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Robust affine maneuver
formation control based of
second-order multi-agent grid
inspection systems

Peng Zhang*, Dengjun Ma, Peng Liu and Mengwei Li

School of Instrument and Electronics, North University of China, Taiyuan, China

Grid formation inspection is the future development trend of grid inspection.

Aim to the robust control problem of multi-agent grid inspection system

in complex environment, this paper proposes a formation control algorithm

with prescribed performance. The dynamic model of follower distance

error is given in the leader-follower framework using a symbolic Laplace

matrix. Performance bounds are set on the sliding mode error by prescribed

performance control. Then, the convergence and stability of the proposed

control algorithm are not only proved by the Lyapunov stability theorem, but

also the error state of the system converges to the prescribed performance

bound. Finally, the simulation results show that the follower can follow the

leader despite external interference and the validity of the proposed algorithm.

KEYWORDS

multi-agent systems, grid inspection systems, robust, unknowndisturbance, slidingmode control,
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1 Introduction

In recent years, with the rapid development of smart grid, the use ofmobile inspection
robots instead of manual inspection has become a hot spot for research in the power
industry (Wan et al. 2018). First, for dense grid system, multi-agent can decompose and
simplify the complexity of the task when performing the task together, thus effectively
shortening the execution time and improving the task completion efficiency. Second,
the wide range of applications can be applied to the inspection of roads in harsh
environments and off the beaten path, such as high altitude and alpine regions. Final, if
a single inspection robot fails, it has less impact on the overall inspection. The results
of multi-agent detection can be mutually verified to improve detection accuracy and
avoid false detection.The structure of themulti-agent grid inspection systems is shown in
Figure 1.

In order to realize the multi-agent inspection system, two main problems need to
be solved, the first one is the flexibility, need to formations for different situations to
achieve straight line driving, scaling, rotation and other movements. The second one is
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robustness, in the field environment the agent is easily subject to
external interference.

Over the past 2 decades, multi-agents formation control
has been investigated by various approaches. Depending on the
definition of the target formation, existing formation control
methods can be divided into displacement-based (Babazadeh
and Selmic, 2018), distance-based (Cao et al. 2019) and
orientation-based (Yang et al. 2020) methods, using constant
inter-agent displacement, distance and orientation constraints
to define the target formation respectively (Oh et al. 2015).
Displacement-based formation control rates can be used to
track target formations with time-varying translations (Zhao and
Zelazo 2015), but it is difficult to control the scale or direction
of the formation. Distance-based control rates can be used
to track target formations with time-varying translations and
directions (Ren 2007; Ren and Beard 2008), but it is difficult
to track formations with time-varying sizes. Orientation-based
control rates can track formations with time-varying translations
and proportions (De Marina et al. 2016; Sun et al. 2017), but it
is difficult to track time-varying orientations. Su et al. (2022)
proposed a velocity-estimation-based control scheme to solve
the time-varying orientations tracking problem (Su et al. 2022).

Because of the limitation of these traditional methods,
researchers have proposed several methods for defining target
formations using novel constant constraints, such as local
orientation, center of gravity coordinates (Zelazo et al. 2015),
complex Laplacian (Lin et al. 2014; Han et al. 2015), and stress
matrix (Lin et al. 2015). Among these newmethods, Zhao (2018)
proposed a new control method for affine formation maneuvers
that relies on the stress matrix. The proposed control law can
track the target formation of time-varying affine transformations
of any nominal configuration (Zhao 2018). Later, Xu et al. (2018)
changed the undirected graph basis in the above algorithm to
a directed graph to make it easier to implement in practice

FIGURE 1
Multi-agent grid inspection systems application scenario
diagram.

(Xu et al. 2018). Wang J. et al. (2021) studied the control
problem of an affine formation algorithm for a multi-agents
system with a given convergence time. By using a time-varying
scale function, a distributed continuous control algorithm was
designed (Wang J. et al. 2021). Ma et al. (2021b) proposes an
adaptive reference vector reinforcement learning approach
to many-objective optimization problem (Ma et al. 2021b).
Ma et al. (2020) first analyzes the main factors that influence
the performance of brain storm optimization and then proposes
an orthogonal learning framework to improve its learning
mechanism (Ma et al. 2020). Xie et al. (2022) solved the problem
of convergence of the attitude tracking error in finite time by
means of a prescribed performance function as well as an error
compensation mechanism (Xie et al. 2022). However, the above
formation algorithms are not resistant to external disturbances,
so further improvement of the algorithm is needed.

