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Abstract 
 

In this work a dynamical system of three bodies with decreasing mass with respect to time is deduced. 
The Jean’s law is applied onto equations of motion. The equations of motion in this case are differed from 
that with constant mass only by small perturbing force considered as the variation of mass. This system is 
solved by using Laplace and Inverse Laplace Transformation. An application is done on the Earth–Moon-
|Spacecraft system. The results obtained are compared with the previous work obtained by Explicit Rung-
Kutta method and it was in a good agreement. 
 

 

Keywords:  Laplace and Inverse Laplace transformation; dynamical systems; restricted three body problem 
(RTBP); perturbation methods. 

 

1 Introduction  
 
Jean [1] has considered the two-body problem with variable mass in the studying the evaluation of binary 
system, this enabled many important results from the physical and mathematical points. Omarov [2] has 
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considered the restricted two body problem of perturbed motion with variable mass and has shown                         
that permissible rates of mass variation of binary system exerts a  small perturbation on the motion of the 
binary. 
 
Singh [3] has studied linear and nonlinear stability of the libration points in the RTBP with variable mass. 
Then Singh and Leke [4] has studied the stability of the photo-gravitational effect on RTBP with the variable 
mass of the primaries. They have found their exist stability about the triangular libration points for 0	 ൏ 	ߤ ൏
௖ߤ  ௖  and not stable forߤ	 ൏ 	ߤ ൏ 		

ଵ

ଶ
, and they observed that the collinear libration points are unstable. Zangh 

et al. [5] have studied the triangular libration points under the effect of photo-gravitational with  the variable 
mass, their results provided that the motion around these points are unstable for the problem with constant 
mass, and evolved into the problem with decreasing mass. Recently Abouelmaged and Mostafa [6] have 
studied the dynamics of the third body with change in mass proposed by Jean’s law. They have obtained the 
locations of libration points, and they have found this points lie out-of-plane, in special case of a non-
isotopic variable of mass.  
 
In this work we use the Laplace Transformation who's developed by the French mathematician Pierre-Simon 
Laplace, this method is powerful tool for solving certain types of initial value problem. The strategy is to 
convert integral, differential and integral-differential equations into algebraic equations where solutions can 
be easily obtained. Then the Inverse Laplace Transform, can be applied to retrieve the solutions of the 
original problems. This makes the problem much easier to be understood, analyzed and solved. Laplace 
Transform are particularly effective on differential equations with forcing functions that are piecewise 
defined, periodic or impulsive. From this method we can find quantities solutions for the system of non- 
linear differential equations and we can study the stability about the libration points [7]. 
 
Definition. The Laplace transform of a function, f(t), for ݐ ൒ 0 is defined by  
 

׬ ݁ି௦௧݂ሺݐሻ݀ݐ
∞

଴                                                                                                                                     (1) 

 
Where 
 
 The improper integral must convergence (i.e. the limit exists and is finite) for at least one value of s. 
  t is real and called the time variable. 
  s is complex and called the frequency variable. 
 The resulting expression is a function of s, which symbolled by F(s).  

 
Definition. The Inverse Laplace transform of the function F(s) is given by 
  

ଵ

ଶగ௜
׬ ݏሻ݁௦௧݀ݏሺܨ
ఙା௜∞
ఙି௜∞                                                                                                                            (2) 

 
Where the integral is taken over a line in the region of convergence and ߪ is large enough that F(s) is defined 
for real ݏ ൒  .ߪ
 
This formula (integration in complex plane) is very difficult to be applied directly, so we will use a different 
approach. 
 
Lagrange has proposed a method that had never been used until then, that of considering only the distances 
between the three bodies rather than their absolute positions [8]. Through this method, he has found that 
there are exactly five different configurations, which give the probabilities of motion of the third body, and 
are called the five Lagrange points or five libration points [9].  
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Now, let us consider a coordinate system XYZ, with origin at CM (the center of mass of the two primaries) 
and the frame rotating relative to the initial space with angular velocity ߱ about Z axis. Without loss of 
generality we can choose the coordinates system such that X-axis lies along the line joining the primaries 
masses m1 and m2 [10]. 
 
