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Abstract: COVID-19 affects aviation around the world. China’s civil aviation almost recovered to its
pre-epidemic levels in the domestic market, but there are still local outbreaks that affect air traffic.
This paper proposes measuring the impact of local outbreaks of COVID-19 by the machine learning
method and the synthetic control method as a counterfactual control group to measure such an
impact. In this study, we use the LightGBM algorithm to construct a counterfactual control group and
transform the prediction problem from time series to the fitting problem at the spatial level. We find
that machine learning methods can measure such an impact more accurately. We take local outbreaks
in Beijing and Dalian as examples, and our measure of their impacts shows that the impact of an
outbreak on intercity air traffic can be divided into lag, decline, stable, and recovery periods, and will
last for a long period (more than 40 days) unless there are external stimuli, such as legal holidays.
The outbreaks reduced the number of passengers in the cities by 90%. Finally, we show the impact
on the air traffic network, and find that when a local outbreak happens in a big city, tourist cities or
small stations will be greatly affected.

Keywords: COVID-19; LightGBM; machine learning; local outbreak; Chinese aviation market

1. Introduction

International air networks and the number of air passengers have expanded and
increased, respectively, dramatically due to globalization and increasingly liberalized
bilateral air service agreements (ASAS). Such domestic and international air connectivity
allows people to travel around the world easily, stimulating trade and people-to-people
exchanges, but it may also facilitate infectious diseases to spread rapidly around the world.
International air travel has acted as an important medium to contribute to the fast spread
of several pandemics in the past, for example, SARS in 2013 and H1N1 in 2009 [1–3]. The
COVID-19 outbreak in early 2020 caused significant disruption to economic activity; the
aviation market has been hit particularly hard. Scholars have studied the influence of
COVID-19 around the world, such as its impact on domestic and international U.S. air
travel [4–6] as well as policies in or its impact on Europe [7–9]. In a study on COVID-19
focused on aviation, Sun et al. [10] reviewed more than 110 items of literature and found
that the current research on the impact of COVID-19 on the aviation market is mainly
focused on (1) the analysis of the global air transport system during COVID-19 [11,12];
(2) the impact of COVID-19 on the passenger-centric flying experience [13–15]; and (3) the
long-term impact of COVID-19 on the aviation market [16–20], etc. China was the first
country to be hit by COVID-19. Under a number of the controlling measures, the epidemic
in China has recovered relatively well, and the resumption of work and production has
been carried out simultaneously. However, the epidemic has experienced several stages of
rebound due to factors that were beyond control. Zhang et al. [21] plotted the changes in
the number of air passengers throughout the year from 2018 to 2020. It can be found that,
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after May 2020, the overall number of air passengers in China recovered well, and several
inflection points of reduced passenger flow all corresponded to local epidemic outbreaks.
We further plot air passengers from 2018 to 2021 in Figure 1, which also shows that local
outbreaks affect the total air demand.
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Therefore, it is obvious that a sudden local epidemic hurts the recovery of the avia-
tion market. With the rapid spread of COVID-19 and the gloomy global situation, local
outbreaks are no longer an accident. Studying the impact of local outbreaks on urban
air passenger flow can not only guide transportation organizations on the trend of pas-
senger numbers in the future during the epidemic—such as airlines and urban airports
being able to provide plans to adjust flight frequency and airport operation as well as
maintenance—but also help air passengers make more reasonable travel plans.

The changing of air passengers is uncertain in the context of COVID-19. Therefore, the
main problem that we need to study is evaluating the changing of air traffic demand after a
city is affected by a local outbreak. In order to exclude the impact of the natural increase in
tourists during the recovery period on our assessment, we used a classic research method
in economics to regard the outbreak of COVID-19 as a policy variable, and divided the
research objects into two groups. The group affected by a local outbreak is the experimental
group; by finding a control group not affected by the epidemic policy, we can obtain the
treatment effect by finding the difference between the two. Here, we assume that the only
difference between this two is the policy. However, the control group is difficult to find in
practice. For example, in our study, an outbreak had already occurred in a certain city, so it
is difficult for us to obtain a control group that was not affected by the epidemic and had the
same changed trend in air traffic as the experimental group. Therefore, economists study
the effects of policies by constructing counterfactual experimental groups. The difference-
in-differences (DID) method is one of the most widely used methods by scholars [13]. In
this method, the areas affected by the policy can be defined as the experimental group,
while the areas not affected by the policy can be defined as the control group. Meanwhile,
the difference between the experimental group and the control group before and after
the policy treatment can be compared. However, for DID research methods, it is difficult
to solve the problem of selective bias. Taking China as an example, the geographical
location, population, and economic level of cities vary greatly, making it difficult to directly
screen out a matched control group. For the deficiency of the DID method, Abadie and
Gardeazabal [22] proposed a new method to identify the effect of policies—the synthetic
control method (SCM). The synthetic control method also has drawbacks. For example,
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because the synthetic control method uses a weighted method to synthesize virtual controls,
it is largely unable to synthesize “extreme” virtual controls. The defect of the above two
methods can be avoided by predicting the changing trend of the experimental group and
constructing a counterfactual control group. There is a linear and nonlinear method to
predict the changing trend, and the machine learning prediction method is a nonlinear
method that can improve the accuracy of counterfactual estimation in recent years [23,24].

