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Abstract

We present, for the first time, a deep learning model that returns the three-dimensional (3D) coronal electron
density from coronagraphic images. The intensity of coronagraphic observations arises from the Thomson
scattering of photospheric light by the coronal electrons. We use MHD numerical simulations to obtain realistic 3D
electron density and construct error-free training sets consisting of input (observation) and target (electron density)
images. In the training sets, the input images are directly synthesized from the target 3D electron density by
applying the Thomson scattering theory. The input and target images are in the form of latitude–longitude maps
given at a radius, often referred to as synoptic maps. Using synoptic maps reduces a tomographic method to an
image translation problem. We use pix2pixHD, one of the well-established supervised image translation methods
and develop models for six selected heights: 2.0, 2.2, 2.5, 4.0, 6.0, and 12.0 solar radii. All six models have similar
performance and the mean absolute percent error of the generated density images is less than 7% with respect to the
ground-truth simulated data sets.

Unified Astronomy Thesaurus concepts: Solar corona (1483); Coronagraphic imaging (313); Neural networks (1933)

1. Introduction

Deep learning is a state-of-the-art technique that has been
established to overcome the limitations of algorithms based on
human perception. This method has been dramatically improved,
and many attempts have been made in various domains, such as
linguistics (Wu et al. 2016), genomics (Zou et al. 2018), and
medical image analysis (Ker et al. 2017). However, its inference is
not understandable by humans, and thus it has been often
considered as a black box. Such a black box could be a severe
drawback when using them for scientific purposes. Nevertheless,
we would like to point out that deep learning results can be
considered as empirical solutions even to mathematical problems.
In this regard, they could be of great strength in solving physical
problems that are not strictly defined mathematically.

In the present Letter, we present an attempt to apply a deep
learning method to solving a physical problem. In particular, we
present a model that extracts the three-dimensional (3D)
information from a set of two-dimensional (2D) solar corona-
graphic images. Such methods are often referred to as tomography
(e.g., Herman 2009). In ideal situations, e.g., radiology in the
medical field, this method uses analytical solutions, and thus the
calculation is fast and stable. Similarly, solar X-ray or EUV
imaging observations obtained for a solar rotation can be used
for such a robust technique (e.g., Hurlburt et al. 1994; Cho et al.
2020, and references therein). However, the coronagraphic
observation is an artificial total eclipse in which the Sun’s disk
is occulted, and the observed values are not the simple line-of-
sight (LOS) integration. In this regard, an iterative reconstruction

must be used (e.g., Frazin 2000; Butala et al. 2010; Kramar et al.
2014). However, an iterative reconstruction requires huge
computing power and long computing times so that it has not
been widely used for scientific purposes (cf. Kwon et al. 2013).
We describe results of a deep learning image translation

technique that replaces the iterative process in the tomo-
graphy methods. The Generative Adversarial Network
(GAN; Goodfellow et al. 2014) is used to synthesize realistic
images (e.g., Isola et al. 2016). GAN proposes a supervised
method that simultaneously trains the generator and dis-
criminator that lead to the adversarial process. The generator
generates artificial images from input images, and the
discriminator attempts to determine whether given images
are from the generator or from the training set. The training
process continues until the discriminator becomes unable
to judge. Isola et al. (2016) presented a conditional GAN
(cGAN) for an image translation. Unlike some of previous
techniques doing per-pixel translation (references can be
found in Isola et al. 2016), cGANs learn a structured loss,
enabling each pixel of an output image to be dependent
on the values on a large area of the input image. This set
of source code is widely known as pix2pix, and later
pix2pixHD, after modification by Wang et al. (2017) for
high-definition (HD) images. The results of their image
translations are shown in Isola et al. (2016) and Wang et al.
(2017), including realistic images synthesized from outline
drawings, labels, and maps. Inspired by these promising
results, Kim et al. (2019) and Shin et al. (2020) used these
methods to generate pseudo-solar photospheric magneto-
grams from Sun disk images observed in an extreme
ultraviolet passband and Ca II K passband, respectively. We
use pix2pixHD and develop a model that returns electron
density from coronagraphic observations.
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The Letter is organized as follows. In Section 2, we show
how the inversion (tomography) method can be reduced to an
image translation problem that can be done by the pix2pixHD
technique. The concerns and their mitigation are also given in
this section. Section 3 shows the method to construct the
training sets in practice and the model evaluation with the test
sets. Section 4 gives concluding remarks, including future
works.

