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ABSTRACT

Non-commutativity and uncertainty relation in quantum mechanics are considered here from the
group-theoretic point of view. It is shown that uncertainty relation is connected with one of unit
vector of orthogonal basis of spinor transformations space.
The group-theoretic approach also demonstrates existence of relationship between non-
commutativity and irreversibility.
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1 INTRODUCTION

”Uncertainty principle” is one of the well-
known milestones of quantum mechanics, some
authors reckon this among most significant initial
principles of quantum theory, compared with

superposition principle, in spite of the uncertainty
principle has, in accordance with Landau, even
”negative content” [1].

Quantum theory asserts that some pairs of
variables can not be measured exactly and
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simultaneously, whereas they may be measured
exactly or simultaneously individually by means
of the same tools, so as some other variables
or their combinations. It means, that such
particularity of some pairs of last ones does not
depend on experimental tools in some areas, and
thus it is defined only by their theoretical content.

Conservation laws are another universally
recognized principle of physics, not only quantum
one, they have the role of foundation stone of any
physical phenomena. It was a cause that French
Academy had rejected to consider any project
of perpetuum mobile, however this decision
was unlawful up to appearance of the Noether
theorems.

It seems to be extremely important to investigate
compatibility of uncertainty principle with
conservation laws, as far as any assertion of
physical theory has to be in accordance with
them.

The Noether theorems are recognized as a
mathematical tool which provides fulfillment of
conservation laws in physical theory. These
theorems operate over a set named groups.
In turn, it means that any fundamental physical
theory has to be constructed as a mathematical
group theory.

The group theory significance for the problem
mentioned above is connected beforehand
with the Noether theorems. Last ones
establish one-to-one correspondence of
solution’s transformations groups for equation
describing physical phenomenon with necessary
conservation laws [2]. It is also important that
the group theory describes symmetries of scalar
and vector variables which may be connected
with energy, linear and angular momentums
measured in experiment. These circumstances
allow one to be sure that the physical theory
constructed as consecutive group-theoretic
scheme will satisfy all necessary requirements
to observables.

From the physical point of view, the theoretical
results have to be compared with experimental
measurements, therefore it is necessary to
construct mathematical variables which are
measurable in principle, on the one hand,

and which may be associated with variables
observed in experiment, on the other hand.
The Hermitian forms constructed on the base
of the Schroedinger equation solutions or its
spinor representation are usually used as
observables. For example, a ”probability density”
ψψ∗ mentioned above is such variable.

Ascertainment of transformation properties
of observables, their connections among
themselves, conservation laws fulfillment and
comparison of the theoretical conclusions with
experimental data in general are unthinkable
without definition of the Hermitian forms complete
system. In particular it means that the
Hermitian forms have to satisfy some algebraic
completeness condition.

The group-theoretic approach is based on
definition of propagators group-theoretic
belonging, ascertainment of topological
properties of propagators transformations
space for the Schroedinger equation spinor
representation and definition of the Hermitian
forms complete system constructed either on the
base of wave function and its derivative or on the
base of spinor components [3], [4].

This paper is devoted to investigation of
compatibility of the uncertainty relation with group
theory.

2 PECULIARITIES OF THE

GROUP-THEORETIC APPROACH

Let us set forth some known facts on a group-
theoretic approach essential for the problem to
be considered.

Aiming the purpose to approach a group-
theoretic description, let us at first go
over, accordingly to [5], [6], [7], from the
unidimensional stationary Schroedinger equation
for complex functions

ψ
′′
(z) + k2(z)ψ(z) = 0 (2.1)

to pair of first order equations for functions Φ±
connected with wave function and its derivative
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by means of following equalities

Φ±(z) =
k1/2(z)√

2
[ψ(z)± 1

ik(z)
ψ

′
(z)]. (2.2)

These equations may be written in matrix form as

Φ
′
(z) = [ik(z)σ3 +

k
′
(z)

2k(z)
σ1]Φ(z) (2.3)

for column

Φ(z) =
∣∣∣∣∣∣ Φ+(z)

Φ−(z)

∣∣∣∣∣∣ = ∣∣∣∣∣∣ aeiα
beiβ

∣∣∣∣∣∣ (2.4)

with arbitrary conditions at the initial point z0

Φ+(z0) = a0e
iα0 , Φ−(z0) = b0e

iβ0 . (2.5)

The equation (2.3) is a spinor representation of
the Schroedinger equation, it allows one to use
matrix representations of groups to investigate
transformation properties of propagators for
solutions and conservation laws accordingly to
the Noether theorems [2].

