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Abstract 
 

This paper convolutes two generalized distributions from the family of generated T - X distribution. The 
new distribution generated from these distributions is called the Generalized Weibull-generalized 
Exponential Distribution. The properties of the proposed distribution are derived. Method of maximum 
likelihood estimation is used to estimate the parameters of the distribution and the information matrix is 
obtained. Thereafter, the distribution is applied to a real life dataset of failure for the air conditioning 
system and the obtained results are compared with other existing distributions to illustrate the capability 
and flexibility of the new distribution. 
 

 
Keywords: Asymptotic behaviour; generating function; moments; T – X distribution; information matrix. 
 

1 Introduction 
 
In literature, researchers have developed several distributions which are flexible in nature and good for 
fitting specific real life datasets using different methods namely: Logit of beta link function, generator 
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approach, exponential T-X. All of these methods were used to add one parameter or more into 
parent/baseline distribution. [1] introduced the beta link function to convolute two or more distributions to 
have a better distribution than the parent distribution. [2] developed beta Weibull distribution. Extended 
Beta-Pareto distribution was introduced by [3]. [4] worked on beta-exponential distribution. [5] worked on 
the beta weighted exponential distribution. The beta modified weighted Rayleigh distribution was also 
developed by [6] and so on. 
 
Furthermore, generator approach, which was used to introduce beta Normal distribution, was initiated by [7]. 
[8] and [9] used this same approach in their studies according to the literature. The exponentiated T-X 
approach was pioneered by [10] to propose a new method for generating family of continuous distributions. 
[11] used the method in their work. Hence, [12] introduced the generalized Weibull-exponential distribution 
based on the method. In this work, we also use the exponentiated T-X approach to define a new distribution 
namely: the generalized Weibull-generalized exponential (GWGE) distribution. 
 
The paper is arranged as follows: section two contains the GWGE distribution. In section three, we derive 
the following properties: distribution function, reliability function, hazard rate function, asymptotic 
behaviour, moments, generating function, skewness, kurtosis, estimation parameter and information matrix. 
Sections four and five contain the application of the distribution to a real data set and the conclusion. 
 

2 Materials and Methods 
 
2.1 The generalized Weibull-Generalized Exponential (GWGE) distribution 
 
Let X be a continuous random variable which follows the generalized exponential distribution by [13] with 
density function given as: 
 

f{��}{(�;β,μ)} =  βθ�1 – e(�θ(�)�
β��

e(�θ(�)                                                          (1) 

 
and the corresponding distribution function is 
 

F{��}{(�;β,μ)} =  �1 −  e(�θ(�)�
β
                                                                    (2) 

 
where, x >  0, �, � >  0. 
 
The exponentiated T-X distribution by [11] applied in [12] is given below as: 
 

f(x) =  
� α

γ

�(�)�{���}(�)

���{�}(�)

���� ������{�}(�)����
{α��}

γ
.{exp} ��− ��

�� ������{�}(�)��

γ
����

{α}

    α, c, γ and  x >  0         (3) 

 
We define the density function of the GWGE distribution by substituting equations (1) and (2) into (3) as a 
mixture/convolution of two existing distributions to obtain flexible, versatile and a good description of real 
life data. Here, the probability density function of the GWGE distribution is defined as: 
 

������(x) =  
c α

γ
 
βθe�θ(�)�1 − e�θ(�)�

β(���)��

1 − (1 − e�θ(�))β�
 �

− ln {(1 − (�1 − e�θ(�)�
β�

γ
�

α��

. 

exp − ��
��� {(��(�����θ(�)�

β�

γ
��

α

, β, θ >  0                                                                       (4) 

 
where α, β and c are shape parameters and �, and � are scale parameters respectively. Some special cases 
were emanated from the distribution when one or more parameter(s) equal to one. For instance; if: 
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(i) �= c = 1; the GWGE distribution yields generalized exponential (GE) distribution with parameters 

�
�

�
, �� 

(ii) � = � = 1; it reduces to exponentiated generalized exponential (EGE) distribution with parameters 

�
�

�
� [13,14]. 

(iii) c = 1; the GWGE distribution becomes generalized Weibull (GW) distribution with parameters 

�
�

�
, �, �� [15]. 

(iv) � = � = 1; we have Weibull (W) distribution with parameters �
�

�
, �� 

(v) � = � = � = 1; the GWGE distribution leads to exponentiated exponential (EE) distribution with 
parameters [14]. 

(vi) � = 1; GWGE distribution yields generalized Weibull-exponential (GWE) distribution with 

parameters �
�

�
, �, �� [12]. 