2. Method

We develop a deep learning model that extracts the 3D
information from a 2D observational image, using one of the
well-established supervised methods known as pix2pixHD
(Wang et al. 2017). Pix2pixHD is the same as the parent
method pix2pix (Isola et al. 2016) in that the methods perform
image-to-image translations as trained by input-target image
pairs. Pix2pix uses a cGAN that determines each pixel value of
the output image as a part of structures on the input image. We
have adapted the codes in Shin et al. (2020) that generate
pseudo-magnetograms from Ca II K images.5

As when using a supervised method, the training set consisting
of input and target images defines the problem that the model
solves. The model aims to derive the 3D electron density from
polarized brightness values in coronagraphic images. The observed
intensity in coronagraphic images results from Thomson scattering
of photospheric light by coronal electrons. It has long been
established that the emission from the K-corona, i.e., free electrons,
is polarized while from others, including the F-corona and noise,
are not. Coronagraph observations use three or four filters to detect
linearly polarized light at different angles, and these three or four
sequence observations convert into a single polarized brightness
(pB) image. Traditionally, the intensity in coronagraphic images is
calibrated to the customary units of mean solar brightness. As a
result, a pB value at each pixel results from the distribution of the
number of electrons along the LOS. Our model uses the pB images
as input, and the target images are the electron density
corresponding to the input image domain.

To generate error-free input-target image pairs for the
training set, 2D input images are synthesized from 3D electron
densities given by numerical simulations with the Thomson
scattering theory (Billings 1966). An observed pB value is
written as the integration of the volume electron density Ne

[cm−3] over a given LOS,

( ) ( )ò r= L s N dspB , . 1e
LOS

The function Λ(ρ, s) describes the Thomson scattering
geometry, characterized by ρ and s, including the constants
such as the Thomson scattering cross section and the limb-
darkening coefficient. As shown in Figure 1(a), ρ is the
distance from the electron to the Sun center on the plane of the
sky (POS), and s is the distance from the electron to the POS.
r is the distance of the electron from the Sun center
(r= r + s2 2 ). The full expression of Λ(ρ, s) can be found
in previous literature, e.g., Billings (1966), Howard & Tappin
(2009), and Wang & Davila (2014).

As indicated by this equation, the Thomson scattering
geometry determines the strength of scattering for an electron
and serves as a weighting function. Figure 1(b) shows the

shape of function Λ as a function of s for the cases where
ρ= 2.0, 2.5, 3.0, and 6.0 Re (solar radii). It shows that the
maximum occurs on the POS (s= 0) for a given ρ, and the
maxima vary with ρ. There is a tendency that Λ decreases with
ρ, and the profile gets broader. It indicates that an observed pB
value is not simply proportional to the total number of electrons
over the LOS. Once a 3D electron density and the viewing
geometry are given, the pB image can be synthesized using
Equation (1).
In fact, there are an infinite number of solutions of the 3D

structure for a given 2D observational image. It indicates that
original observational images cannot be directly used for our task.
As the typical tomography method does, one can solve this
problem by adding a number of different LOS observations that
can constrain one another and exclude inapposite solutions. For
the input and target images, we use latitude–longitude maps at a
given height (ρ), which are often referred to as synoptic maps.
These synoptic maps contain pB or Ne on a spherical surface of
radius ρ, so that the dimension of the image corresponds to
latitude θ (−90°� θ� 90°) and longitude f (0°� f� 360°).
This map could be given in Stonyhurst coordinates or Carrington
coordinates depending on the selection of the reference longitude.
By using the synoptic map, an input image contains observations
from different viewing directions and becomes physically related
to the output image. In addition, the weighting function Λ
becomes only a function of s since ρ is fixed in a synoptic map.
An input-target image pair in the form of the synoptic map has a
one-to-one correspondence with a cause-and-effect relationship
and allows us to have a physically reasonable solution (see below
for a more detailed description).
Figure 1(c) illustrates how an input pB synoptic map can be

constructed from observed (synthesized) pB images. When B0
angle (heliographic latitude of the observed solar disk center) is
neglected and the solar north (rotational axis) is up on the
image plane, the pB values are taken along the semicircle on
the image plane as shown by the yellow curve (ρ= ρ′). These
values compose a column (0°� θ� 180°) of the synoptic map,
at f= f0− 90°, where f0 is the observer’s longitude. A pB
synoptic map is completed once these pB values are taken for a
solar rotation, i.e., 0°� f� 360° (see Figure 2 for examples of
pB and the associated Ne synoptic maps).
Figure 1(d) shows a plane parallel to the x–y plane (seen

