristi type) Let (X, d) be a complete metric space and a function φ : X → R+ be upper
semicontinuous from below. Define partial order on X using φ.

Theorems 11∗ and 12 are examples of this case.
Extensions of the dual Caristi theorem were given by Lin-Du [24] and their equivalent formulations by Park
[12,20].

(5) (Ekeland type) Let (X, d) be a complete metric space and ϕ : X → R ∪ {∞} a proper function l.s.c.
from above and bounded from below (resp. u.s.c. from below and bounded from above). Define partial order
on X using φ.

Theorems 17–20 are examples of this case.

The original Theorem 17 was given in [5, 6] in 1985-1986. It implies the variational principle of Ekeland (1979),
works of Tuy (1981), Kasahara (1975), Mascher-Peleg (1976), etc. Classical applications of Theorem 17 are
numerous in vast fields of mathematical sciences.

By applying Theorems 1 and 13 to each of such types, we can obtain more than one hundred true statements.
Only some of them are known as famous theorems; see our previous works in the references. We will not trace
all of them.

9 Epilogue

As we have seen on Metatheorem [15], the maximal elements in certain preordered sets can be reformulated
to fixed points or stationary points of maps or multimaps and to common fixed points or common stationary
points of a family of maps or multimaps, and conversely. Actually such points are same as we have seen in the
proof of Metatheorem. Therefore, if we have a theorem on any of such points, it can be converted to at least
nine equivalent theorems on other types of points without any serious argument. Some authors seem to be not
recognized this fact yet. Its applications are numerous.

In many fields of mathematical sciences, there are plentiful number of theorems concerning maximal points or
various fixed points that can be applicable our Metatheorem. Some of such theorems can be seen in our previous
works and the present article. Therefore, a metatheorem like Theorems 12 and 14 are machines to expand our
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knowledge easily. In this article we presented relatively old and well-known examples.

Since 2022, we have published many articles applying our Metatheorem and its variants. We hope the reader’s
engagement to find more applications of them.
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