 
By integrating (4) over the range of X, if X has the pdf in (4) and the associating distribution function is 
investigated as follows: 
 

F{�����}
(�) =  P( X ≤ x) =  ∫ f{�����}

(�)��
�

�
                              (5) 

 

=  ∫
� α

γ

�

�
 
βθ��θ(�)�����θ(�)�

β(�� �)��

�������θ(�)�
β�  �

��� {(��(�����θ(�)�
β�

γ
�

α��

 exp − ��
��� {(��(�����θ(�)�

β�

γ
��

α

                (6) 

 
Since the distribution function of exponential distribution is  1 − e�θ(�)  therefore the cumulative density 
function (cdf) of the GWGE distribution is given as 
 

�{����� }(�) =  1 − {���} ��− ��
� ������������{�}�

��{�}�
��

�
����

�

                                                             (7) 

 
The Reliability function of GWGE distribution is 
 

�{����� }(�) =  1 − �{����� }{(�)} = 1 − ∫ �{����� }(�)��
�

�
                                                           (8) 

 

= 1 − �1 − {���} ��− ��
� �����������{�}�

�{�}
�

�
����

�

�                               (9) 

 

�{����� }(�) = {���} ��− ��
� ������������{�}��

�{�}
�

�
����

�

, � > 0                                         (10) 

 
While, the hazard rate function is given as: 
 

HD {�����}(x) =  
�{����� }(�)

���{����� }(�)
=  

�{����� }(�)

� {����� }(�)
                             (11) 

 
by dividing the pdf and cdf or reliability function as we have it in (11) above, part of the equation will 
reduce the equation and the hazard function of GWGE distribution is given in the expression (12) below 
 



 
 
 

Badmus and Faweya; AJPAS, 9(4): 65-75, 2020; Article no: AJPAS.62749 
 
 
 

68 
 
 

HD {�����}(x) =  
� α

γ
 
βθ��θ(�)�����θ(�)�

β(�� �)��

�������θ(�)�
β�  �

��� {(��(�����θ(�)�
β�

γ
�

α��

                           (12) 

 
The plots of the density function and hazard function are depicting in figure 1 below for different values of 
the parameters 
 

 
 

Fig. 1. Plots of the GWGE distribution densities in (a) and hazard rate function in (b) . Where 
a=� (shape 1 parameter), b=� (shape 2 parameter), c=c (shape 3 parameter), d=� (scale 1 parameter) 

and e=� (scale 2 parameter) 
 

3 Properties of the GWGED 
 
3.1 The asymptotic properties of the PDF and hazard function of GWGED 
 
Here, we examine the asymptotic properties of the GWGE distribution by study its behaviour as x tends to 
infinity and as x tends to zero by investigating the limiting behaviour of the distribution. 
 

�������→ ∞
��� (x) = ����→ ∞

c α

γ
 
βθe�θ(�)�1 − e�θ(�)�

β(���)��

1 − (1 − e�θ(�))β�
 �

− ln {(1 − (�1 − e�θ(�)�
β�

γ
�

α��

. 

exp − ��
��� {(��(�����θ(�)�

β�

γ
��

α

                                                                                                        (13) 

 

Meanwhile, by substituting infinity ∞  into x, the expression is ����→ ∞
� α

γ
 
βθ��θ(�)�����θ(�)�

β(�� �)��

�������θ(�)�
β� =

 0,  and with � →  0 ; the limit is lim�→ �
� α

γ
 
βθ��θ(�)�����θ(�)�

β(�� �)��

�������θ(�)�
β� =  0 . Also, for hazard function 

lim
� →  ∞

 HD {�����}(x) = lim
�→  �

HD {�����}(x)   =  0. This indicates that GWGE distribution has at least one 

mode. It implies that the density function of the GWGE distribution is unimodal that is any peak is a mode. 
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3.2 Moments 
 
We derive the s-th moments of the GWGED via the moment generating function (mgf) as: 
 

M {�}(t) =  E�e(��)� =  ∫ e(��)f{�����}(x)dx
∞

�
                     (14) 

 

= ∫ e{��}
c α

γ
 
βθe�θ(�)�1 − e�θ(�)�

β(���)��

1 − (1 − e�θ(�))β�
 �

− ln {(1 − (�1 − e�θ(�)�
β�

γ
�

α��

. 

exp − ��
− ln {(1 − (�1 − e�θ(�)�

β�

γ
��

α

�� 

 

set � = �− �
��� {(��(�����θ(�)�

β�

γ
��

α

 

 
Then, 
 

= � e{��}
∞

�

c α

γ
 
βθe�θ(�)�1 − e�θ(�)�

β(���)��

1 − (1 − e�θ(�))β�
 � �� .��  �� 

=
c α

γ
 
βθe�θ(�)�1 − e�θ(�)�

β(���)��

1 − (1 − e�θ(�))β�
 � �� = � e{��} .�� ��

∞

�

 