In our study, we used machine learning to predict the air traffic demand of cities and
its changing trend in the absence of outbreaks. This group can be seen as a counterfactual
experimental group. The impact of a local outbreak on urban air traffic is the difference
between the actual air demand and the counterfactual group.

When we use the machine learning method to predict the trend of air traffic in cities
with local outbreaks, the following difficulties need to be solved: (1) Due to the incubation
period and lockdown policy of COVID-19, the impact of a local outbreak may be long-
term, so we need to predict the long-term trend of air passenger traffic as a counterfactual
experimental group after a local outbreak through a machine learning algorithm. (2) Due to
the lack of historical data and the dramatic growth in the recovery period, it is difficult to
make predictions from time series. (3) Air transport is a network structure. Local outbreaks
not only affect the inbound and outbound passenger flows of urban airports, but also
change the flow at the airline level. In order to solve the above problems, we transformed
the prediction problem from time series to the fitting problem at the spatial level. We used
the LightGBM algorithm to fit the air traffic demand of target cities through those cities not
affected by local outbreaks.

This model has the advantages of fast computing speed, small memory occupation,
and difficulty in overfitting, and is suitable for our research background. At the same time,
in order to reduce the network’s influence, we need to assume that a sudden outbreak in a
city and other cities have spatial dependence, the means of processing and forecasting a
dataset are in the training dataset, and we need to remove the stay fit of a city to obtain the
clearance between local epidemic breakouts in a city. Moreover, in training, we also need to
remove the spatial dependencies associated with an epidemic from a city.

We introduce research on causal inference through the machine learning method into
the field of air transportation in this study. We construct a counterfactual experimental
group of urban air passenger demand in the case of a local outbreak through the LightGBM
method and evaluate the impact of a local outbreak on urban air demand. Finally, we
select two local outbreak cities (Beijing and Dalian) as case studies and compare them with
synthetic control methods to verify the effect of our policy evaluation method.

The main structure of this paper includes the following parts: Section 2 is a review
of the literature. Section 3 introduces the research method, which includes information
on how to construct a counterfactual group, how to predict air traffic demand, and how
to measure the impact. We select the local outbreaks in Beijing and Dalian as cases that
can show the method that we use and the impact that we want to measure. Section 5 is
the conclusion.

2. Literature Review

In order to exclude the impact of the natural increase in tourists during the recovery
period on our assessment, we use a classic research method from economics to regard
the outbreak of COVID-19 as a policy variable, and we divided the research objects into
two groups. The difference-in-differences (DID) method is one of the most widely used
methods by scholars [13]. The DID method has been widely used in airline competition
and policy analyses. For example, Yan et al. [25] and Ma et al. [26] treated an airline merger
as a treatment policy and used the DID method to investigate the fare effects of mergers.
However, for DID research methods, it is difficult to solve the problem of selective bias in
order to solve the problem of selectivity deviation. Abadie et al. [22] developed a synthetic
control procedure for estimating the effect of a treatment, in the presence of a single treated
unit and a number of control units, with pretreatment outcomes observed for all units. This
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method constructs a set of weights, such that covariates and pretreatment outcomes of the
treated unit are approximately matched by a weighted average of control units. The weights
are restricted to be non-negative and total one. The synthetic control method has been
widely used in policy evaluation. Borbely [27] applied the synthetic control method to the
change in air travel passenger volume under the influence of an air tax. When we regard an
emergency as a policy and study its impact on a specific city, we can make an appropriate
linear combination of several major cities to construct a better “synthetic control region”
and compare a “real city” with a “synthetic city”. For example, Xin et al. [28] studied and
estimated the impact of COVID-19 on the daily passenger volume of urban rail transit
(URT) through the synthetic control method. However, the synthetic control method also
has defects. For example, because the synthetic control method uses the weighted method
to synthesize a virtual control group, and the weighted coefficient is one, a virtual control
group with an “extreme value” cannot be synthesized.

Therefore, how to obtain a set of counterfactual experimental groups that is closer
to reality is one of the difficult problems in the research. In this paper, we construct a
counterfactual experimental group by predicting the air demand of a city without a local
outbreak and study the impact of an outbreak on the city. In terms of air transportation
demand prediction on the country or city level, there exists a large amount of literature. The
existing studies that focus on linear forecasting include a variety of univariate, multivariate,
and panel regression OLS models [23,29], ARIMA models [30], gravity models [31–33], and
so on. Although this kind of method has achieved good prediction results, its prediction
accuracy needs to be improved for nonlinear cases. The change in aviation demand is
nonlinear, so it is challenging research to analyze air demand and its growing trend in
the recovery period. These nonlinear methods are mainly based on the framework of
machine learning, such as artificial neural networks [34], support vector regression [35],
and so on. There are also some machine learning algorithms used in the prediction of
road traffic demand, such as long and short memory [36]. Researchers report that the
machine learning methodologies adhere more closely to the actual transportation demands
of air traffic than the econometric ones. Alekseev and Seixas [37] researched air demand
forecasting for Brazil based on simple OLS regression and artificial neural network (ANN)
models, and found that ANNs provide more accurate forecasts of future air transportation
demand than the econometric models. Srisaeng et al. [38] predicted Australia’s low-cost
carrier passenger demand and revenue passenger kilometers (RPKs) performance using
traditional econometric and artificial neural network (ANN) methods, and they found
that the prediction performance of the ANN model was better than that of the traditional
multiple linear regression (MLR) approaches.