Liu et al. (2018) eliminated the negative effects of external
disturbances by using a method based on a radial basis function
neural network combined with an artificial potential field
approach (Liu et al. 2018). Ma et al. (2021c) proposed a truthful
combinatorial double auction mechanism to guarantee desirable
properties in constrained Mobile edge computing environments
(Ma et al. 2021c). Doukhi and Lee (2019) combined an adaptive
radial basis function neural network with a deterministic
equivalent control technique to address the uncertainty of
external disturbances as well as modeling errors (Doukhi and
Lee 2019). Trindade et al. (2020) proposed a triple integrator-
based consistency protocol for intelligences and incorporated
the integration action into a formation tracking controller
with double-integrating vehicles and gave sufficient necessary
conditions for convergence (Trindade et al. 2020). Although the
above algorithms solve the problem of external disturbances
well, they increase the complexity of the algorithm and
the integration term is difficult to implement in practical
tests.

Bechlioulis and Rovithakis (2008) applied prescribed
performance control to a multi-input, multi-output nonlinear
system andproposed a robust adaptive controller with prescribed
performance (Bechlioulis and Rovithakis 2008). Chen and
Dimarogonas (2020) proposed to set prescribed performance
for the leader’s error to drive followers so that the whole system
can achieve the target formation (Chen and Dimarogonas 2020).
Ma et al. (2017) proposed a specific multi-objective artificial
bee colony optimizer and a adaptive local decision variable
analysis method for large-scale multi-objective and multi-
objective optimization problems, respectively (Ma et al. 2017;
Ma et al. 2021a).Mehdifar et al. (2020) proposed a newdistance-
based robust formation control algorithm that also deals
with connectivity maintenance and mutual collision between
neighboring intelligences (Mehdifar et al. 2020). Jiang et al.
solved the formation regulation problem for unmanned surface
vehicle networks with disturbances by means of integral sliding
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mode controlWang Y. et al. (2021) proposed a novel predefined-
time sliding-mode controller, this control scheme can guarantee
that the tracking error converges to zero in a finite time
(Wang Y. et al. 2021).

Although the algorithms in the aforementioned papers are
robust, they are unable to implement the formation maneuver
control. Therefore, it is necessary to consider a new algorithm
that can have both robustness and formation transformation.
Based on the above consideration, this paper proposes an robust
affine maneuver formation control algorithm for multi-agent.
The main contributions are summarized as follows:
(1) Based on the directed graph basis, the followers only need

to obtain the state information of their neighbors and do not
need to obtain the global state information as well as the state
information of the remaining followers.
(2) Converting the maneuver control problem of formation

into a control second-order integrator model follower tracking
target formation problem using the nature of affine localization.
Solve the flexibility problem of grid inspection system.
(3) Sliding mode errors associated with position and velocity

are designed, and then prescribed performance controls are
used to achieve fast convergence of formation control as
well as enhanced robustness of external disturbances to shape
distortions. Solve the robustness problem of the grid inspection
system.

The rest of the paper is organized as follows. Section 2, the
preliminaries of the agents are introduced. The controller disign
and stability analysis are given in Section 3. Section 4 shows the
simulation results. Section 5 draws some conclusions.

2 Preliminaries

2.1 Notation and basic graph theory

A directed graph G = (V ,E) contains a vertex set V and an
edge set E . If there exists an ordered pair (j, i) ∈ E , the node j
denotes the in-neighbour of i and the converse is called out-
neighbour. The set of neighbors of vertex i is denoted by Ni =
{j:(j, i)} ∈ E . Throughout this paper, it assumes that a directed
graph does not have any self-loop and is a fixed topology.

Consider a set of n agents containing nℓ leaders and nf
followers inℝm, wherem ∈ {2,3} and n ≥m+ 2.Thus the leaders’
subset is Vℓ and the subset of followers is Vf = V\Vℓ. For all
followers, consider the following nonlinear dynamics

ṗi = vi,

v̇i = ui + δi, i ∈ Vf.
(1)

where pi ∈ ℝ
m denotes the position, vi denotes agent i’s velocity,

ui ∈ ℝ
m represents the control input of agent i, and δi(t) ∈ ℝ

m

is an unknown, bounded and piece-wise continuous external
disturbance vector. For simplicity, all the i in the paper belongs to

Vf. Let p = [p
T
ℓ ,p

T
f ]

T ∈ ℝmn be the position of agents. The leaders
do not need to access the information from these followers.
Denote the constant configuration r = [rT1 ,…, r

T
n]

T = [rTℓ , r
T
f ] ∈

ℝmn as a nominaland configuration. Define the nominal
formation as (G, r). Then, the target formation with maneuvers
can be described by p*(t) = [Im ⊗X(t)]r+ 1m ⊗Y(t), where X(t) ∈
ℝm×m, Y(t) ∈ ℝm are time-varying. Y(t) controls formation
translation and X(t) controls formation rotational, scaling and
shearing manoeuvres relative to r.