 

where, ∫ e{��} .�� ��
∞

�
= 1. Therefore, above expression yields: 

 

�� =
γ(1 − �1 − e�θ(�)�

β�
)

c αβθe�θ(�)(1 − e�θ(�))β{(���)��[− ln (1 − ((1 − e�θ(�))β�]
�� 

 
Furthermore, expression (14) can be written as: 
 

M {�}(t) = � e�
�

(1 − (1 − e�θ(�))(β�)��)

∞

�

�� 

 

� �(�) = 1 + ∑
(�)�

�!
�∑

(�)�

�!
�

�

�
�

�

∞
��� ∑

(�)� ��

�!
�

�

�
�

�

Γ �1 +
�

���
�∞

� �� �∞
���                             (15) 

 
where (t)(�) = t(t+ 1) … (t+ j− 1), as stated in [12]. Hence, taking the s-th derivative of (15) and t = 0 the 

sth moments is gives as: 
 

�(� �) = ∑
��

���

(�)�

�!
�∑

(�)�

�!
�

�

�
�

�

∞
��� ∑

(�)� ��

�!
�

�

�
�

�

Γ �1 +
�

���
�∞

� �� �∞
���                             (16) 

 
The expected value of GWGED is: 
 

�(�) = ∑
�

�
�∑

(�)�

�!
�

�

�
�

�

∞
��� ∑

(�)� ��

�!
�

�

�
�

�

Γ �1 +
�

���
�∞

� �� �∞
���                             (17) 

 
Also, the associating variance of the GWGED is: 
 

���(�) = ∑
�(�� (�)�� (�))

�
�∑

(�)�

�!
�

�

�
�

�

∞
��� ∑

(�)� ��

�!
�

�

�
�

�

Γ �1 +
�

���
�∞

� �� �∞
���              (18) 
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While the quantile function, skewness and kurtosis of the GWGED are given respectively as follows: 
 

� (�) = − ln (1 − �1 − �
��

��� (����)

�
�

� ��

�

(��)��

 

 

Following the quantile in [10,11,12] by setting λ = �
�

�
,

�

�
,

�

�
�. The skewness and kurtosis of the GWGED are: 

 

SK{�����}(x) =
� (�.��)��� (�.�)�� (�.��)

� (�.��)�� (�.��)
                             (19) 

 
and 
 

KUR {�����}(x) =
� (�.���)�� (�.���)�� (�.���)�� (�.���)

� (�.��)�� (�.��)
                            (20) 

 

3.3 Parameter estimation and information matrix 
 
We consider the five-parameter GWGE distribution and re-written λ =   γ��  for easy mathematics: 

λcαβθ�����1 − �����
���

�1 − �����
��

��� �− �− ��� �1 − �1 − �����
��

���
�

. 

 

Invariably, we then denote the MLEs of   α,    β, θ, c, λ  as α�, �� , θ�, c�, λ�  respectively. Let X(�), ..., X(�) be a 

random sample of size n from GWGED α,    β, θ, c, λ therefore the log-likelihood function �(�, �, �, �, �) is 
 

�(�, �, �, �, �) = ����(�) + ����(�) + ����(�) + ����(�) + ����(�) − � �(��)

�

���

 

+ (� − 1) � log�1 − �����

�

���

− � log (1 − ����)

�

���

+ (� − 1)��� � log(1 − �1 − �����
��

)

�

���

 

 

− ���� ∑ log(1 − �1 − �����
��

)�
���                 (21) 

 
Taking first partial derivative in (21) with respect to �, �, �, �, � and equating to zero, we obtain the normal 
equations as follows: 
 

��

��
=

�

�
+ ��� ∑ log(1 − �1 − �����

��
)�

��� − ��� ∑ log�1 − �1 − �����
��

� = 0�
���            (22) 

 

��

��
=

�

�
+ � log�1 − �����

�

���

+ (� − 1)���� � log(1 − �1 − �����
��

)

�

���

 

+ ����� ∑ log�1 − �1 − �����
��

� = 0�
���                                                                      (23) 

 

��

��
=

�

�
�� + �� + (� − 1) ∑

������

��������

�
��� − (� − 1)������ ∑

����������
��

�����������
��

�
= 0�

���           (24) 

 
��

��
=

�

�
+(� − 1)���� ∑ 1 − �1 − �����

���
��� − ����� ∑ 1 − �1 − �����

���
��� = 0                       (25) 

 
��

��
=

�

�
+(� − 1) ∑ 1 − �1 − �����

���
��� − � ∑ 1 − �1 − �����

���
��� = 0                                       (26) 
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We equally obtained the second derivatives of �(�, �, �, �, �) in appendix below. 
 