There are also some hybrid methods to improve the accuracy of prediction, such
as Xie et al. [39] using hybrid seasonal decomposition and least squares support vector
regression approaches, which predict short-term air passenger demand; they found that
hybrid approaches are better than other time series models.

In addition, various graph neural networks based on the characteristics of air transport
networks are also used to predict the number of passengers at the node or route level.
ConvLSTM was used to deal with a temporal and spatial network of airlines [40]. However,
ConvLSTM is very complex and requires a large amount of training data. With the increase
in network depth, the training cost will increase significantly, which limits the depth of the
network and the ability to capture a wide range of spatial–temporal correlations. The traffic
demand prediction of road networks is also faced with the problem of a short prediction
time. Zhao et al. [41] considered temporal–spatial correlations with the LSTM approach in
a traffic system via a two-dimensional network for short-term traffic forecasting. However,
the network model based on LSTM cannot effectively capture the remote time correlation,
so it cannot make long-term predictions.
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3. Data Description and Research Method
3.1. Data Description and Processing

The passenger data used in this paper were retrieved from UMETRIP, which is the
largest aviation data service company in China. It is a technical company which is jointly
operated by China TravelSky Holding Company Limited and TravelSky Mobile Technol-
ogy Limited. Both are state-owned companies that operate air ticket booking and are
integrated with IATA’s global air ticket reservation system. It provides daily air travel
service information and monitors more than 12,000 domestic flights in China as well as
60,000 flights every day. For more information, please refer to the following website:
https://www.umetrip.com (accessed on 28 April 2022). The database contains the weather
and number of air passenger departures from various cities in China from 1 May to 1 Oc-
tober 2020. We also collected the grade data, geographical location, and GDP of urban
airports from the Civil Aviation Administration of China and the 2019 urban statistical
yearbook. The cities and research periods of the local outbreaks in the study are shown in
Table 1.

Table 1. Research period.

City Local Outbreak Time Research Period Days

Beijing 11 June 2020 1 May 2020 3 August 2020 95
Dalian 22 July 2020 11 June 2020 13 September 2020 95

After a local outbreak affects Beijing, the number of passengers departing from airports
on routes connected with Beijing will also change due to the network structure. Therefore,
if the city affected by the local outbreak is i, and a city not affected by the local outbreak is j,
we divide the number of passengers of city j into two types: the first is the total number of
passengers departing from city j, and the second is the number of passengers excluding the
air passenger departures from j and arrivals at city i. At the same time, we also introduce
factors that affect the number of air traffic volumes in predictions. These mainly include
weather, GDP, and the geographical location of the airport.

Weather: Extreme weather may affect the number of passengers. For example, in
the case of strong typhoon weather, flights may be canceled, which reduces the number
of passengers.

GDP: The GDP of a city can be used as one of the indicators to measure the con-
sumption capacity of a city. The greater the consumption capacity of a city, the greater the
possibility of traveling by air.

The geographical location of a city: In this paper, the geographical location of an
airport where a city is located is identified according to the air traffic control bureau, which
is specifically divided into East China, North China, South China, Central China, northwest,
southwest, northeast, and Hong Kong, Macao, and Taiwan. We use these data to exclude
the impact of policy differences between different air traffic control bureaus.

We also obtained the data of outbreaks through the statistics of Dingxiangyuan
in China.

3.2. Research Method

When portraying the effect of a local outbreak of COVID-19 on aviation demand, we
can regard it as a policy variable. When a city suffers from a local outbreak, the number
of air passengers departing from a city will be reduced due to restrictive travel policies
and a reduction in passengers’ travel willingness. When we quantitatively analyze this
impact, we should also consider the dynamic change process of air passengers and the
natural growth in the recovery period. In order to eliminate the influence of natural growth,
we borrow the idea of a random experiment from economics. We suppose that there are
two groups of experimental subjects: one group (the experimental group) is affected by
the policy, while the other group (the control group) is not affected by the policy. The only

https://www.umetrip.com
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difference between the two groups is the policy, and the treatment effect of the policy is the
difference between the two. However, a randomized controlled experiment will have some
difficulties in practice. For example, in our study, if an outbreak has occurred in a certain
place, there will be no change trend for air traffic in real life. Therefore, economists’ study
of the treatment effect of policy by a random experiment was used, and a counterfactual
experimental group (control group) was constructed. In our study, the synthetic control
method and the machine learning prediction method are used to construct the control
group of a counterfactual experiment to study the treatment effect of an outbreak, and the
two are compared. Finally, we extended the impact of a local epidemic on a single city to
other stations in China.

