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Abstract

A new generator of continuous distributions called the Inverse Lomax-Exponentiated G family,
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that holds for any continuous baseline model including explicit density function expressions,
moments, inequality measurements, moment generating function, reliability functions, Renyi and
Shanon entropies, and distribution of order statistics are derived. A Monte Carlo simulation to
test the efficiency of the maximum likelihood estimates is conducted. The application of the new
sub-model to the two data sets using the maximum likelihood method indicates that the new
model is better than the existing competitors.
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1 Introduction

Inverse Lomax (IL) is a part of a distribution of Beta form. Some of the families include Singh
Maddala, Pareto, Log-logistics, Dagum, Generalized second-type beta distributions among others
see ( [1]). Since then, IL distribution has gained a lot of attention in many fields such as Actuarial
Science and Economics (see [1]), Geophysical data (see [2]), Survival analysis (see [3], [4]), and
Medical Science (see [5] and [6]).

There have been some attempts to define new families of probability distributions that improve
well-known distribution families while at the same time providing greater flexibility in the realistic
modeling of data. Following from the T-X approach by [7], we define the cumulative distribution
function (cdf) as

J(x) =

∫ D(M(x;υ))

g

r(f)df (1.1)

where D(M(x; υ)) is a cdf-function of M(x; υ) of any random variable (RV) X that D(M(x; υ)) =
M(x;υ)

M̄(x;υ)
= M(x;υ)

1−M(x;υ)
satisfies the conditions below:

(a) D(M(x; υ)) ∈ [g, h]
(b) D(M(x; υ)) is monotonically non-decreasing and differentiable
(c) D(M(x; υ)) ⇒ g as x ⇒ −∞ and D(M(x; υ)) ⇒ h as x ⇒ ∞. Let F be a continuous random
variable with pdf r(f) defined on [g, h].

Some of the generalized families of distributions based on this approach in the literature include
Weibull G by [8], Lomax Generator of distributions by [9], Odd Generalized Exponential G by
[10], Odd Lindley G family by [11], Gompertz G family by [12], Zubair G by [13], Odd Frechet G
family by [14], Power Lindley G by [15], Topp Leone Exponentiated G by [16], Odd Chen G by
[17], Kumaraswamy Odd Rayleigh G by [18], Burr X Exponential G by [19], and Inverse Lomax G
by [20].

Some of the Exponentiated distributions in the literature include: Exponentiated-Weibull distribution
by [21], Exponentiated-Gumbel distribution by [22], Exponentiated-Chen distribution by [23],
the Exponentiated-New Weighted Weibull Distribution by [24], Exponentiated additive Weibull
distribution by [25], the Lomax exponentiated Weibull model by [26] among others.

Inverse Lomax (IL) distribution has both scale β and shape θ parameters which makes it more
flexible in modeling datasets. However, we wish to generalize the IL distribution, ostensibly to
make it more flexible for wider application. The pdf and cdf of the IL distribution are given by

m(x; θ, β) =
θβ

x2

(
1 +

β

x

)−(1+θ)

(1.2)

M(x; θ, β) =

(
1 +

β

x

)−(θ)

; x > 0, θ, β > 0 (1.3)

The rest of the article is structured as follows. In Section 2, we defined the Inverse Lomax
Exponentiated G Family. Some new models based on the IL-EG family are derived in section 3.
Whereas Section 4 presents a mixture representation of the cdf, some of the mathematical properties
of the Inverse Lomax exponentiated G (IL-EG) family including the reliability and inequality
measures, quantile function, moments, moment generating function, order statistics and entropies
are given in Section 5. The estimation of the parameters of the IL-EG family using the method
of maximum likelihood follows in Section 6, The results of a Monte Carlo simulation study using
the new Inverse Lomax Exponentiated Burr III (IL-EBIII) model are presented in Section 7. In
Section 8, we applied the IL-EBIII to two real-world datasets and compared its performance with
some existing distributions. Lastly, Section 9 concludes the paper.
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2 The Inverse Lomax Exponentiated G (IL-EG) Family

In this section of the paper, we derived the Inverse Lomax Exponentiated G Family of distributions
as well as the probability density function (pdf), cdf, hazard function (hf), reversed hazard function
(rhf), survival function (sf), and cumulative hazard functions (H) were displayed.