2.2 Signed laplacian matrix

Thematrix Ls of a directed graph is defined as follows:

Ls (i, j) =
{{{
{{{
{

−ωij if i ≠ j and j ∈Ni,
0 if i ≠ j and j ∉Ni,
∑
k∈Ni

ωik if i = j
(2)

where ω ∈ ℝ can be positive or negative real weights on edge (j, i)
and Ls is normally a nonsymmetric matrix.

A formation (G,p) is a directed graph G with its vertex i of
mapped to pi. The affine image of the nominal configuration can
be defined as

A (r) = {p ∈ ℝmn:p = (In ⊗X) r+ 1n ⊗Y,∀X ∈ ℝm×m,∀Y ∈ ℝm}
(3)

where (X,Y) is affine transformation.
Definition 1 (Affine Span). Given a set of points {pi}i=1 ∈
ℝm, the affine span S of these points is

S = {
n

∑
i=1

aipi:ai ∈ ℝ
m for all i and

n

∑
i=1

ai = 1} (4)

Definition 2 (AffineLocalizability).Thenominal formation
(G,p) is affinely localizable by leaders if for any p = [pTℓ ,p

T
f ]

T ∈
A(r), pf can be determined by pℓ uniquely.

Assumption 1. Assume that 1) The r has an m-dimensional
affine span. 2) The (G, r) has a signed Laplacian matrix Ls

satisfying rank(Ls) = n− 1. 3) The nominal formation (G, r) is
affinely localizable by the leaders.

From Assumption 1, Eq. 2 can be rewritten in the following
form

(5)

Under Assumption 1, for any p = [pTℓ ,p
T
f ]

T ∈A (r) satisfying
(Ls ⊗ Id)p = 0, it can be obtained

L̄sfℓpℓ + L̄
s
ffpf = 0 (6)

which L̄sfℓ = L
s
fℓ ⊗ Im, and L̄sff = L

s
ff ⊗ Im.

We know that the control objective is pf (t) → p*f (t) when
t→∞. From Eq. 6, it can be obtained p*f (t) = −L̄

s −1
ff L̄sfℓp

*
ℓ (t).
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The dynamic of the estimation error is as follows

epf (t) = pf (t) − p
*
f (t) = pf (t) + L̄

s −1
ff L̄sfℓp

*
ℓ (t) ,

evf (t) = vf (t) − v*f (t) = vf (t) + L̄
s −1
ff L̄sfℓv

*
ℓ (t) .

(7)

The derivative of the above equation gives

̇epf (t) = vf (t) + L̄
s −1
ff L̄sfℓv

*
ℓ (t) ,

̇evf (t) = u+ δ+ L̄
s −1
ff L̄sfℓv̇

*
ℓ (t) .

(8)

3 Controller design and stability
analysis

3.1 Sliding mode and prescribed
performance control

Define the sliding mode error of the agent i as

si = epf + βevf (9)

FIGURE 2
Nominal formation of 7 agents.

FIGURE 3
Trajectory of the agents when the leader speed is 0.

where β > 0. A set of inequalities is usually applied to limit
the upper and lower bounds on the system tracking error, the
prescribed performance constraint function

−η
i
ρi (t) < si (t) < ηiρi (t) , i ∈ Vf,∀t ⩾ 0 (10)

where ρi(t) = (ρ0 − ρ∞)e
−ait + ρ∞, ρ0, ρ∞ and ai are the parameters

to be set. The values of ηi and η
i
are as follows

ηi = {
epi + βevi if epi > 0,
0.5 if epi ≤ 0,

η
i
= {

0.5 if epi > 0,
epi + βevi if epi ≤ 0,

(11)

To deal with the time-varying constraints in Eq. 10, the
system Eq. 10 with constraints is transformed into a new
equivalent unconstrained system using an error transformation
technique. The modulation error is defined as

ηi (t) =
si (t)
ρi (t)

(12)

where ρi(t) ≠ 0.
Then we introduce the error conversion function.