3.2.1. Definition of Impact

First, we define the impact of a COVID-19 local outbreak. Assuming that a city with a
local outbreak is i and the time point of the local outbreak is t1, the variation curve of the
actual departure demand of air passengers in city i with time t1 is fi(t). The time period, T,
we studied is from a t0 moment before an outbreak to a t3 moment after an outbreak. If there
is no local outbreak in city i, the curve of air passenger departure demand changing with
time t is f ′ i(t). Therefore, we have fi(t)= f ′ i(t) when t ∈ [t0,t1], and f ′ i(t)= fi(t)+Impacti(t)
when t ∈ [t1,t2]. Here, Impacti(t) refers to the changes of departure demand due to the
local outbreak of city i. It can be written as:

Impacti(t) = f ′ i(t)− fi(t) t ∈ [t1, t2] (1)

Due to the different airport sizes in the outbreak cities, the throughput of air passengers
is also different. In order to make the impact values comparable, the relative impact values
are calculated as follows:

rImpacti(t)=
Impacti(t)

f ′i (t)
(2)

3.2.2. Prediction of Counterfactual Group

In previous studies the machine learning method has usually been used for the time
series prediction of air passenger demand. The historical dataset is divided into two parts:
the first part is the training set, and the second part is the test set. In the training set, the
law and logic of the air passenger demand changing trend is obtained, and the prediction
error is obtained through the test set. However, COVID-19 in 2020 is an occasional event,
and there are relatively few data available since domestic restrictions were lifted in May
and aviation demand began to recover. However, when the number of available data
is small, the time series prediction also has its limitations. During the recovery period,
the departure demand of cities presents a very obvious growing trend. If only a time
series prediction is made, the long-term forecast value may be too high. Therefore, we
abandon the traditional cyclic neural network algorithm and use the LightGBM algorithm
to construct the proportion relationship of passenger flow between the city to be predicted
and other cities from the spatial level. The air passenger flow of the local outbreak city,
i, was predicted from the spatial dimension and the time dimension at the same time.
The characteristics and training time used in the prediction are described in Section 3.1.
We want to predict f ′i (t), which is the number of air passengers departing from the local
outbreak city, i, and it is also a continuous value prediction problem. This being the case,
we have:

f ′i (t) = F( f1(t), . . . . . . , fm(t), β1(t), . . . . . . , βn(t), α1(i), . . . . . . , αn(i)) (3)

Here, f ′i (t) is a function related to the following three parts: (1) the air passenger
number of other cities f1(t), . . . . . . , fm(t); (2) the external characteristics of other cities,
β1(t), . . . . . . , βn(t); and (3) the external characteristics of city i, α1(i), . . . . . . , αn(i). Since the
changing trend of time, T, will affect the prediction results, time, T, is not included in the
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data training process in our study: that is, for Equation (3), we have ∂F
∂t = 0. In addition,

when we fit the local outbreak city, i, through other cities, the data we use have removed
those numbers connected with city i. The training logic is shown in Figure 2:
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Here, f1, . . . . . . , fm represents the departure demand of selected cities 1 to m,
β1, . . . . . . , βm is the characteristics reflecting traffic demand, such as the weather, GDP, and
so on, and α1, . . . . . . , αn are those characteristics that reflect the traffic demand of city i,
such as weather, GDP, departure date, and so on. Our training set period is from 1 May
2020 to 5 June 2020, and the test set is from 6 June to 10 June.

3.3. Synthetic Control Method

The synthetic control method allows factors such as the changing over time, or those
factors that cannot be observed. We can overcome the control object of sample selection
bias and not being observed in other factors caused by the endogeneity problem through
synthetic control. The data used in this paper are the air passenger departure data of all
airports in China. However, the weather or GDP data are missing for the small cities.
Therefore, before conducting research through the synthetic control method, it is necessary
to sort out and screen the full data of all cities in China. Firstly, urban airports are classified
according to the classification of airport grade by the Civil Aviation Administration of
China. The two cities studied in this paper are Beijing and Dalian. Both of the airports in
Beijing are 4F-level airports, while Dalian has 4E-level airports. Therefore, airports with a
level above 4E are preferentially selected as research objects. On the other hand, due to the
small number of flights at airports below 4D and the limited level of airport informatization,
the number of passengers on many dates was missing in the process of data collection,
and the urban weather record is not perfect. The GDP of small cities is also missing from
China’s statistical yearbook, so all 4F and 4E airports, airports, and cities in China are
retained in the calculation, as shown in Table 2. For comparison, the variables used in the
synthetic control method are consistent with the eigenvalues used in machine learning.

The synthetic control method was first applied in the research of Abadie et al. [22]
(2010). In our study, we assume that in the research period, T, there are N + 1 cities, and
that the air traffic of city i is affected by a local outbreak. Yit is the real air traffic volume that
we can observe after a local outbreak, and YN

it represents the potential outcome without a
local outbreak. Suppose that T0 is the time at which the intervention was applied.

The observed outcome, Yit, in region I at time t can be written in two parts; αit is the
estimated effects (αit) of the intervention:

Yit = YN
it + αitDit (4)
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Table 2. Airport level and city.