 Let  
 

ሺ݉ଵܩ ൅ ݉ଶሻ ൌ 1; ߤ	 ൌ
௠మ

௠భା௠మ
; ଵ݉ܩ		 ൌ 1 െ ;ߤ ଶ݉ܩ							 ൌ  (3)                                                         ߤ

 
Let the distance between m1, m2 be unit distance, and the position of the satellite of mass m is given by the 
coordinates (X, Y, Z). Let the radius vector from m to m1 and from m to m2 be r1 and r2 respectively. The 
kinetic energy in the rotation frame of reference XYZ is given by 
 

 ܶ ൌ
ଵ

ଶ
	݉ሾሺݔሶ െ 	߱ሻ ൅ ሺݕሶ ൅ ሻଶݔ߱ ൅    ሶଶሿݖ

          =	
ଵ

ଶ
	݉ሾሺݔሶ ଶ ൅ ሶݕ ଶ ൅ ሶଶሻݖ ൅ ߱ሺݕݔሶ െ ሶݕ	ݔ ሻ ൅ ߱ଶሺݔଶ ൅  ሿ	ଶሻݕ

                   = ଶܶ		 ൅ 	 ଵܶ		 ൅ ଴ܶ		                                                                                                                           (4) 
 

Where 
 

ଶܶ ൌ
ଵ

ଶ
	݉ሺݔሶ ଶ ൅ ሶݕ ଶ ൅ 		;ሶଶሻݖ ଵܶ ൌ

ଵ

ଶ
	݉		߱ሺݕݔሶ െ ሶݕ	ݔ ሻ; 	 ଴ܶ ൌ

ଵ

ଶ
	݉߱ଶሺݔଶ ൅                                   (5)	ଶሻݕ

 
The potential energy is given by 
 

 ܸ			 ൌ 	െ݉ܩ	 ቀ
௠భ

௥భ
	൅

௠మ

௥మ
	ቁ                                                                                                                  (6) 

 
Where G is the gravitational constant 
 

ଵଶݎ  ൌ ሺݔ െ 1 ൅ ሻଶߤ ൅ ଶݕ ൅ ଶଶݎ			;ଶݖ ൌ ሺݔ െ ሻଶߤ ൅	ݕଶ ൅                                                          (7)		ଶݖ
 

݉ଵሺ1 െ ,ߤ 0, 0ሻ		ܽ݊݀	݉ଶሺߤ, 0, 0ሻ are coordinates of the finite bodies. We know that Lagrangian 
   

ܮ  ൌ ܶ െ ܸ	                                                                                                                                (8) 
 
Now, let us introduce the modified potential energy 
  

 ܷ ൌ ܸ െ ଴ܶ                                                                                                                                       (9) 
 

 ܷ ൌ െቂ
ሺଵିఓሻ

௥భ
൅

ఓ

௥మ
൅

ଵ

ଶ
	݉߱ଶሺݔଶ ൅  ଶሻቃ                                                                                          (10)ݕ

 
Then Lagrangian can be written in the form  
 

ܮ ൌ
ଵ

ଶ
	݉ሾሺݔሶ ଶ ൅ ሶݕ ଶ ൅ ሶଶሻݖ ൅ ߱ሺݕݔሶ െ	ݕݔሶ ሻ െ 	ܷሿ                                                                             (11) 

 
The equations of motion can be written in the form 
  

 
ௗ

ௗ௧
ቀ
డ௅

డ௫ሶ
ቁ െ

డ௅

డ௫
ൌ 0                                                                                                                          (12.1) 

 

 
ௗ

ௗ௧
ቀ
డ௅

డ௬ሶ
ቁ െ

డ௅

డ௬
ൌ 0                                                                                                                          (12.2) 
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ௗ

ௗ௧
ቀ
డ௅

డ௭ሶ
ቁ െ

డ௅

డ௭
ൌ 0                                                                                                                            (12.3) 

 
From Eq. (12.1), Eq. (12.2) and Eq. (12.3) we obtained, 
 

ሷݔ  ൅
௠ሶ

௠
	ሾݔሶ െ ሿݕ߱ െ ሶݕ2߱ ൌ െ	

ଵ

௠
  ௫                                                                                             (13.1)ݑ	

   

ሷݕ  ൅
௠ሶ

௠
	ሾݕሶ ൅ ሿݔ߱ െ ሶݔ2߱ ൌ െ	

ଵ

௠
 ௬                                                                                            (13.2)ݑ	

 

ሷݖ  ൅ 			
௠ሶ

௠
																								ݖ			 ൌ െ	

ଵ

௠
 ௭                                                                                             (13.3)ݑ	