Let M(x; υ) and m(x; υ) be the baseline cdf and pdf, and let ~ζ be a vector of parameters i.e
~ζ = (θ, β, υ, λ)T , let r(f) be as defined in equation 1.2. Then we define the cdf J(x; ζ) of the IL-EG
family of distributions as

J(x; ζ) =

∫ [
M(x;υ)

M̄(x;υ)

]λ
0

r(f)df =

(
1 + β

[
M̄(x; υ)

M(x; υ)

]λ)−θ
; x > 0, θ, β, λ, υ > 0 (2.1)

where θ, λ, and β are the three additional parameters. The corresponding pdf j(x; ζ) of IL-EG
family is obtained by differentiating Equation 2.1 and is given below:

j(x; ζ) =
θβλm(x; υ)M̄λ−1(x; υ)

Mλ+1(x; υ)

(
1 + β

[
M̄(x; υ)

M(x; υ)

]λ)−(θ+1)

(2.2)

The hazard function (v), reversed hazard function (r), survival function (s), and cumulative hazard
functions (K) are also presented below:

v(x; ζ) =
θβλm(x; υ)M̄λ−1(x; υ)

Mλ+1(x; υ)

(
1 + β

[
M̄(x; υ)

M(x; υ)

]λ)−(θ+1)
1−

(
1 + β

[
M̄(x; υ)

M(x; υ)

]λ)−θ−1

(2.3)

r(x; ζ) =
θβλm(x; υ)M̄λ−1(x; υ)

Mλ+1(x; υ)

(
1 + β

[
M̄(x;υ)
M(x;υ)

]λ) (2.4)

s(x; ζ) = 1−

(
1 + β

[
M̄(x; υ)

M(x; υ)

]λ)−θ
(2.5)

K(x; ζ) = −log[s(x)] = −log

1−

(
1 + β

[
M̄(x; υ)

M(x; υ)

]λ)−θ (2.6)

The quantile function (qf) of IL-Exponetiated G family can be derived by inverting Equation 2.1
as follows

Q(U) = M−1


1

1 +

[
U
− 1
θ −1
β

] 1
λ

 (2.7)

where M−1(.) is qf of the baseline distribution, U is uniformly distributed i.e U ∼ U(0, 1), and Eqt.
2.7 can be used to draw samples from IL-EG family of distributions for purposes of Monte Carlo
simulation studies.

3 Some IL-EG Sub-models

Here, we present three new sub-models of the IL-EG family of distributions: the Inverse Lomax-
Exponentiated Uniform (IL-EU) distribution, the Inverse Lomax-Exponentiated Weibull (IL-EW),
and the Inverselomax-Exponetiated Burr III distribution (IL-EBIII).
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3.1 The IL-EU Model

Suppose that the parent distribution is Uniform on (0, τ). Then

m(x; τ) =
1

τ
, τ > 0 0 < x < τ <∞

and
M(x; τ) =

x

τ
, τ > 0 0 < x < τ <∞

Then, the Inverse Lomax Exponentiated Uniform (IL-EU) distribution has the cdf given by:

JIL−EU (x; θ, β, λ, τ) =

(
1 + β

[(x
τ

)−1

− 1

]λ)−θ
(3.1)

For 0 < x < τ <∞
The corresponding pdf of Equation (3.1) is given by

jIL−EU (x; θ, β, λ, τ) =
θβλ

[
1− x

τ

]λ−1

τ
[
x
τ

]λ+1

(
1 + β

[(x
τ

)−1

− 1

]λ)−(θ+1)

(3.2)

0 < x < τ <∞ and θ, β, λ > 0 The v(x), K(x), and r(x) are given by

vIL−EU (x; θ, β, λ, τ) =
θβλ

[
1− x

τ

]λ−1

τ
[
x
τ

]λ+1

[
1−

(
1 + β

[(
x
τ

)−1 − 1
]λ)−θ]

(
1 + β

[(x
τ

)−1

− 1

]λ)−(θ+1)

(3.3)

KIL−EU (x; θ, β, λ, τ) = −log

1−

(
1 + β

[(x
τ

)−1

− 1

]λ)−θ (3.4)

rIL−EU (x; θ, β, λ, τ) =
θβλ

[
1− x

τ

]λ−1(
1 + β

[(
x
τ

)−1 − 1
]λ)

τ
[
x
τ

]λ+1
(3.5)

Fig. 1. Density and hazard rate plots of IL-EU distribution with fixed τ = 2 and
varying θ, β, and λ.
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Figs. (1.) illustrates the various shapes of the density and hazard functions of the IL-EU using some
selected parameter values. The density can be symmetric, J-shaped, and unimodal depending on
the parameter values chosen. This includes J-shaped and non-decreasing.