Airport Level Airport Code and City

4F
PEK (Beijing), PVG (Shanghai), CAN (Guangzhou), CKG (Chongqing), KMG (Kunming), CTU (Chengdu), WUH
(Wuhan), CGO (Zhengzhou), TNS (Tianjin), HGH (Hangzhou), SZX (Shenzhen), XIY (Xian), NKG (Nanjing), CSX

(Changsha), KWL (Guilin), and HKG (Xianggang)

4E

TPE (Taibei), SHA (Shanghai), XMN (Xiamen), TYN (Taiyuan), TNA (Jinan), SHE (Shenyang), HFE (Hefei), ZUH
(Zhuhai), HAK (Haikou), SYX (Sanya), CZX (Changzhou), NNG (Nanning), NGB (Ningbo), LHW (Lanzhou),

TAO (Qingdao), FOC (Fuzhou), KHN (Nanchang), WUX (Sunan), INC (Yinchuan), YNT (Yantai), CGQ
(Changchun), XUZ (Xuzhou), DDG (Dandong), YTY (Yangzhou), LXA (Lasa), DSN (Erdos), KHG (Kashgar), SJW
(Shijiazhuang), KWE (Guiyang), DLC (Dalian), HRB (Harbin), HET (Hohhot), WNZ (Wenzhou), URC (Urumqi),

TLQ (Turpan), and MFM (Macao)

The potential outcome due to predictors, YN
it , can be written as:

YN
it = δt + θtZi + λtµt + εit (5)

where δt is a constant factor across all units, Zi is a vector composed of the predictors not
affected by the intervention, µt is a vector of the unobserved predictors, and θt as well as λt
are two vectors of coefficients. Dit is a dummy variable with a value of 1 if unit i is exposed
to the intervention, and a value of 0 otherwise. εit is an error term.

Estimating the effect of the intervention with the synthetic control method requires
the creation of a “synthetic control unit”, which is a weighted combination of other units
that are not exposed to the intervention. The estimation process for vector W is proposed in
the literature [22], as is the significance of the estimation. The estimation of W is achieved
by Stata 15.0 using the “synth” command.

At last, the impact of the local outbreak on air traffic is shown in Equation (6):

αit = YN
it −Yit (6)

3.4. Goodness of Fit

In the synthetic control method, the outputs of the “synth” command include W,
variables’ balance, and the root mean square prediction error (RMSPE). The RMSPE is the
average of the root-squared discrepancies between Yit in the treated unit and its synthetic
counterpart YN

it during T periods, and is written as follows:

RMSPE =
√

∑T
i=1(Yit−YN

i t)2/T (7)

By comparison, we also get the mean square prediction error (RMSPE) in the Light-
GBM method:

RMSE =
√

∑T
i=1( fi(t)− f ′i (t))

2/T (8)

where ( fi(t) is the actual number of air passengers departing from city i on the day, t, before
the outbreak, and f ′i (t) is the number of air passengers departing from city i on the day, t,
obtained through the machine learning method.

3.5. Estimation of the Impact on Aviation Network

Assume that a city affected by a local outbreak is i, and that a direct air route between
the city to be estimated is j and i. In our research period, t ∈ [t0,t2], the outbreak point is t1,
so city j will also be affected by correlation when t ∈ [t1,t2].

If the actual volume of air passengers departing from city j is Qj(t), t ∈ [t0, t1], Qj_i(t)
is the traffic volume of city i without passengers from j to i. In the interval, t ∈ [t1, t2],
Qj(t) is the number of passengers actually observed after being affected by the epidemic
in city i. The relative influence of city i with an outbreak obtained in the previous paper
is rImpacti(t).
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First, we estimate the air traffic volume between city i and city j if there is no epidemic
in city i:

Qij= Qj(t)−Qj_i(t)/1− rImpactj(t) t ∈ [t1, t2] (9)

We have the traffic volume of city j without a local outbreak:

Q′ j(t)= Qj(t)/1− rImpactj(t)+Qj_i(t) t ∈ [t1, t2] (10)

Then, we have a related impact of city i to city j:

RImpactj(t)=

Qj(t)−Qj_i(t)
1−Impactj(t)

∗rImpacti(t)

Qj(t)−Qj_i(t)
1−rImpactj(t)

+Qj_i(t)
t ∈ [t1, t2] (11)

Finally, we have:

RImpactj(t)=
(Qj(t)−Qj_i(t))∗RImpacti(t)
Qj(t)−Qj_i(t)∗RImpacti(t)

t ∈ [t1, t2] (12)

4. Discussion and Result
4.1. Fit Appropriateness

In the synthetic control method, the square root of the prediction error (RMSPE) can
be used to determine whether the method is appropriate. When the RMSPE is too large,
it proves that the difference between the city to be studied and the synthetic city is large,
and that the synthetic control method is not applicable. In this paper, the RMSPE is used
to explore the fitting situation of Beijing and Dalian before their outbreaks. The result in
the two cities is shown in Table 3. For Beijing, the RMSPE is large, even two orders of
magnitude more than machine learning. This proves that, in the pre-epidemic fitting part,
this method is not applicable to study the number of air passengers departing from Beijing.
The difference of the RMSPE between the two methods is small when studying Dalian,
indicating that the synthetic control method can be used to fit the variation trend in Dalian.

Table 3. Square root of the prediction error, RMSPE.