The Newton-Rapson algorithm can also be used to solve the non-linear equations simultaneously as we had 
considered the second derivative of �(�, �, �, �, �). The variance-covariance (information matrix) ���is given 
as: 
 

�(�, �, �, �, �) = �

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

���

���

���

����

���

����

���

����

���

���

���

����

���

����

���

����

���

���

���

����

���

����

���

����

���

����

���

����

���

����

���

����

���

����

���

����

���

����

���

����

���

����

���

���

���

����

���

����

���

��� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

              (27) 

 

4 Application to Real Data 
 
The data set consists of 118 numbers of successive failures for the air conditioning system of each member 
in a fleet of 13 Boeing 720 jet air planes as recorded in [16] and can be found in [17]. The data is used only 
for illustrative purposes and numerical analysis is done using R software. 
 
Tables 1 and 2 below contain the descriptive statistics and the maximum likelihood estimates (MLEs) with 
associating standard errors in parentheses of the distribution parameters. 
 

Table 1. Descriptive Statistics for failures of air conditioning system 
 

Min Q1 Median Mean Q3 Max Skewness Kurtosis 

1.00 20.75 54.00 92.07 118.00 603.00 2.139207 8.23109 

 
Table 2. MLEs of the distribution parameters, the associating SEs (given in parentheses) and the 

statistic-2LogL, AIC, BIC and CAIC 
 

Distribution Estimate Statistic 
�� �� �� �� �� − ����� ��� ��� ���� 

GWGED 0.596  
(3.823) 

2.597  
(0.262) 

1.597  
(1.900) 

0.081 
(0.000) 

0.597 
(1.881)  

103103 206210.0 206228.9 206229.9 

GWED 0.556 
(4.723) 

 1.556 
(4.713) 

0.045 
(0.000) 

3.056 
(0.003) 

231374 462751.7 462766.7 462767.7 

EGED  1.621 
(2.595) 

1.622 
(2.596) 

0.028 
(0.000) 

 182146 364295.2 364306.5 364307.5 

EED   1.594 
(0.132) 

0.084 
(0.000) 

 442200 884401.2 884408.7 884409.7 

GWD 0.546 
(0.092) 

2.546 
25.921 

 0.152 
(0.000) 

1.546 
(0.093) 

711896 1423795 1423810 1423811 

GED    0.100 
(0.000) 

2.500 
(1.112) 

352106 704214.6 704222.1 704223.1 
 

WD 0.596 
(3.105) 

  0.094 
(0.000) 

2.596 
(3.093) 

542250 1084504 1084515 1084526 

ED  3.631 
(0.066) 

 0.185 
(0.003) 

2.631 
(0.003) 

200327 4006535 4006546 4006547 
 

 
The values appeared in Table 1 are the descriptive statistics of the data set we used. Where min (1.00) is the 
minimum number in the observations in the data set, Q1(20.75) is the first quartile, median (54.00) is the 
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middle observation, Q3 (118.00) the third quartile, max (603.00) the maximum observation, skewness 
(2.139207) and Kurtosis (8.23109) the peak of the observations which is above normal peak. 
 
The values in the Table 2 above reflect the estimation of parameters and model selection criteria: AIC, BIC 
and CAIC which of course the values of the GWGED are smaller compared with those values of the other 
distributions. Therefore, the GWGED seems to be a very good representative distribution to these data. 
Meanwhile, plots of the estimated PDF and CDF of the GWGED and other distributions fitted to these data 
and are given in Fig. 2. Also, GWGED display superiority to the other distributions in terms of fitting. 
 

 
 

Fig. 2. Plots of the estimated PDF and CDF of all Models considered in the study 
 

5 Conclusion 
 
We are able to introduce a new distribution generated from exponentiated T-X approach called generalized 
Weibull-generalized exponential distribution by inserting weibull distribution into the exponentiated T-X by 
[11] and used in [12]. In the research work, some of the properties of the new distribution were presented. 
Hence, some known and unknown special cases such as: generalized Weibull-exponential distribution by 
[12], generalized exponential distribution by [13] and [14], generalized Weibull distribution [15] and 
exponentiated exponential distribution [14] and Weibull and exponential distribution were emanated from 
the new distribution. In the study, we also obtain the following: distribution function, reliability function, 
hazard rate function, asymptotic behaviour, moments, generating function, skewness and kurtosis. The 
distribution parameters were estimated using maximum likelihood and information matrix is investigated. 
An application to a real data set of 118 failures air conditioning system of each member in a fleet of 13 
Boeing 720 jet air planes were used and the GWGE distribution proved superior to the fits of its major sub-
distributions. Without doubt, the proposed GWGE distribution provides better fits to the data set than its 
sub-cases. 
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