from north). The concentric circles refer to the cross sections of
the spherical surfaces they make with a number of LOSs
obtained during a solar rotation. More specifically, a set of the
LOSs at ρ= ρ′ and θ= θ′ for a solar rotation forms a circle
with the radius p (=r q¢sin ) as shown with a thick line in this
panel. A pB value at the given viewing geometry is the
integration of Λ(ρ, s) ·Ne(s) over the LOS as shown by the
dashed line. The corresponding target Ne(s= 0) is taken at the
point of contact between the LOSs and the concentric circle.
These pB and Ne values compose a row (0°� f� 360°) of
their synoptic maps at θ= θ′. Consequently, a pB synoptic map
includes a number of different LOS observations that constrain
our model to have a physically reasonable 3D solution.
We point out that our inversion method can be approximated to

a deconvolution problem. Let us make a bold assumption that the
radius p of a circle in Figure 1(d) is so large (ρ is large) that Ne(s)
along the LOS is similar to Ne(f(s)) along the circle, when |s| is
close to 0. In this limit, the pB values obtained in succession for a
solar rotation are approximately the result of the convolution, Λ
(f) * Ne(f). Thus, the inversion can be treated as a deconvolution5 https://github.com/NoelShin/Ca2Mag
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problem. Our assumption may not be too far from reality because
the function Λ peaks at s= 0 and thus an observed pB value
largely originates from Ne near the POS. For the cases where ρ is
small (p is small), the assumption still remains valid because Λ
drops sharply away from the POS. This indicates the existence of
a clear cause-and-effect relationship between input and target
images. Moreover, this relationship is evident from the similarity
between pB and Ne synoptic maps in the upper panel of Figure 2.
The lower panel shows the maps when the density structure is
relatively complicated, and the relationship may not be found by
intuition. We expect that the image translation technique,
pix2pixHD provides us with empirical solutions to such a
quasi-deconvolution problem, by training the model with a
number of input-target image sets.

In addition to the physical solution problem described above,
there are some concerns about the accuracy of the inversion
when using real observations. First of all, the dynamic range of
the coronal electron density and that of pB values in the low
corona are very large, and it may affect the model performance
and introduce large uncertainties in Ne. Second, the absolute
values of the electron density and their range in numerical
simulations may differ from those in the true corona. In this

respect, it is not guaranteed that our model would have the
same performance when using true observations.
Note that the use of the synoptic maps mitigates these

concerns and removes the consequent ambiguities. While the
gradient in Ne occurs with the radial distance in general, the
synoptic map is only at a selected height, ρ= ρ′. In addition,
we use logarithmic values for both pB and Ne synoptic maps.
Next, we use the normalized values in order to make our model
independent of their absolute values and also the ranges. In
practice, we convert these images into 8-bit byte-type images in
a JPEG format, in which their minimum and maximum values
are 0 and 255, respectively.

3. Results and Discussion

Our model aims at translating the pB images into Ne values by
training the model with a number of pairs of pB (input) and Ne

(target) synoptic maps. For the sake of error-free training sets, we
have obtained the input-target image pairs from MHD simulations
that is the thermodynamic version of the “Magnetohydrodynamics
outside A Sphere” (MAS; Lionello et al. 2009) provided by
Predictive Science Inc. The MAS model consists of the coronal

Figure 1. (a) Illustration of the geometry used in the present work (adopted from Kwon et al. 2016). The origin O is located at the Sun center. The z-axis is the solar
rotational axis, and the x-axis is toward the observer (see also panel (c)). An LOS is shown as the dashed line, which is parallel to the x-axis. The Thomson scattering
geometry is characterized by ρ, s, r, Ω, and Ψ for electrons in a small volume indicated by the square on the LOS. (b) The shapes of Λ(ρ, s) varying with different ρ. Λ
is normalized by an arbitrary value (see the legend for various curves). (c) Illustration of the coordinate system with an image plane. The y- and z-axis lie on the image
plane (see also panel (a)). Overplotted in white color represents a spherical surface projected onto a synoptic map. In practice, the intensities are taken along the cross
section between the spherical surface and the observed image plane (semicircle in yellow curve) for a solar rotation to form a synoptic map (see examples in Figure 2).
(d) Top view of the spherical surfaces with various ρ at q q= ¢. See Section 3 for details.
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and heliospheric solutions in 3D space. The coronal solution
provides the coronal physical quantities in the height range from
∼1 Re to ∼30 Re from the Sun center while the heliospheric
solution is for the quantities from ∼30 Re to ∼1 au. We have
obtained data from the MAS model associated with 595
Carrington rotations (CRs) from CR 1625 to CR 2216, which
correspond to a period from 1975 February 19 to 2019 March 6
covering 22–24 solar cycles. For validation and evaluation, the
data sets are divided into training and test sets with a ratio of 9:1.
The test sets are used for validating and evaluating the model
performance. Because the large-scale coronal structure changes
with the solar cycle, every 10th Carrington rotation separates into
the test set. The numbers of the training and test sets are 535 and
60, respectively.