3.2 The IL-EW Model

If the parent distribution is Weibull, then

m(x; τ, α) = ταxα−1e{−τx
α}

and
M(x; τ, α) = 1− e{−τx

α}

. With x > 0, τ, α > 0, respectively. Then the IL-EW distribution has the cdf given by:

JIL−EW (x; θ, β, λ, τ, α) =

1 + β

[
e{−τx

α}

1− e{−τxα}

]λ−θ (3.6)

The corresponding pdf of Equation (3.6), the h(x), H(x), and r(x) are given by

jIL−EW (x; θ, β, λ, τ, α) =
θβλταxα−1e{−λτx

α}

[1− e{−τxα}]λ+1

1 + β

[
e{−τx

α}

1− e{−τxα}

]λ−(θ+1)

(3.7)

vIL−EW (x; θ, β, α, λ, τ) =
θβλταxα−1e{−λτx

α}[
1−

[
1 + β

[
e{−τxα}

1−e{−τxα}

]λ]−θ]
[1− e{−τxα}]λ+1

1 + β

[
e{−τx

α}

1− e{−τxα}

]λ−(θ+1)

(3.8)

KIL−EW (x; θ, β, λ, τ, α) = −log

1−

1 + β

[
e{−τx

α}

1− e{−τxα}

]λ−θ (3.9)

rIL−EW (x; θ, β, λ, τ, α) =
θβλταxα−1e{−λτx

α}[
1 + β

[
e{−τxα}

1−e{−τxα}

]λ]
[1− e{−τxα}]λ+1

(3.10)

Fig. 2. Density and hazard rate plots of IL-W distribution with fixed α = 3.5 and
τ = 2 and varying θ, β and λ.
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Fig. 3. cdf and survival function plots of IL-EBurr III distribution with fixed α = 3.5
and τ = 2 and varying θ, β and λ.

Fig. (2.) illustrates the various shapes of the density and hazard functions of the IL-EW based
on some selected parameter values. The density can be skewed to the right and fairly symmetry
(depending on parameters chosen). This include decreasing function. While Fig. 3. shows the cdf
and survival functions of the IL-EW distribution.

3.3 The IL-EBIII Model

Lastly, if the parent distribution is Burr III, then

m(x; τ, α) = ατx−(α+1)(1 + x−α)−(τ+1)

and
M(x; τ, α) = (1 + x−α)−τ

. With x > 0, τ, α > 0, then the IL-EBIII distribution has cdf given as:

JIL−EBIII(x; θ, β, λ, τ, α) =

(
1 + β

[(
1 +

1

xα

)τ
− 1

]λ)−θ
(3.11)

The corresponding pdf of Equation (3.11) is given as:

jIL−EBIII(x; θ, β, λ, τ, α) = θβλταx−(α+1)(1 + x−α)(λτ−1) [1− (1 + x−α)−τ
]λ−1(

1 + β
[
(1 + x−α)(τ) − 1

]λ)−(θ+1) (3.12)

The h(x), H(x), and r(x) are given by

vIL−EBIII(x; θ, β, λ, τ, α) =
θβλταx−(1+α)(1 + 1

xα
)(λτ−1)

[
1− (1 + x−α)−τ

]λ−1[
1−

(
1 + β [(1 + x−α)(τ) − 1]

λ
)−θ]

×
(

1 + β
[
(1 + x−α)(τ) − 1

]λ)−(θ+1)

(3.13)

KIL−EBIII(x; θ, β, λ, τ, α) = −log

1−

(
1 + β

[
(1 +

1

xα
)(τ) − 1

]λ)−θ (3.14)
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rIL−EBIII(x; θ, β, λ, τ, α) =
θβλταx−(α+1)(1 + x−α)(λτ−1)

[
1− (1 + x−α)−τ

]λ−1(
1 + β [(1 + x−α)(τ) − 1]

λ
) (3.15)

Fig. 4. Density and hazard rate plots of IL-EB III distribution with fixed α = 1.5 and
τ = 2 and varying θ, β and λ.

Fig. (4.) illustrates the different shapes of the density and hazard functions of the IL-W at various
parameter values.