 
Where 
 

௫ݑ 	ൌ െܽݓܯଶ ൅
ఓሺିଵା௔ାఓሻ

ሺ௖మା௙మାሺିଵା௔ାఓሻమሻయ/మ
൅

ሺଵିఓሻሺ௔ାఓሻ

ሺ௖మା௙మାሺ௔ାఓሻమሻయ/మ
                                                             (14) 

 

௬ݑ ൌ െܿݓܯଶ ൅
௖ఓ

ሺ௖మା௙మାሺିଵା௔ାఓሻమሻయ/మ
൅

௖ሺଵିఓሻ

ሺ௖మା௙మାሺ௔ାఓሻమሻయ/మ
                                                              (15) 

 

௭ݑ ൌ
௙ఓ

ሺ௖మା௙మାሺିଵା௔ାఓሻమሻయ/మ
൅

௙ሺଵିఓሻ

ሺ௖మା௙మାሺ௔ାఓሻమሻయ/మ
                                                                                (16) 

 
Now from Jean’s law 
  

ௗ௠

ௗ௧
ൌ െߙ	݉௡                                                                                                                                    (17)   

 
Then   
 

 
௠ሶ

௠
ൌ 	

ିఈ௠೙

௠
ൌ െ݉ߙ௡ିଵ ൌ െ(18)                                                                                                        ߚ 

 
Where ߙ is constant coefficient and the value of exponent n is lies in 0.4 ൑ ݊ ൑ 4.4		ሾ3ሿ. 
 

ሷݔ  ൅ ሶݔሾߚ െ ሿݕ߱ െ ሶݕ2߱ ൌ െ	
ଵ

௠
 ௫                                                                                              (19.1)ݑ	

 

ሷݕ ൅ ሶݕሾ	ߚ ൅ ሿݔ߱ െ ሶݔ2߱ ൌ െ	
ଵ

௠
 ௬                                                                                              (19.2)ݑ	

 

ሷݖ ൅ ݖ	ߚ ൌ െ	
ଵ

௠
  ௭                                                                                                                        (19.3)ݑ	

 
the above nonlinear system (19) can be solved by using Laplace Transformation. Beginning with Eq, (19.1) 
applying  Laplace Transformation, then  
 

ሷ	൛ܺܮ  ൟ ൅ ሶݔሼሺܮߚ െ ሻሽݕ߱ െ ሶݕሼܮ2߱ ሽ ൌ 	
ିଵ

௠
                                                                       ௫ሽݑሼܮ	

 ܵଶ	ܺሺܵሻ െ ሺ0ሻݔܵ െ ሶሺ0ሻݔ ൅ ሾܵܺሺܵሻߚ െ ሺ0ሻݔ െ ܻ߱ሺܵሻሿ െ 2߱ሾܻܵሺܵሻ െ ሺ0ሻሿݕ ൌ
ିଵ

௠ௌ
	 ௑ܷ	 

ሾܵଶ ൅ ሻݏሿܺሺܵߚ െ	 ሾ2߱ܵ ൅ ሿܻሺܵሻ߱ߚ െ ܽܵ ൅ ሾ2߱ܿ െ ߚܽ െ ܾሿ ൌ
ି௎ೣ
௠ௌ

                                         (20.1) 

 
Where ݔሺ0ሻ ൌ ܽ	; ሶݔ	 ሺ0ሻ ൌ ܾ; ሺ0ሻݕ		 ൌ ܿ;	 ሶݕ	 ሺ0ሻ ൌ ݀ 
 
Similarly, take the Laplace Transform for Eqs. (19.2), and (19.3) yields, 
 

 ߱ሾ2ܵ ൅ ሿܺሺܵሻߚ ൅ ሾܵଶ ൅ ሿܻሺܵሻܵߚ െ ܿܵ െ ሾܿߚ ൅ 2ܽ߱ ൅ ݀ሿ ൌ
ି௎ೣ
௠ௌ
	                                          (20.2) 
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 ሾܵଶ ൅ ܼሺܵሻ	ሿܵߚ െ ݁ሾܵ ൅ 1ሿ െ 	݂ ൌ
ି௎೥
௠ௌ

                                                                                       (20.3) 