To compare conclusions of any scheme of
quantum theory with experimental data one
needs to construct a real measurable variables
based on complex solutions of the Schroedinger
equation. A combinatorial analysis leads to
conclusion that only four Hermitian forms may
be constructed on basis of wave function
together with its derivative, or in terms of two
spinor components, coupled with their complex
conjugate ones, of course. Here we accept them
in the following form

js(z) = Φ+(z) σsΦ(z), (2.6)

where σs, s = 0, 1, 2, 3 are the Pauli matrices
including the identity one σ0, they form the basis
of any transformations of spinor. Using spinor
Φ(z) (2.4) and its Hermitian conjugate Φ+ =
∥Φ∗

+,Φ
∗
−∥, one has obvious form of observables

[8], [3]

j0 = Φ∗
+Φ+ +Φ∗

−Φ− = a2 + b2,
j1 = Φ∗

+Φ− +Φ∗
−Φ+ = 2ab cos(β − α),

j3 = Φ∗
+Φ+ − Φ∗

−Φ− = a2 − b2,
j2 = −i(Φ∗

+Φ− − Φ∗
−Φ+) = 2ab sin(β − α).

(2.7)

As far as spinor is defined up to a phase factor,
the Hermitian forms are dependent on only three
real variables a, b, (β − α).

It is obviously that the Hermitian forms (2.7)
satisfy the identity

j20 = j21 + j22 + j23 , (2.8)

containing all of them, it is valid everywhere
and under any conditions, therefore it may be
considered as the completeness condition for the
set of these Hermitian forms.

Such Hermitian forms may also be constructed
on the basis of wave function and its derivative.
Taking into account relations (2.2), one may
express the Hermitian forms to be found as
following

j0 = kψψ∗ + (ψ′)(ψ∗′)/k,

j1 = kψψ∗ − (ψ′)(ψ∗′)/k,

j2 = ψψ∗′ + ψ∗ψ′,

j3 = i(ψψ∗′ − ψ∗ψ′),

(2.9)

they coincide with expressions (2.7) and satisfy
the same identity (2.8).

A quantum particle moving under different
conditions is described by the Schroedinger
equation. Its solution is the complex wave
function, therefore it can not be observed directly,
and one needs to use the Hermitian forms
mentioned above to compare a theory with
experiment. Some of them are conserving due to
conservation laws corresponding to the equation,
other of them are changing in different processes,
and all of them together form the complete set of
observables at any time and in any point.

Then the question arises: does some equation
or its system for observables, i.e. an Hermitian
forms, which exclude unobservables and which
may be used for description of quantum particle,
exist?

Let us find a differential relations for the set of
Hermitian forms (2.9). Beforehand, differentiating
the last expression for j3 and taking into account
the Schroedinger equation together with its
complex conjugate, one has an ordinary equation
for a ”probability density current” j′3 = 0, or ∇j =
0 for the stationary partial differential equation [1]
which, however, is not considered here.
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Applying the same procedure to the rest
expressions in (2.9), we obtain a set of four
equations for the complete set of Hermitian forms

j′0 =
k′

k
j1, j

′
1 = 2kj2 +

k′

k
j0, j

′
2 = −2kj1, j

′
3 = 0.

(2.10)
Of course, the same set may be carried out for
the Hermitian forms expressed in terms of spinor
components, using the spinor representation of
the Schroedinger equation (2.3).

It is interesting to note that these equations
allow one to express the parameter k(z) in
the Schroedinger equation (2.1) only in terms
of observables js and their derivatives due to
the third equation in (2.10). This circumstance
may be used to set a geometric content of the
parameter k(z) in the Schroedinger equation,
and also the same for the parameter k′/k due
to the first equation in (2.10). It would be useful,
in turn, for clarification of spatial behaviour of
quantum particle described by the complete set
of observables.