4 Mixture Representations

In this section, we present the power series expansion of the IL-EG family by expanding Eqt. 2.1.
Using binomial expansion

(1 + y)−t =

∞∑
c=0

(
−t
c

)
y−t−c

(mathworld.wolfram.com/BinomialCoefficient.html)

J(x; ζ) =

∞∑
i=0

(
−θ
i

)
β−(θ+i)

[
M̄(x; υ)

M(x; υ)

]−λ(θ+i)

(4.1)

J(x; ζ) =

∞∑
i=0

(
−θ
i

)
β−(θ+i)M̄−λ(θ+i)(x; υ)Gλ(θ+i)(x; υ) (4.2)

since

M̄(x; υ)−λ(θ+i) =

∞∑
b=0

Γ (λ(θ + b+ i))

b!Γ (λ(θ + i))
Mb(x; υ)

Then, Eqt. (4.2) can be written as

J(x; ζ) =

∞∑
i,b=0

(
−θ
i

)
Γ (λ(θ + b+ i))

b!Γ (λ(θ + i))
β−(θ+i)Mλ(θ+i)+b(x; υ) (4.3)

Finally, Eqt. (4.3) can be written as

J(x; ζ) =

∞∑
i,b=0

ω(i,b)Λ(i,b)(x; υ) (4.4)
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where ω(i,b) =

(
−θ
i

)
Γ(λ(θ+b+i))
b!Γ(λ(θ+i))

β−(θ+i)β−(θ+i) and Λ(i,b)(x; υ) is the cdf of the exponentiated-

G family with power parameter (λ(θ+ i) + b). The corresponding IL-Exponentiated G pdf is given
by

j(x; ζ) =

∞∑
i,b=0

ω(i,b)δ(i,b)(x; υ) (4.5)

where δ(i,b)(x; υ) = [λ(θ + i) + b]m(x; υ)M [λ(θ+i)+b−1)](x; υ).

5 Mathematical Properties of IL-EG family

Here, we derived some of the mathematical properties of the IL-Exponentiated G family.

5.1 Moments

Suppose X denotes IL-Exponentiated G random variable with parameter space ζ, then the pth

moment about the origin is given by

E(Xp) =

∫ ∞
0

xpj(x)dx =

∫ ∞
0

xp
∞∑

i,b=0

ω(i,b)δ(i,b)(x; υ)dx, p = 0, 1, 2 . . . (5.1)

=

∞∑
i,b=0

ω(i,b)

∫ ∞
0

xp [λ(θ + i) + b]m(x; υ)M [λ(θ+i)+b−1)](x; υ)dx (5.2)

=

∞∑
i,b=0

ω(i,b)E(Zp(i,b)) (5.3)

where Zp(i,b) denotes the power-parameter Exp-G distribution λ(α+ i+ b)− 1.

5.2 Stress strength reliability

The reliability of stress strength is the likelihood of the part performing without fail, a defining
feature for a given stress level under specified conditions. The reliability of stress strength (RIL−EG)
is given as

RIL−EG = 1−
∫ ∞
−∞

 ∞∑
i,b=0

ω(i,b)δ(i,b)(x; υ)−
∞∑

i,b=0

ω(i,b)δ(i,b)(x; υ)
∞∑

i,b=0

ω(i,b)Λ(i,b)(x; υ)

 dx (5.4)

5.3 Moment generating function

we defined the moment generating function (mgf) of IL-Exponentiated G as

MX(t) =

∫ ∞
−∞

exp{tx}j(x)dx (5.5)

By expanding Equation 5.5 using Taylor series,

MX(t) =

∞∑
p=0

tp

p!

∫ ∞
−∞

xpj(x)dx (5.6)

Substituting Equation (5.3) into the definition of MX(t) yields

MX(t) =

∞∑
p=0

tp

p!
E(Xp) (5.7)
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5.4 Lorenz and bonferroni curves

Lorenz and Bonferroni curves are inequality measures that have application in econometrics and

insurance. Lorenz curve can be defined as LJ(r) =
∫ r
−∞ xj(x)dx

µ
, so the Lorenz curve for IL-EG

family can be expressed as

LJ(r) = Πi,b

∫ r

−∞
xm(x; υ)M [λ(θ+i)+b−1)](x; υ) (5.8)

where

Πi,b =

∑∞
i,b=0 ω(i,b) [λ(θ + i) + b]