 
Where ݁ ൌ ;	ሺ0ሻݖ 	݂ ൌ  ሺ0ሻ	ሶݖ
 
From Eqs. (20.1) , (20.2), and (20.3) after some little algebraic reductions Y(S), X(S) ,and Z(S) are obtained 
as,    
  

 ܻሺܵሻ ൌ
௠ௌ൛൫௖ሺௌమାఉௌ൯ି௔ሺఉఠାଶఠௌሻሻௌାሺఉఠାଶఠௌሻ௖భାሺௌమାఉௌሻ௖మൟା൛ሺఉఠାଶఠௌሻ௎ೣିሺௌమାఉௌሻ௎೤ൟ

௠ௌሼሺ௦మାఉௌሻమାሺఉఠାଶఠௌሻమሽ
                        (21) 

 

ܺሺܵሻ ൌ
௠ௌ൛൫௔ሺௌమାఉௌ൯ା௖ሺఉఠାଶఠௌሻሻௌିሼሺௌమାఉௌሻ௖భିሺఉఠାଶఠௌሻ௖మൟି൛൫ௌమାఉௌ൯௎ೣାሺఉఠାଶఠௌሻ௎೤ൟ

௠ௌሼሺ௦మାఉௌሻమାሺఉఠାଶఠௌሻమሽ
							                  (22) 

 

 	ܼሺܵሻ ൌ
௠ௌሾ௘ሺௌାଵሻା௙ሿି௎೥

௠ௌሺௌమାఉௌሻ
                                                                                                                  (23) 

 
Where ܿଵ ൌ ሺ2߱ െ ߚܽ െ ܾሻ;	ܿଶ ൌ ሺܿߚ ൅ 2߱ܽ ൅ ݀ሻ                                                                     (24) 

 
Take the Inverse Laplace Transform we obtained, 
   

  
                                                                                            

        
ሻݐሺݖ ൌ ଷܣ	 ൅ ݐସܣ െ ሿݐଷCoshሾܾଵଶܣ െ  ሿ                                                                       (27)ݐଷSinhሾܾଵଶܣ

 
Where A, A1, A2, A3, A4, B, B1, C, C1, C2, a1, b1, a11, b11, a12, b12, a13, b13, a14, b14, are constants evaluated 
from the initial condition and the locations of the libration points. 
 

3 Results and Discussion 
 
3.1 Numerical analysis  
 
The Explicit Rung-Kutta method is used to find the numerical solution for the system of the differential 
equations (19.1), (19.2) and (19.3), a code of Mathematica was constructed to obtain the Libration points and 
to study their stability. Another code to obtain the Laplace and Inverse- Laplace Transformation (analytical 
solution). These two codes are applied to the system Earth-Moon-Spacecraft in which the coordinates of the 
libration points are calculated and the stability conditions are taken into account.  
 

3.2 The collinear libration points (L1, L3 and L2)  
 
From the results obtained, it is found that the location of L1 at (0.9, 0). The stability of L1 is obtained 
analytically and numerically taken into account various values of the variation mass effect ( 	ሻ. Figs. (3.1.a) 
and Fig. (3.1.b) illustrate the stability about L1 for about 600 periods in both analytical and numerical 
methods (  ߚ ൌ െ0.1ሻ . Figs. (3.2.a) and Fig. (3.2.b) illustrates the stability of phase space of third body 
about L1 for the same  . In the same way the Figs.( 3.3.a), Figs( 3.3.b) , Fig.(3.4.a) and Fig.(3.4.b) illustrate 
the stability for about 400 periods with ߚ ൌ െ0.01. Similarly the Fig. (3.5.a), Fig.( 3.5.b),  Fig.(3.6.a) and 
Fig. (3.6.b) illustrate the stability and phase space of third body about L1 for about 100 period with ߚ ൌ
െ0.00001.  From the above rustles we conclude that the variation of mass have higher effected on the 
stability of the spacecraft about the libration point L1, an we found that there exist Inverse proportional 
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relation between the decreasing effected of the variation of mass and the stability of the spacecraft in the 
periodic orbit,  
  

 

Fig. 3.1.a. The analytic sol. x(t)  about L1 ,ࢼ ൌ
െ૙. ૚ 

 

 

Fig. 3.1.b. The numerical sol. x(t)  about L1 

ࢼ, ൌ െ૙. ૚ 

  
 

Fig. 3.2.a. The phase space about  L1 ,ࢼ ൌ െ૙. ૚ 

analytical 

 