σi = Ti (ηi) =
1
2
ln(

ηiηi + ηiηi
ηiηi − ηiηi

) (13)

where σi is the conversion error corresponding to ηi,
Ti(.):(−ηi,ηi) → (−∞,+∞) is a smooth strictly increasing bijective
mapping satisfyingTi (0) = 0. It can be seen that σi→ 0when and
only when ηi→ 0.

Next, taking the time derivative of σi, yields ̇σi =
(dTi/dηi) ̇ηi = 0.5[1/(ηi + ηi) − 1/(ηi − ηi)] × [( ̇s/ρi) − (s ̇ρi/ρ

2
i )] =

0.5ξi( ̇s− ρ̇iηi), where

ξi =
1
ρi
[

[

1
ηi + ηi
− 1
ηi − ηi
]

]
(14)

Then ρ̇i is given in compact form as:

σ̇ = 1
2
ξ ( ̇s− ρ̇η) (15)

3.2 Control algorithm design for the
followers

Theorem 1. Consider n agents with dynamics Eq. 1 in the
mdimensional space (m ∈ 2,3)with nominal formation (G, r). Let
the initial conditions be such that −η

i
ρi(0) < si(0) < ηiρi(0), i ∈

Vf, and also ηi, ηi are selected according to Eq. 11, then the
control law is as follows:

ui = −kiξiσi, i ∈ Vf (16)
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FIGURE 4
Sliding mode error of the agents when the leader speed is 0.

FIGURE 5
Velocity and acceleration of the agents when the leader speed is 0.
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where ki is control gain. The expressions for ξi and σi are shown
inEqs 13, 14, respectively, ensures prescribed performance in the
sense of Eq. 10

Equation 16 can be abbreviated to the following form

u = −ξKσ (17)

where ξ = diag(ξi) ⊗ Im, K = diag(ki) ⊗ Im, σ = col(σi).
Proof. Differentiating η as well as employing Eq. 12, yields:

η̇ = hη (t,η) = [ ̇s− ρ̇ (t)η]/ρ (t)

= [ ̇epf + β ̇evf − ρ̇ (t)η]/ρ (t)

= [vf + L̄
s −1
ff L̄sfℓv

*
ℓ + β(−ξKσ+ δ+ L̄

s −1
ff L̄sfℓv̇

*
ℓ) − ρ̇ (t)η]/ρ (t)

(18)

Define the open set

Ωη = ∏
i∈Vf

(−η
i
,ηi) (19)

Phase I. Since the initial error epf (0) and evf (0) is chosen to be
within the performance bound, i.e., the proof set Ωη is nonempty
and open. Moreover, Eq. 19 ensures that η(0) ∈Ωη.

From Eq. 18 we obtain that hη is continuous on t and locally
Lipschitz on ηi over the set Ωη. Therefore, the hypotheses of
Theorem 54 in Sontag (2013) (p.476) hold and the existence
and uniqueness of a maximal solution η(t) of Eq. 18 for a time
interval [0,τmax) such that η(t) ∈Ωη,∀t ∈ [0,τmax) is guaranteed.

Phase II. Consider the potential function: Vi =
0.5kiσ2i , i ∈ Vf and define the overall candidate Lyapunov
function: V = 0.5σTKσ. Employing Eq. 15 and Eq. 17,
we arrive at: V̇ = 0.5σTKξ ̇s− 0.5σTKξρ̇η = −0.5βσTKξξKσ+
0.5σTKξ(vf + δ+ L̄

s −1
ff L̄sfℓ(v

*
ℓ + βv̇

*
ℓ) − ρ̇η). Assume that the leader’s

velocity v*ℓ and acceleration v̇*ℓ are continuous and bounded,
we have ‖vf + δ+ L̃

s −1
ff L̃sfℓ(v

*
ℓ + βv̇

*
ℓ)‖ ≤ ϵ, where ϵ be an positive

constant.

FIGURE 6
Trajectory using control law Eq. 17.