µ

and the Bonferroni curve for IL-EG family is obtained as

BJ(r) = ∆i,b

∫ r

−∞
xm(x; υ)M [λ(θ+i)+b−1)](x; υ) (5.9)

where

∆i,b =
Πi,b

µ

5.5 Order statistics

Order statistics are used across other areas of statistical theory and procedures, for instance, in
identifying outliers across statistical quality control systems. Here, we extract the expressions in
closed form for the pdf of the pth order statistic of the IL-Exponentiated G family of distributions.
Suppose X1, X2, X3, X4 . . . Xn are random samples from a distribution with pdf j(x) and let
X1:n, X2:n, X3:n, X4:n . . . Xn:n denotes the corresponding order statistics from this sample of size
n, then

jp:n (x;ϑ) =
n!j(x)

(p− 1)!(n− p)!J(x)p−1 [1− J(x)]n−p (5.10)

where j(x) and J(x) are the pdf and CDF of the IL-EG distribution as in Eqt. (2.2) and Eqt. (2.1)
respectively. By utilizing the fact that

[1− J(x)]n−p =

n−p∑
k=0

(−1)k
(
n− p
k

)
J(x)k (5.11)

By substituting (5.11) in 5.10 we have

fp:n (x; ζ) =
n!j(x)

(p− 1)!(n− p)!

n−p∑
k=0

(−1)k
(
n− p
k

)
J(x)k+p−1 (5.12)

also, by substituting J(.) and j(.) as in Eqt. (2.1) and Eqt. (2.2), Eqt. 5.12 becomes

jp:n (x; ζ) =
n!θλβm(x; υ)M̄λ−1(x; υ)

Mλ+1(x; υ)(p− 1)!(n− p)!

n−p∑
k=0

(−1)k
(
n− p
k

)(
1 + β

[
M̄(x; υ)

M(x; υ)

]λ)−[θ(k+p)+1]

(5.13)
By enhancing the last term of Eqt. (5.13) and making some simplifications, we have

jp:n (x; ζ) =

n−p∑
k=0

∞∑
l,e=0

σ(kle)m(x; υ)M(x; υ)λθ(k+p)+l+e−1 (5.14)

56



Falgore and Doguwa; AJPAS, 9(4): 48-64, 2020; Article no.AJPAS.62454

where

σ(kle) = θλβ−[θ(k+p)+l](−1)k
(
n− p
k

)(
−[θ(k + p) + 1]

l

)
× n!Γ(λθ(k + p) + l + e+ 1)

(p− 1)!(n− p)!e!Γ(λθ(k + p) + l + 1)

(5.15)

and

m(.) and M(.) are the baseline pdf and cdf respectively.

5.6 Entropy

In this subsection, we consider the Renyi entropy by [27] and Shannon entropy by [28]. One
measure of unknown variance is the entropy of a random variable X. The Renyi entropy for IL-
Exponentiated G random variable is

IR(τ) =
1

(1− τ)
log

[∫ ∞
0

jτ (x)dx

]
, τ > 0 and τ 6= 1 (5.16)

where from Eqt. (2.2)

jτ (x) =

[
θβλm(x;υ)M̄λ−1(x;υ)

Mλ+1(x;υ)

(
1 + β

[
M̄(x;υ)
M(x;υ)

]λ)−(θ+1)
]τ

=
(θβλ)τmτ (x; υ)M̄τ(λ−1)(x; υ)

Mτ(λ+1)(x; υ)

(
1 + β

[
M̄(x; υ)

M(x; υ)

]λ)−τ(θ+1)

(5.17)

Eqt. (5.17) can be

jτ (x) =

∞∑
i=0

(
−τ(θ + 1)

i

)
β−(τθ+i) (θλ)τmτ (x; υ)M̄τ(λ−1)(x; υ)

Mτ(λ+1)(x; υ)

[
M̄(x; υ)

M(x; υ)

]−[λτ(θ+1)+i]

(5.18)

Then, by expanding fτ (x) using a similar process as in Sec. (4) and some simplifications, yields

IR(τ) =
1

(1− τ)
log

[
∞∑

j,i=0

ν(j,i)

∫ ∞
0

mτ (x; υ)M [τ(λθ−1)+i+j](x; υ)dx

]
(5.19)

where ν(i,j) = (θλ)τβ−(τθ+i)

(
−τ(1 + θ)

i

)
Γ(τ(λθ+1)+i+j)
j!Γ(τ(λθ+1)+i)

.