Fig. 3.2.b. The phase space about  L1 =	ࢼ ൌ
െ૙. ૚,࢒ࢇࢉ࢏࢘ࢋ࢓࢛࢔ 

 

 

Fig. 3.3.a. The analytical sol. x(t)  about L1 ,ࢼ ൌ
െ૙. ૙૚ 

 

Fig. 3.3.b. The numerical sol. x(t)  about 
L1, ࢼ ൌ െ૙. ૙૚ 

  
Fig. 3.4.a. The phase space about  L1 ,ࢼ ൌ െ૙. ૙૚ 

analytical 
Fig. 3.4.b. The phase space about  L1 ,  

ࢼ ൌ െ૙. ૙૚numerically 
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Fig. 3.5.a. The analytical sol. x(t)  about L1 ,ࢼ ൌ

െ૙. ૙૙૙૙૚ 
Fig. 3.5.b. The numerical sol. x(t)  about 

L1, ࢼ ൌ ૙. ૙૙૙૙૚ 

 
 

Fig. 3.6.a. The phase space about  L1, 
ࢼ ൌ െ૙. ૙૙૙૙૚ analytical 

Fig. 3.6.b. The phase space about  L1, 
ࢼ ൌ െ૙. ૙૙૙૙૚ numerical 

 
In the same way, at L3 (- 0.9, 0) Fig. (3.7.a) and Fig. (3.7.b) also at L2 (1.2 ,0) Figs. (3.8.a) and Figs. (3.8.b) 
have   the same convolution from the results obtained as mentioned in the case of L1. 
 

Fig. 3.7.a. The analytic sol. x(t)  about L3, 
ࢼ ൌ െ૙. ૚ 

Fig. 3.7.b. The phase space about  L3 ,	ࢼ ൌ െ૙. ૚ 

analytically 

 

Fig. 3.8.a. The analytical sol. x(t)  about L2, 
ࢼ ൌ െ૙. ૚ 
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3.3 The triangular liberation points (L4 and L5)  
 

From the results obtained that at L4 ቀ0.8		,			
√ଷ

ଶ
ቁ , Fig. (3.9.a) and Fig. (3.9.b) shows that the variation of the 

general solution with the time, and it’s illustrates that the results obtained analytically and numerically. 
 

     
 
 
 
 

Fig.(3.10.a ) and Fig.(3.10.b)  illustrates the phase space about L4 with ߚ ൌ െ0.1 
 

             
 
 
         
 

In the same way, at L5 ቀ0.8		, െ
√ଷ

ଶ
ቁ  we found a periodicity behavior about this point. Fig. (3.11.a) illustrate 

the analytically solution obtained with ߚ ൌ െ0.1	and Fig. (3.11.b) illustrate the phase space with ߚ ൌ െ0.1.    
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Fig. 3.9.a. The analytical sol. x(t)  
about L4 ,ࢼ ൌ െ૙. ૚ 

Fig. 3.10.a. The phase space about L4, 
ࢼ ൌ െ૙. ૙૚	analytically 

ࢼ ൌ െ૙. ૚ 
Fig. 3.9.b. The numerical sol. x(t)  about L4, 

Fig. 3.11.a. Analytical sol. x(t)  
about L5 ,	ࢼ ൌ െ૙. ૚ 

Fig. 3.10.b. The phase space about L4, 
ࢼ ൌ െ૙. ૙૚ numerically 

Fig. 3.11.b. The phase space about 
L5 , ࢼ ൌ െ૙. ૚ 
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3.4 Trajectories around the libration points 
       
The trajectories about L2 and L4 are studied for different values of ߚ, Table [1.1] illustrates the result for L2, 
Fig. (3.12) and Fig. (3.13) illustrates trajectories about L2. 

 
Table [1.1] 

 
L2(1.2 ,0) ࢼ Eccentricity  Periodic time 

.1 0.99849 125.6637 

.01 0.99849 125.6637 

.001 1 125663.7061 
 

 
 
 
 
 

 
 
 
 
 
In the same manner Table [1.2] illustrates the results for L4, Fig. (3.14) and Fig. (3.15) illustrates the 
trajectories about L4.  
 