City LightGBM SCM

Beijing 517.8607 20,742.86

Dalian 749.8749 933.8532

4.2. Air Traffic Demand Prediction of LightGBM

When machine learning is used to predict air passenger departures as the control
group of counterfactual experiments, the difference between predicted and actual values
cannot be known, especially for the prediction of long time series. We compared the
predicted number of air passengers departing from Beijing and Dalian after the outbreak in
2020 with the historical number of air passengers departing from the same period in 2019.

According to our forecast, since 1 May 2020 the number of air passengers in Beijing
has gradually recovered, as the domestic epidemic was under control and restrictive travel
policies have been relaxed. If there were no local outbreaks, the number of air passengers
departing from Beijing would have returned to the historical level in mid-to-late July
(Figure 3). However, according to the actual results (Figure 1), the number of air passengers
departing from Beijing would have returned to the historical level only in the Golden Week
of National Day (the Golden Week of National Day is between 1 October to 7 October
every year; it is a seven-day vacation). On the other hand, we can see from Figure 3
that the number of air passengers departing from Beijing is relatively stable in the same
period of history, and that our predicted value is consistent with it in the long time series,
without obvious overestimation or underestimation. As we know, forecasts of air passenger
departures from time series can be overestimated by rapid growth rates during the recovery
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period, and it is difficult to provide stability over time. Therefore, after we abandon the
prediction problem of time recursion and shift it to spatial fitting, the predicted value
obtained is more consistent with that fact, and it is still stable from the long time series 105.
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Similarly, the predicted value of Dalian in 2020 is consistent with the historical level of
the same period in 2019 (Figure 4), which proves that our predicted value is stable in the
long term.
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4.3. The Impact of Local Outbreaks on Air Passenger Volume
4.3.1. The Impact on Beijing

Beijing reported 269 cases of COVID-19 caused by foreign food on 11 June 2020. The
number of air passengers in Beijing has dropped sharply with the city’s rising risk level and
stricter entry as well as exit policies. We draw the time series of real air traffic and predicted
traffic before and after the local outbreak in Figures 5 and 6. The difference between this
two is the impact, and it is also dynamic.
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By observing the fitted value and the actual value of the number of air passengers in
Beijing before the local outbreak in Figures 5 and 6, it can be found that the fitted value of the
synthetic control method has a large deviation from the actual value, and the fitting curve
obtained by the machine learning method has a better overlap with the actual curve. This
is also consistent with the results of the RSMPE of the two methods. The machine learning
method is superior to the synthetic control method for constructing the counterfactual
group of air passenger volume in Beijing. This is mainly because the synthetic control
method treats the weighted combination of selected cities, and the weighted coefficients
add up to one. Therefore, a better fitting value cannot be obtained when the outcome is the
largest among all of the research objects, such as Beijing Airport being the busiest airport in
China. As the capital of China, Beijing has two 4F-level airports, namely Beijing Capital
Airport and Beijing Daxing Airport, ranked first in terms of land area and population
economy. The only city likely to match Beijing in terms of air passenger departures is
Shanghai. Shanghai also has two airports, namely Shanghai Pudong Airport and Shanghai
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Hongqiao Airport. One of them is a 4F airport and the other is a 4E airport. However,
through previous research on the siphoning effect in the Beijing–Tianjin–Hebei region and
the Yangtze River Delta, it was found that Beijing Airport has a strong siphon effect on
surrounding cities, but that Shanghai does not. The final model results also showed that
the cities that used to fit Beijing before the outbreak, in addition to their weights, were
Shanghai (0.844) and Harbin (0.156). However, considering the passenger carrying capacity
of the airport and the travel intentions of the passengers around the city, the number of air
passengers departing from Shanghai may be smaller than that of Beijing, which also leads
to the underestimation of the fitting value given by this combination by about 20,000 people
before the outbreak of the epidemic. In addition, due to those geographical and economic
reasons, the number of Beijing’s aviation passengers grew faster in the recovery period, so
we cannot obtain a suitable “synthetic Beijing” fitting of other cities.

After the outbreak of the epidemic, the overall value and changing trend of the Beijing
air passengers fitted by the synthetic control method were lower than those fitted by
the machine learning method. This is mainly due to the two following reasons: First, the
goodness of fit of the synthetic control method was very low before the epidemic. Especially
after 20 May, when the number of air passengers in Beijing increased significantly, the
fitted value was completely separated from the actual value, and both the actual number
and growth trend of air passengers were lower than the actual value. Second, the overall
growth trend of the “synthetic Beijing air passenger flow curve” fitted by the synthetic
control method is linear, which leads to a large deviation between the two when the actual
Beijing air passenger flow increases substantially. With the underestimated synthetic control
method, the air passenger volume of Beijing obtained by the fitting coincides with the
actual air passenger volume in our research period. The number of air passengers at the
overlap is about 80,000. This means that, when studying the impact of the outbreak on air
passengers in Beijing through the synthetic control method, the impact of the outbreak on
the number of air passengers in Beijing disappeared on the 50th day after the outbreak.
However, there is still a big gap between the actual value obtained by machine learning and
the predicted value. The predicted air passenger throughput of Beijing is 100,000, which is
still nearly 40,000 more than the actual air passenger throughput of Beijing. The predicted
results show that the impact of the outbreak on air passengers in Beijing is more long-term.