Shannon Entropy is a Unique Case of Renyi entropy when τ ↑ 1 given by

E {−log [j(x; ζ)]} = −log(θβλ) + E

[
−log

[
m(x; υ)M̄λ−1(x; υ)

Mλ+1(x; υ)

]]
+(1 + θ)E

[
log

(
1 + β

[
M̄(x; υ)

M(x; υ)

]λ)] (5.20)

6 Estimation

In this section, we present the maximum likelihood estimates (MLEs) of the parameters of the
IL-Exponentiated G distribution. Let x1, x2, x3, . . . , xn be the observed values of n observations

57



Falgore and Doguwa; AJPAS, 9(4): 48-64, 2020; Article no.AJPAS.62454

which are independently drawn from the IL-Exponentiated G distribution with parameter vector
~ζ = (θ, β, λ, υ)T . The log-likelihood function for ζ denoted by l(ζ) can be written as

l(ζ) = nlog(θβλ) +

n∑
i=1

log (m(xi; υ)) + (λ− 1)

n∑
i=1

log
(
M̄(xi; υ)

)
−(λ+ 1)

n∑
i=1

log (M(xi; υ))− (θ + 1)

n∑
i=1

log
(

1 + βW (xi; υ)λ
) (6.1)

Where W (xi; υ) =
[
M̄(xi;υ)
M(xi;υ)

]
. By using the partial derivatives of Eqt. (6.1) with respect to θ, β, λ,

and υ, we derived the components of the score vector U(~ζ) as follows

Uθ(ζ) =
n

θ
−

n∑
i=1

log
(

1 + βW (xi; υ)λ
)

(6.2)

Uβ(ζ) =
n

β
−

n∑
i=1

(θ + 1)W (xi; υ)λ

[1 + βW (xi; υ)λ]
(6.3)

Uλ(ζ) =
n

λ
+

n∑
i=1

log
(
M̄(xi; υ)

)
−

n∑
i=1

log (M(xi; υ))

−(θ + 1)β

n∑
i=1

W (xi; υ)λlog (W (xi; υ))

[1 + βW (xi; υ)λ]

(6.4)

Uυ(ζ) =

n∑
i=1

m′(xi; υ)

m(xi; υ)
+ (λ− 1)

n∑
i=1

M̄ ′(xi; υ)

M̄(xi; υ)
− (λ+ 1)

n∑
i=1

M ′(xi; υ)

M(xi; υ)

−λβ(θ + 1)

n∑
i=1

W (xi; υ)λ−1W ′(xi; υ)

[1 + βW (xi; υ)λ]

(6.5)

Setting Equations (6.2, 6.3, 6.4, and 6.5) to zero and also solving simultaneously yields the MLE
(ζ̂) = (θ̂, β̂, λ̂, υ̂) of ζ. However, these equations can’t be solved analytically. Therefore, statistical
software Can be used to find the maximum likelihood estimates of the parameters by using iterative
methods.

7 Monte Carlo Simulation

In this section, a Monte Carlo simulation study is conducted and the results are presented to show
the estimates’ performance at various true parameter values. The study is divided into three sets
as follows:

Set I, Set II, Set III have true parameter values (α= 0.5,β=0.8,λ=0.6,θ=0.5,τ=0.3),

(α=0.5,β=0.8,λ=1,θ=0.5,τ=0.3), and (α=0.5, β=0.8, λ=1.5,θ=0.5,τ=0.3), respectively.

The numerical study is described as follows:

(a). For true parameter values i.e ζ = (θ, β, λ, τ, α)T , we simulated a random sample of size n from
the IL-EBIII distribution using the quantile function defined in Equation (7.2).

(b). We then estimate the parameters of the IL-EBIII distribution from the sample using the
method of maximum likelihood.

(c). We conduct N=1,000 replications of steps (a) and (b).
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(d). For each of the five (5) estimated parameters of the IL-EBIII, from the N replicates, we compute
the mean estimate, Bias, and MSE. The statistics are given by

ζ̂ =
1

N

N∑
i=1

ζ̂i, Bias(ζ̂) = ζ̂−ζ, var(ζ̂) =

N∑
i=1

(ζ̂i − ζ̂)2

N
MSE(ζ̂) = var(ζ̂)+(Bias(ζ̂))2

(7.1)

where the vector of estimated parameters ζ̂iis the maximum likelihood estimate for each iteration
(n = 30, 70, 150, 300, 500, 1, 000).The qf for IL-EBIII is giving by

QIL−EBIII(u) =


1 +

[
U
−1
θ − 1

β

] 1
λ


1
τ

− 1


− 1
α

(7.2)

The simulation results are presented in Tables 1, 2, and 3, respectively. The simulation study
has shown that irrespective of the parameter values chosen, the Bias and MSE of the parameter
estimate for all the three sets decay as the sample size n increases. Thus, the larger the sample size,
the more consistent are the estimates of the parameters. The estimates are good as they approach
the true parameter values as the sample size increases.