Meanwhile, it has been shown that the coronal structures in this
model are realistic by comparison with a total eclipse observation
(Mikić et al. 2018). Note that it is not necessary that density
structures and values are strictly realistic for this purpose, since we
are only seeking empirical solutions to a quasi-deconvolution
problem, as discussed in Section 2. We expect that such a realistic
model enables efficient model training.

For data augmentation, we used the synoptic maps reversed
in longitude and latitude and shifted by 45° on the longitudinal
direction in succession. As a result, the number of training sets
increases by 32 times. The original image size of the synoptic
maps is 360× 181, but the image size in the model is
256× 256. As done by Wang et al. (2017), we have trained the
model by iterating 200 epochs.

Figure 2 shows two examples (ρ= 4.0 Re) among the 60 test
sets in which the density distribution is relatively simple (upper
panel) or complicated (lower panel). The left panels are the pB
synoptic maps that are synthesized by the Thomson scattering
theory (Section 2) from the 3D electron density. The middle
panels are the Ne synoptic maps directly taken from the 3D
electron density, i.e., the ground truth. The generated Ne

synoptic maps are given in the right panels. It seems that the

model reproduces well the density structures in the synoptic
maps for both simple and complicated cases.
Figure 3 provides detailed comparisons of the generated Ne

synoptic maps with the ground truths. In panels (a) and (b), the
normalized error ( ¢Ne − Ne)/Ne, where ¢Ne is the electron density
generated by the model, is indicated by the color bars. It is
evident from these maps that Ne is determined with errors less
than 20% overall. Panels (c) and (d) show the pB (black),
generated ¢Ne (green), ground-truth Ne (red) along the equator as
shown by the black line in panels (a) and (b), respectively. As
discussed in Section 2, the pB and Ne values are logarithmic
and normalized to 0–255. It is clearly seen that the generated
¢Ne profiles tend to be smoother and simpler than the ground-

truth ones. The larger error occurs in the region where the
density changes rapidly and where the density profile has
multiple peaks. It is noteworthy that such error distributions
seem to be the same as expected from a deconvolution method,
while using a deep learning method. Meanwhile, larger errors
are seen in the south pole. Note that the polar region is spatially
distorted in the synoptic map, and the true area is much smaller
than that seen in these maps. Panels (e) and (f) show that the
generated ¢Ne is well correlated with the ground-truth Ne,
indicating that the model reproduces well the density structure
and value even when the density structure is complicated.
Figure 3 shows two examples of the test sets at ρ= 4Re.

Since our model uses the synoptic map at a given ρ, the full 3D
density can be constructed by combining the Ne synoptic maps
at different ρ. Since the weighting function in Equation (1) is
dependent on ρ, the model at different ρ should be trained
independently. Supposing that our model will be applied to
Solar Terrestrial RElations Observatory (Kaiser et al. 2008)
Sun Earth Connection Coronal and Heliospheric Investigation
(Howard et al. 2008) COR1 (FOV of 1.5–4Re) and COR2
(2.3–15Re), we have selected six ρ, and the first column in
Table 1 shows ρ selected in this work.
To find the best models and evaluate them, we determine

five parameters and their averages over the 60 test sets at each

Figure 2. Two examples of synoptic maps (ρ = 4 Re) for the synthesized pB (left), ground-truth (simulation) Ne (middle), and generated ¢Ne (right), among 60 test
sets. The top and bottom panels correspond to CR 2050 and CR 2145, respectively, which are associated relatively simple and complex density structures in the
test sets.
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ρ. The five parameters are (1) correlation coefficient (CC), (2)
mean square error (MSE), (3) structural similarity index (SSIM;
Wang et al. 2004), (4) slope of linear regression, and (5) mean
absolute percent error (MAPE). SSIM quantifies the similarity
between two images, and the perfect case is 1. MAPE is the