It is relevant to put a question: is the
set (2.10) complete, or not? Evidently, its
completeness may take place only under the
js set completeness. Then, differentiating
completeness condition (2.8), one has j0j

′
0 =

j1j
′
1 + j2j

′
2 + j3j

′
3. Substituting equations (10)

into this expression, one has also an identity.
Thus, a use of the Hermitian forms (2.6) or
(2.9) leads not only to obvious completeness
condition for them. It leads also to the similar
condition for its increments. It means that they
are consistent for the Schroedinger equation
also with external potential, i.e. under constant
or changing k(z). More certainly, the set of
equations (2.10), being also complete one as the
set of the Hermitian forms (2.6) or (2.9), contains
all possible conservation laws for observables
of the Schroedinger equation under different
conditions, if one will put j′s = 0 for any s.
However, investigation of the conservation law
j′1 = 0 goes out of the paper.

Let us return to the spinor representation of the

Schroedinger equation (2.3). The Hermitian
forms expressed in terms of wave function
and its derivative on the one hand, and those
expressed by means of spinor components on
the other hand, are the same under connections
(2.2). Furthermore, the equation (2.3) leads
to the same its increments, therefore both
approaches lead to the same observables
dependence on coordinates and problem
parameters. Nevertheless, equation (3), being
a pair of first order equations, is more preferable
with respect to the Schroedinger equation due
to opportunity of groups representations use
to investigate a group-theoretic properties of
propagators transformations, so as conservation
laws.

Two ways may be used to obtain spinor
representation (2.3) of the Schroedinger
equation.

The first one is a substitution of ψ and ψ′ from
expression (2.2) into the Schroedinger equation
to obtain pair of first order equations for Φ±.

The second one is connected with physical
content of function k2(z) in the Schroedinger
equation (2.1). Usually this function is supposed
to be a difference between kinetic and potential
energy of particle. It allows one to use the
method [5], [6], [7]. based on division of potential
into sequence of small stepwise segments and
requirements of ψ(z) and ψ′(z) continuity at
common points of neighboring infinitesimal steps.
Such procedure leads to the matrix sewing ψ and
ψ′ between such small segments continuously,
moreover, both of them as a functions of
coordinates and also as a function of parameter
k. Significance of the last circumstance will be
discussed below. Limit of consecutive products
of these, almost unit under ∆z → 0 (and
also ∆k → 0) but non-commutative in general
case matrices, leads to the product integral [9]
introduced by Volterra in 1887. Then one has a
solution for spinor Φ(zf ) = Q(zf , zi)Φ(zi), where
zi and zf are initial and final points respectively,
and where matrix Q(zf , zi) is expressed as

Q = lim
N→∞
∆z→0

N∏
m=1

exp[ikm∆zmσ3 + (∆km/2km)σ1] ≡ T exp

zf∫
zi

[ikdzσ3 +
dk

2k
σ1] (2.11)
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An analysis of last expression [5], [6], [7], [8]
shows that detQ = 1, Q21 = Q∗

12, Q22 = Q∗
11, i.e.

matrix propagator belongs to the group SU(1, 1).

It is necessary to emphasize that this propagator
leads not only to the spinor components
continuity as a function of z and k everywhere
due to sewing procedure mentioned above, or the
same for ψ and ψ′, that leads in turn to continuity
of all Hermitian forms, i.e. of all observables.
Besides, the propagator (2.11) belonging to
the group SU(1, 1) leads, in accordance with
the Noether theorems, to fulfillment of all
conservation laws for the Schroedinger equation.

An integrand under sign of the product integral in
expression (2.11) allows geometric interpretation
of propagators for the Schroedinger equation in
its spinor representation. Being written as matrix
two by two in the basis of Pauli matrices including
the identity σ0, an integrand may be considered
as some vector in the space of propagators
logarithms. The Pauli matrices may be said to
be analogous to the unit vectors of orthogonal
basis at the same time [10], [11]. Taking into
account also continuity of the propagator Q from
(2.11) as a function both of coordinates and
parameter k, a length of vector ds squared of
infinitesimal transformation defined by integrand,
may be written in form [12], [8], [4]

ds2 = −k2dz2 + dk2

4k2
. (2.12)

This expression may be considered as the metric
of the space of propagators logarithms transfor-
mations. Such kind of metric, which is compatible
with other its forms accepted in literature and
leading to the same Gaussian curvature, means
that the propagators logarithms space is the
plane with constant negative Gaussian curvature,
i.e. the Lobachevsky plane, with CG = −4.