Table 1. The Estimate, Bias, and MSE for set I(α= 0.5,β= 0.8,λ= 0.6,θ= 0.5,τ= 0.3)

n Properties α= 0.5 β= 0.8 λ= 0.6 θ= 0.5 τ= 0.3

30 Est. 1.1717 2.03398 0.7896 0.7288 0.7435
Bias 0.6717 1.2398 0.1896 0.2288 0.4435
MSE 1.574 6.6037 0.8519 0.8408 1.2019

70 Est. 0.9113 1.6316 0.7113 0.6565 0.6488
Bias 0.4113 0.8316 0.1113 0.1565 0.3488
MSE 0.7766 3.4006 0.4658 0.6116 0.6556

150 Est. 0.7792 1.3905 0.6737 0.5881 0.612
Bias 0.2792 0.5905 0.0737 0.0881 0.312
MSE 0.4255 1.8535 0.2989 0.4166 0.4855

300 Est. 0.7105 1.1838 0.6233 0.5419 0.5239
Bias 0.2105 0.3838 0.0233 0.0419 0.2239
MSE 0.2709 0.8453 0.1618 0.2858 0.2566

500 Est. 0.6347 1.0645 0.6084 0.533 0.4594
Bias 0.1347 0.2645 0.0084 0.033 0.1594
MSE 0.1261 0.4971 0.1061 0.1932 0.1548

1000 Est. 0.5911 0.9569 0.5758 0.5042 0.394
Bias 0.0911 0.1569 -0.0242 0.0042 0.094
MSE 0.0622 0.2008 0.0332 0.1012 0.0599
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Table 2. The Estimate, Biase, and MSE for set II(α= 0.5,β= 0.8,λ= 1,θ= 0.5,τ= 0.3)

n Properties α= 0.5 β= 0.8 λ=1 θ=0.5 τ=0.3
30 Est. 1.4412 1.6245 1.1759 0.6782 0.8079

Bias 0.9412 0.8245 0.1759 0.1782 0.5079
MSE 2.6513 4.2383 1.1416 1.0273 1.3354

70 Est. 1.0265 1.2616 1.0172 0.6585 0.8696
Bias 0.5265 0.4616 0.0171 0.1585 0.5696
MSE 1.1122 1.9054 0.6213 0.9150 1.3311

150 Est. 0.8979 1.1122 0.9883 0.5755 0.8403
Bias 0.3979 0.3122 -0.0117 0.0755 0.5403
MSE 0.7192 0.9267 0.5258 0.6176 1.0913

300 Est. 0.8283 0.9591 0.9589 0.5815 0.7008
Bias 0.3283 0.1591 -0.0411 0.0815 0.4008
MSE 0.5836 0.4116 0.3353 0.4841 0.6379

500 Est. 0.7203 0.8637 0.9730 0.4838 0.6947
Bias 0.2203 0.0637 -0.0269 -0.0162 0.3947
MSE 0.2989 0.2178 0.2959 0.3073 0.4889

1000 Est. 0.6586 0.7966 0.9528 0.4301 0.6474
Bias 0.1586 -0.0034 -0.0472 -0.0699 0.3474
MSE 0.1828 0.0702 0.1833 0.1737 0.3409

Table 3. The Estimate, Bias, and MSE for set III(α= 0.5,β= 0.8,λ= 1.5,θ= 0.5,τ=
0.3)

n Properties α= 0.5 β= 0.8 λ= 1.5 θ= 0.5 τ= 0.3
30 Est. 1.4391 1.2569 1.6937 0.9583 0.5010

Bias 0.9391 0.4569 0.1937 0.4583 0.2010
MSE 2.508 2.7242 1.6903 1.8852 0.5577

70 Est. 1.1474 1.1585 1.4818 0.7300 0.5234
Bias 0.6474 0.3585 -0.0182 0.2300 0.2234
MSE 1.6526 2.0107 0.9568 0.7806 0.5018