Invoking Young’s inequality, and exploiting the diagonality
K,ξ,ρmatrices it can be obtained:

V̇ ≤ −1
2
βσTKξξKσ+ 1

2
σTKξϵ

≤ −1
4
βσTKξξKσ− 1

4
β‖σTKξ‖2 + 1

2
σTKξϵ

≤ −1
4
βλmax (K2)λmax (ξ2)‖σ||2 +

ϵ2

4β
, t ∈ [0,τmax) (20)

For V̇ < 0 to hold, only

−1
4
βλmax (K2)λmax (ξ2)‖σ||2 +

ϵ2

4β
< 0

i.e.,

‖σ‖ > ϵ
βλmax (K)λmax (ξ)

Based on this result it is clear that Eq. 17 is also bounded for
all t ∈ [0,τmax). Now using σ and taking the inverse logarithmic
function in Eq. 13, leads to:

−η
i
< −

ηi − ηi exp (−2σ̄)
η
i
exp (−2σ̄) + ηi

η
i
= η̂

i
≤ ηi (t) ≤ η̂i =

η
i
exp (2σ̄) − η

i

η
i
exp (2σ̄) + ηi

ηi < ηi

(21)

for all t ∈ [0,τmax) and i ∈ Vf.
Phase III. The following is proved by the method of

counter evidence. The nonempty compact set of Ωη is defined
as Ω′η = ∏(η̂i(t), η̂i(t)). Hence, assuming τmax ≤∞ and since
Ω′η ⊂Ωη, Proposition C.3.6 in Sontag (2013) (p.381) dictates
the existence of a time instant t′ ∈ [0,τmax) such that η(t′) ∉
Ω′η, which is a clear contradiction. Therefore (10) hold when
τmax =∞.

4 Simulation

In this section, the proposed distributed control law
is verified by simulation. As shown in Figure 2, given the
nominal structure of seven agents (G, r), its corresponding
formation matrix is P(r). The arrow direction is the direction
of directed graph interaction. The first three nodes denote
leaders, and the remaining four nodes are followers. It is
known that the number of leaders satisfies 3 = m+1, and
the directed graph G can be judged as 3 reachable. The
following symbolic Laplacian matrix Ls is obtained and
satisfies its rank 4, while the corresponding stability matrix
D = diag(1,1,1,−1,−1,−1,−1). Assume that the initial position:
p = [4,0,2,2,2,−2,−0.6,1.8,0.5,−2.6,−1.6,2.6,−2.3,−2.6]T and
the control gain ki = 0.3. ρ0 = 1.1,ρ∞ = 0.05 and ai = 1. Assume
the external disturbance is δ1 = [0,0],δ2 =[0.3sin(0.6πt),
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FIGURE 7
Sliding mode error of control law Eq. 17.

FIGURE 8
Velocity and acceleration of control law Eq. 17.
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0.6sin(0.3πt)], δ3 = [0.6sin(0.3πt),0.3sin(0.6πt)],δ4 = [0,0].

Ls =

[[[[[[[[[[[[

[

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 1.5 0.5 −1 0 0 0
−1 0.5 1.5 0 −1 0 0
−1 0 0.5 2 0 −1.5 0
0 −1 0 0 2 1 −2

]]]]]]]]]]]]

]

(22)

The next two simulation examples are presented
in this paper. Consider first a simple case when the
leader’s speed is 0. When the external disturbance is δ,
the trajectory of the follower is shown in Figure 3, the
sliding mode error of the follower is shown in Figure 4,
and the velocity and acceleration changes are shown in
Figure 5.

In order to adapt to the complex grid environment, agent
need to change their formations according to the environment.
With reasonable planning of the leader’s speed, the formation
can be panned, rotated, scaled, etc. When the leader’s velocity
is varied (As shown by the red line on Figure 8) and the
other initial conditions are the same as above, the trajectory
variation is shown in Figure 6, where the green part is assumed
to be a grid tower. Some sliding mode error variation is
shown in Figure 7, which shows that the error converges
exactly within the prescribed performance bound, where the
red line indicates the prescribed performance boundary. The
velocity and acceleration changes are shown in Figure 8. It
can be shown that the multi-agent is able to resist the
effect of disturbance on shape distortion under the effect of
Eq. 17.

5 Conclusion

In this paper, we solve the problem of flexibility and
robustness of multi-agent system in complex grid environments
by using symbolic Laplace matrices and prescribed performance
control. Then through Lyapunov stability analysis, it is verified
that the proposed method is capable of ensuring asymptotic
stability for tracking errors. Finally, it is verified by simulation
that the designed algorithm can guarantee that all tracking

errors in the system are eventually consistent and bounded,
and the tracking errors can converge to a predefined region.
The proposed control protocol increases formation robustness
against shape distortions and can prevent formation convergence
to incorrect shapes under the effect of external disturbances. In
the future, the multi-agent grid inspection system under time-
varying time delays needs to be studied and solved.
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