Table [1.2] 
 

L4(.8 ,
√૜

૛
 Eccentricity  Periodic time ࢼ (

.1 1 12566.37 

.01 0.40029 125.66 

.001 0.99597 1256.63 

.0001 0.99995 12566.370 

.00001 1 1256637.061 
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Fig. 3.12. The trajectory around L2(1.2,0) at  ࢼ ൌ. ૚ 

Fig. 3.13. The trajectory around L2(1.2,0) at  ࢼ ൌ. ૙૙૚ 
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3.5 Relation between the variation of mass (β) and the velocity 
  
The velocity is calculated for the different values of the variation of mass (β) at certain time. It's found there 
exist that the inverse relation between (β) and the velocity as shown in Fig. (3.16) and Fig. (3.17) at L2 and 
L4. And V0 represent the escape velocity of the spacecraft. 
 

 
 

Fig. 3.16. The relation between V at ઺ ൌ. ૚, . ૙૚. ૙૙૚, . ૙૙૙૚, . ૙૙૙૙૚ at L2 (1.2 ,0) 
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Fig. 3.14. The trajectory around L4(.8,
√૜

૛
) at  ࢼ ൌ. ૚ 

Fig. 3.15. The trajectory around L4(.8,
√૜

૛
) at  ࢼ ൌ. ૙૙૙૙૚ 
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Fig. 3.17. The relation between V at ࢼ ൌ. ૚, . ૙૚. ૙૙૚, . ૙૙૙૚, . ૙૙૙૙૚ at L4(.8 ,	√
૜

૛
) 

 

4 Conclusions      
     
It is s clear that the Laplace transforms method which has an important property and it is convergence (i.e.  
limit exists and finite for at least one value) this enables us to find the analytical solution for the system of 
non-linear ODEs.  This help us to study the libration points L1, L2, L3 at the same point and in the 
neighborhood and we find that, there exist stability at the libration points when the decreasing of the mass 
variation is considered, and we find that strong effect for the mass variation on libration points is existed, 
this variation take Inverse relationship between the value of mass variation (β ) and the velocity. At the 
Triangular points (L4, L5) there exists stability for a period of time and disturbance occurs when the value of 
mass variation increasing, we return this to two possibilities: firstly During the period of disturbance, the 
effect of the variation mass is strong in this period. Which cause the spacecraft moves from one orbit to 
another in this period and it is stable and so on again, in space mission this called maneuvers. The second is 
the variation of mass affect the velocity to change the motion of spacecraft i.e. accelerate this motion.    
 

Competing Interests 
 
Authors have declared that no competing interests exist. 
 

References 
 
[1] Jeans JH. Astronomy and Cosmogony (Cambridge). 1928;352. 
 
[2] Omarov TB. Two-body motion with corpuscular radiation. Soviet Astronomy. 1964;7:707.  
 
[3] Singh J. Photogravitational restricted three-body problem with variable mass. Indian Journal of Pure 

& Applied Mathematics. 2003;34(2):335-341.  
 
[4] Singh J, Leke O. Stability of the photogravitational restricted three-body problem with variable 

masses. Astrophysics and Space Science. 2010;326(2):305-314.  
 
[5] Zhang MJ, Zhao CY, Xiong YQ. On the triangular libration points in photogravitational restricted 

three-body problem with variable mass. Astrophysics and Space Science. 2012;337(1):107-113. 
   



 
 
 

Younis et al.; JAMCS, 27(3): 1-13, 2018; Article no.JAMCS.40842 
 
 
 

13 
 
 

[6] Abouelmagd EI, Mostafa A. Out of plane equilibrium points locations and the forbidden movement 
regions in the restricted three-body problem with variable mass. Astrophysics and Space Science. 
2015;357(1):58.   

 
[7] Poularikas AD, (Ed). Transforms and Applications Handbook. CRC Press; 2010. 
 
[8] Lagrange, Joseph-Louis. Essai sur le probleme des trois corps. Prix de l’académie royale des Sciences 

de Paris. 1772;9:292. 
  
[9] Howell KC. Three-dimensional, periodic, ‘halo’ orbits. Celestial Mechanics. 1984;32(1):53-71. 
 
[10] Shrivastava AK, Ishwar B. Equations of motion of the restricted problem of three bodies with variable 

mass. Celestial Mechanics and Dynamical Astronomy. 1983;30(3):323-328. 
_______________________________________________________________________________________ 
© 2018 Younis et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 

 
 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://www.sciencedomain.org/review-history/24754 