ratio of the difference in percent between two images
(∣ ∣¢ - ´N N N 100e e e ), and zero value means perfect. It is
clearly seen in this table that CC, SSIM, and slope are close to
1 for all ρ. MAPE demonstrates that our models reproduce
the Ne synoptic maps with errors less than 7%. Table 1
demonstrates that the models at different ρ have similar
performance. It is noteworthy that the best models for all ρ are
found earlier among 200 epochs (second column in Table 1).
We interpret that it is because of the clear cause-and-effect
relation between the input and target images.

4. Concluding Remarks

We have presented, for the first time, the use of a deep learning
method to determine the 3D electron density from coronagraphic
observations. By using synoptic maps, we reduced such a
complex iterative tomographic process to an image translation
problem. Besides the technical issues overcome by using synoptic

Figure 3. Comparisons between generated ¢Ne and ground-truth (simulation) Ne for the two cases shown in Figure 2. Panels (a) and (b) show the ¢Ne synoptic maps
with the normalized error ( ¢Ne − Ne)/Ne as indicated by the color bars. The red and blue colors indicate the regions where the model underestimates and overestimates
the electron density, respectively. Panels (c) and (d) show the pB (black), generated ¢Ne (green), ground-truth Ne (red) profiles along the equator as shown by the black
line in the top panels. The full comparisons between ¢Ne and Ne are given as scatter plots in panels (e) and (f).

Table 1
Evaluation Results for the Models at Six Given Heights (ρ)

ρ Best Epoch CC MSE SSIM Slope MAPE

2.0 11 0.972 120.218 0.927 1.002 6.221
2.2 71 0.972 129.684 0.929 0.977 6.445
2.5 12 0.972 107.315 0.935 0.968 5.863
4.0 19 0.975 116.437 0.933 0.994 6.541
6.0 46 0.97 101.456 0.948 0.985 5.632
12.0 31 0.986 77.309 0.953 1.008 4.714

Note. See Section 3 for details.
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maps described in Section 3, variance in the coronal electron
density during a solar rotation is an intrinsic source of the error in
solar rotational tomographic methods (Hurlburt et al. 1994). In the
synoptic map, the longitude difference (distance in the longitude
direction) corresponds to the difference in time. Thus, our model
is also subject to the uncertainty caused by the temporal coronal
evolution. However, it is noteworthy that the weighting function
Λ of Thomson scattering could reduce this error while it was an
obstacle to applying coronagraphic images to a tomography
method. The shape of Λ in Figure 1(b) indicates that the electron
density away from the image plane (or at a large distance in the
longitude direction in the synoptic map) has less of an effect on
the observed brightness. Thus, the error should be less than that of
general solar rotational tomographic methods. Furthermore, our
fast deep-learning-based inversion method offers a way to study
the temporal evolution of the coronal electron density. Since our
method is fast, multiple Ne synoptic maps can be obtained in
Stonyhurst coordinates by shifting the reference date. Such time-
series Ne synoptic maps will reflect the temporal evolution of the
coronal electron density structures.

Before the use of our models for scientific purposes, the full
3D electron density should be reconstructed from the synoptic
maps composed of the normalized values. Nevertheless, our
results even in this current form can provide information related
to the global coronal magnetic field topology that fully relies on
models and numerical simulations. While coronal magnetic
fields themselves are invisible, the density structures are the
manifestation of the magnetic structures, e.g., heliospheric
current sheet (Szabo et al. 2020, and references therein). Our
model results can assist numerical simulations (e.g., Riley et al.
2019) in interpreting data obtained by spacecraft traveling in the
inner heliosphere, i.e., Parker Solar Probe (Fox et al. 2016) and
Solar Orbiter (Müller et al. 2020), by comparing our output
density synoptic map with their in situ measurements of
densities. Also our density distributions can be used to constrain
or validate global magnetohydrodynamic models reproducing
large-scale coronal and heliospheric structures, such as the
Wang–Sheeley–Arge (Arge et al. 2004) and MAS (Lionello
et al. 2009) models. In future work, we will show the full 3D
reconstruction retrieving actual electron density values from the
normalized and layered electron densities generated by our
models.
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