4.3.2. The Impact on Dalian

According to the result of the RMSPE, this model can be used to study the local
outbreak in Dalian. The changing trend of air passengers when the outbreak happened
on 22 July 2020 in Dalian is shown in Figures 7 and 8. After the outbreak in Dalian on
22 July, we can see that the trend of the control group fitted by the synthetic control method
is lower than that predicted by the machine learning method. According to the predicted
value of Dalian in 2020 and the actual outbound volume in 2019 observed in Section 4.1,
we believe that the machine learning method does not overestimate the traffic volume.
From the perspective of the synthetic control method, according to the calculation results
reported by Stata, the cities that synthesized the air passenger flow of Dalian on the day
before the epidemic were 27.7% from Harbin, 19.4% from Taiyuan, 1.7% from Wuhan, 35.2%
from Yantai, 10.4% from Yangzhou, and 5.6% from Shanghai. The traffic volume departure
from Dalian increased rapidly in the middle of July, but the combined traffic volume of
these cities did not have such a growth trend, which eventually led to the underestimation
of the traffic. This may be because the synthetic control method is only a linear weighted
combination of other cities and cannot take into account the flow changes caused by some
urban characteristics. From the change curve of our actual air departure volume, we can
see that, after entering July, the number of air passengers increases rapidly, and this is the
peak season of Dalian as a coastal tourist city. Because the characteristic function we added
in machine learning includes the traffic change trend of holidays, the number of passengers
in Dalian increases rapidly in the prediction. However, among the cities used to fit Dalian
in the synthetic control method, Yantai is the only city affected by season and tourism
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characteristics, which cannot show the changes of Dalian well. Of course, this difference
may also be caused by a slight deviation in the data that we used. In the synthetic control
method, our original data are domestic airports above 4C in China, but for the machine
learning algorithm, the data we use are the whole of China. Synthetic control methods
need high-quality data, but machine learning does not. Finally, we can see that, due to the
underestimation of the passenger flow by the synthetic control method, the impact of the
decline in the number of passengers caused by the outbreak has disappeared on the 60th
day after the outbreak, but there is still a certain quantity difference between the actual
Dalian air passenger flow and the air passenger flow predicted by the machine learning
method (excluding the fluctuation value) 60 days after the outbreak. This is also consistent
with our research on Beijing.
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process. For example, from Figures 7 and 8 the predicted values of the machine learning
method and synthetic control method after 20 August can be seen. The air passenger flow
predicted by machine learning shows a downward trend after 20 August and reaches a
peak between 26 August and 2 September. The synthetic control method is in sudden
decline at a certain point in time. This is mainly because, in the machine learning method,
the prediction of air passenger flow is still a multidimensional problem. In addition to
considering the change in air traffic in the fitting city, it also takes the weather as the
influencing factor. In the fitting process before the epidemic, machine learning obtained
the logic that bad weather will reduce air passenger flow. Therefore, when many typhoons
transit after 20 August, machine learning predicts that this bad weather will lead to a large
number of flight cancellations or delays, resulting in a sharp decline in the number of air
passengers. Of course, there is also a decline in the flow in the synthetic control method,
which may be due to the transit of typhoons, which also reduces the passenger flow of
some cities used to fit Dalian, but this change is mainly related to the flow of the fitting city
and cannot directly reflect the change in weather.

4.4. Impact of Local Outbreaks on Urban Air Passengers

As mentioned before, the machine learning method is better than the synthetic control
method as a counterfactual group, and we use the machine learning method to obtain the
impact of air passengers in this study. In order to see the changing trend more clearly and
eliminate the influence of prediction noise, we smoothed all of the predicted values by five
points and plotted the affected and relatively affected air passenger volumes in Beijing
and Dalian in Figures 9 and 10. As shown in Figure 9, the outbreak reduced the number
of air passengers departing from Beijing by 70,000 to 80,000, and reduced the number of
air passenger departures from Dalian by 20,000 to 25,000. With the epidemic situation
under control, there is still a gap of 50,000 to 60,000 passenger departures from Beijing and
5000 from Dalian within our research period. Considering the two together with the overall
flow of China in 2020 in Figure 1, it can be reasonably speculated that, if there is no local
epidemic, the number of air passengers in China may return to or exceed that at the same
period in history at the end of August.
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As the outbreak time in each city is different, we plot the time series relative impacts
of Beijing and Dalian in Figure 10, and uniformly set the outbreak node as day 42. The
specific outbreak time and the diagnosis of the epidemic in each city are shown in Table 4.
From the relative influence value, it can be found that Beijing and Dalian have certain
commonalities. For the first three days after the outbreaks, the predicted values and
the actual numbers of passengers departing from the airports are basically the same. At
this time, the impact of the outbreaks is close to zero, which is mainly due to the lag in
information reception. The affected value of passenger flow reaches its maximum at 7 days
after the outbreak, and the number of air passengers in both cities falls by more than 90%.
This is also the stage when air travel is restricted by the epidemic. Airlines have been
subject to a series of travel restriction policies, including, but not limited to, the closure
of some communities, residents in medium- and high-risk areas not being able to leave
the city, flight cancellations, etc. In addition, the peak impact of the epidemic lasted for
a long time. This is because the outbreak not only reduced the willingness of passengers
to travel, but also changed the risk levels of cities. The last commonality is that, after the
epidemic has been completely controlled, the outbreaks in Beijing and Dalian still reduce
the numbers of departure passengers by 30% to 40%.