150 Est. 0.8332 1.0675 1.5153 0.6482 0.5117
Bias 0.3332 0.2675 0.0153 0.1482 0.2117
MSE 0.6868 1.2565 0.7752 0.5355 0.3264

300 Est. 0.7721 0.9496 1.4428 0.5522 0.4899
Bias 0.2721 0.1496 -0.0572 0.0522 0.1899
MSE 0.5209 0.7258 0.5103 0.2491 0.2113

500 Est. 0.6156 0.9266 1.5059 0.5474 0.4655
Bias 0.1156 0.1266 0.0059 0.0474 0.1655
MSE 0.1738 0.4906 0.3469 0.1954 0.1748

1000 Est. 0.5415 0.8809 1.5645 0.4952 0.4283
Bias 0.0415 0.0809 0.0645 -0.0048 0.1283
MSE 0.0796 0.3118 0.2350 0.0836 0.0935
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8 Application

We illustrate the application of the IL-EBIII distribution to two data sets; the data set of 20 patients
undergoing an analgesic injection which were given relaxation periods, as reported by [29] and [30],
and the data on strength of 1.5cm glass fiber as in [31] and [32].

We used an Adequacy Model package by [33] in R by [34]. The goodness of fit analytical measures
as highlighted in [33] was used in comparing the performances of the models. Smaller values of the
measures indicate better model fit. The estimated density plots of the data sets are presented in
Fig. (5). Note that the competing models are given in Table 4. For the two datasets considered in
this paper, the analytical measures and the estimated density plots suggest that the new IL-EBurr
III distribution outperforms its competitors.

Table 4. Competing Models with IL-EBIII distribution

Models References

GGBIII [35]
KUMBIII [36]

EBIII [37]
WBIII [38]

Table 5. MLEs and Log-likelihoods for the Data Sets

MLEs -log likelihood

Data Sets Models α β λ θ τ

ILEBIII 1.8535 1.5341 1.8968 1.4661 1.325 38.4202

GGBIII 0.0243 1.7414 1.1212 0.9092 1.4462 232.4185

EB 1.9389 1.7305 1.6034 1.9733 1.2482 46.4434

Glass fibre Data KBIII 1.5071 1.5899 1.7449 1.5068 59.7296

WBIII 0.3137 0.936 0.8037 0.4431 114.9281

BIII 1.967 1.9941 63.6613

ILEBIII 1.9879 1.5036 1.8778 1.4449 1.9033 16.8855

GGBIII 0.6807 1.5415 1.9878 1.9989 1.4101 19.2738

EBIII 1.5956 1.8298 1.6029 1.8135 1.2657 21.8749

Relief times Data KBIII 1.8729 1.8871 1.8786 1.889 20.8097

WBIII 0.7507 1.9059 1.223 1.7901 20.1203

BIII 1.3535 1.5242 32.9266

Table 6. Goodness of Fits Statistics for the Data Sets

Data Sets Models AIC CAIC BIC HQIC

ILEBIII 86.8404 87.8931 97.5561 91.0549

GGBIII 474.8369 475.8895 485.5526 479.0514

Glass fibre Data KBIII 127.4591 128.1488 136.0317 130.8307

WBIII 237.8561 238.5458 246.4286 241.2277

BIII 131.3225 131.5225 135.6088 133.0083

ILEBIII 43.7709 48.0567 48.7497 44.7429

GGBIII 48.5476 52.8333 53.5263 49.5195

EBIII 53.7499 58.0357 58.7287 54.7219

Relief times Data KBIII 49.6194 52.2861 53.6023 50.3969

WBIII 48.2406 50.9073 52.2236 49.0181

BIII 69.8533 70.5591 71.8447 70.242
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Fig. 5. Fitted Densities for the two data sets

9 Conclusion

In this paper, we proposed a new class of distributions called the Inverse Lomax-Exponentiated G
(IL-EG) Family of Distributions. This family can extend several widely known models. For instance,
we considered Weibull, Uniform, and Burr III as baseline distributions. We investigated some of its
structural properties like an expansion for the density function using power series expansion. Some
of the derived properties include Moments, Reliability, Moment generating functions, Inequality
measures, quantile function, entropies, and order statistics. We estimated the parameters using
the maximum likelihood method. The parameter estimates and the associated analytical measures
showed that the new model based on the two data sets outperformed its competitors, thereby
empirically showing the importance and value of the proposed family.
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