Table 4. Epidemic situation in Beijing and Dalian.

Location Outbreak Date Numbers of
New Infections

No Cases for
14 Consecutive Days Duration Days

Beijing 11 June 2020 269 20 July 2020 39

Dalian 22 July 2020 57 19 August 2020 28

We can define that there are lag, decline, stable, and recovery periods after the local
outbreaks. Compared with the duration of the epidemic in Table 3, we found that the
decline period in Dalian is strictly consistent with the duration of the epidemic. The number
of air passengers begins to recover as the epidemic is completely over, which is mainly
because of the restrictive travel policies in Dalian. However, the number of passengers
at Beijing Airport beings to recover on the 23rd day after the outbreak. This is related to
the particularity of Beijing. As the capital of China, Beijing has a large area, from land to
population. According to the classification of risk level, Beijing’s non-high-risk areas can
still be released. When COVID-19 is under control, the air demand will recover early in
those areas without high risk. Finally, the impact of the outbreak has a huge long-tail effect.
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4.5. Impact of Local Outbreaks on Passengers on Air Routes

According to Equation (12), we calculate the impact of outbreaks in Beijing and Dalian
on air routes and plot the dynamic values in Figures 11 and 12. The peak impact of the
Beijing epidemic on the aviation network is on the sixth day after the outbreak. Compared
with Beijing itself, the impact on networks shows more of a lag period. The cities most
affected were Sanya and Guilin. The number of air passengers departing from these two
cities decreased by 45% due to the Beijing epidemic. Sanya and Guilin are both tourist
cities in China, which proves that a local outbreak has a great impact on the tourism
industry. In our research period, the city with the greatest long-term impact is Ordos,
followed by Sanya, Harbin, Yinchuan, and Guilin, which are tourist cities or small stations
in China. When an epidemic breaks out in Beijing, round-trip flights are canceled or tourism
demand is restrained, and the outbound demand of these cities will be greatly affected.
Especially for these small stations, they have few navigable cities, and Beijing is one of
their main navigable cities. When a flight is cancelled due to the epidemic, air traffic will
be greatly affected. For those cities with more daily round trips connected to Beijing, such
as Shanghai, they are only affected greatly in the early stage, and they may recover due to
better scheduling, coordination ability, and the large demand for departures. Therefore, for
a big airport, the long-term impact of an outbreak is relatively small.
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For Dalian, because it is an airport of a prefecture-level city, the number of navigable
cities and flights is small, it has little impact on the whole aviation network. The impact of
an outbreak in Dalian on its direct cities is less than 15%.

5. Conclusions

We describe the impact of COVID-19 local outbreaks on air demand by constructing
a counterfactual framework. In the research, we constructed a control group of the coun-
terfactual group through the synthetic control method and machine learning method at
the same time. In the comparison between the synthetic control method and the machine
learning method, we found that the synthetic control method cannot study Beijing, a city
with a special population, economy, airport composition, and urban scale. For prefecture-
level cities, such as Dalian, the synthetic control method is feasible, but it cannot match
the impact of weather and other external characteristics on air traffic. Through machine
learning, the air demand of the experimental group is closer to the fact, and the influence
impact is more accurate.

We transform the time series prediction problem into a spatial fitting problem through
the LightGBM algorithm, predicting the air demand of cities without a sudden epidemic,
which can avoid the problems of a small number of historical data and a short prediction
period. In the study, we found that the impact of a local outbreak on air passengers will not
disappear with the end of the epidemic, and that its impact is more long-term. After the
epidemic situation in China was basically controlled the restrictive policies were released,
and the number of air passengers began to recover. It can be found that the number of air
passengers in China has fully recovered to the historical level during the Golden Week
of National Day. According to the recovery trend of air passengers before the epidemic
and the conclusions obtained in this study, if there is no local outbreak the number of
air passengers in China may return to the historical level in August. By estimating the
impact of the outbreak on the aviation network, we found that if the outbreak occurs in
mega cities, it will have a great impact on the whole aviation network, especially in tourist
cities. Similarly, the ability of large stations to resist the impact of sudden outbreaks is also
stronger than that of small stations and tourist cities, such as Shanghai, Guangzhou, and
Shenzhen. For a prefecture-level city, such as Dalian, due to the relatively small number of
navigable cities and flights, the impact of the epidemic on the whole aviation network is
relatively small.

The aviation industry is not only one of the carriers of virus transmission but also one
of the industries most seriously affected by the epidemic. In particular, local epidemics
broke out in many places in China at the beginning of 2022, which had a significant impact
on China’s aviation industry, which was already on the right track. According to the
research of this paper, such an impact cannot be fully recovered from in a short time after
the epidemic is controlled. As we know, COVID-19 has a high socioeconomic impact in the
long and short terms [42], especially on tourism and its value chain (hotels, restaurants,
etc.), which are related to air transport activities that affect multiple sectors of the economy.
Our research also proposed that, when local outbreaks happen, tourism may lose a lot of
passenger flow. Therefore, if we want to restore the tourism economy, we must control
the epidemic.
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