Besides, it was shown in [8], [4] that only this
special value of Gaussian curvature among all,
which may have spaces with constant negative
Gaussian curvature, leads to the wave equations
similar to the Schroedinger or Helmholtz ones.
In addition, nonzero Gaussian curvature of this
space represents also non-commutativity of
transformations of the Schroedinger equation
solutions.

Thus, the space of propagators logarithms of
the Schroedinger equation is the Lobachevsky
plane with unique Gaussian curvature CG =
−4. It should be noted that possibility of
identification of such kind propagators space
with the Lobachevsky one is closely connected
with isomorphism of the groups SU(1, 1) and
SL(2, R) [13].

Having determined the metric and the Gaussian
curvature of the space, one may find an appropri-
ate geometric image for an integrand, and
further, for a propagator in the expression (2.11).
Taking into account orthogonality of the Pauli
matrices [11], both terms in integrand may
be mapped on the Lobachevsky plane as the
oriented orthogonal segments of geodesic lines
in accordance with [12], [14]. Furthermore, one
may note that consideration of propagators as
a geodesic lines segments in the Lobachevsky
space allows one to solve geometric problems of
such kind geometry. In turn, it may be found to
be useful for physical problems.

One may note that even if only two of the Pauli
matrices entered the integrand in expressions
(2.11) evidently, the product integral includes
all these matrices together with σ0 since its
expression is product of similar matrices. It
means that dimension of the space mentioned
above is defined by all Pauli matrices which
together with σ0 form the basis of all possible
transformations described by matrices two
by two. For example, a dimension of this
space is the same, both in the case of the
unidimensional Schroedinger equation or in the
case of non-unidimensional one, including the
time Schroedinger equation.

The geometric mapping of matrix propagators
into the Lobachevsky space had allowed one
to establish the non-Euclidean superposition
principle for alternative propagators which takes
into account their non-commutativity [12], [8],
[4]. It contains four binary compositions of non-
commutative matrix propagators, all of them
belong to the same group as both entered the
compositions and have necessary properties
with respect to permutations and inversions,
and go to the ordinary Euclidean superposition
principle under corresponding conditions. Two of
four compositions contain irreversibility, although
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each of two non-commutative propagators
entered these two compositions, is the solutions
of the reversible Schroedinger equation [15], [16].

Besides geometric interpretation of propagators,
it is extremely important for physical purposes to
determine a space of observables js.

One may often listen that a particle being
described by the unidimensional Schroedinger
equation, for example with only z-dependence
of potential (and may be its derivatives) in the
equation, would be moved strictly along the
same axis. In particular, the authors of [1],
considering the problem on quantum particle
moving above unidimensional potential step,
supposed conserving ”probability density current”
j3 = i(ψψ∗′ − ψ∗ψ′) to be directed along such
axis, transmitted and reflected particles are
moving along this current, i.e. along z - axis.

This point of view seems to be hardly satisfactory.
A quantum particle motion is defined by all
Hermitian forms of its complete set which may
be constructed on the basis of the Schroedinger
equation solutions. This set includes four
Hermitian forms, only three of them are
independent due to the identity (2.8). The
number of these forms does not depend on if
equation is defined by one or more variables.
It is defined by the dimensionality of the group,
transforming solutions∗ , i.e. SU(1, 1) in this
case.

In particular, it means that the tangent to the line
along which all conservation laws are fulfilled is
defined by all Hermitian forms and may be by
their derivatives.Therefore, the condition (2.8)
may be considered not only as completeness
condition but also as the circumstance that js
form some vector in the Euclidean space [3],
[4], or, more rigorously, in the space with zero
Gaussian curvature.The requirements of ψ and
ψ′ continuity fulfilled for them as for solutions
of the second order differential equation lead to
continuity of all Hermitian forms as well. The
group-theoretic approach provides fulfillment of
necessary conservation laws in accordance with
the Noether theorems. Both these circumstances

allow one to suppose that a consequence of
the points where these conservation laws are
fulfilled form the continuous line. This line may
be considered as the quantum particle trajectory.

If it is not so, then one assumes that a particle
may be found at the points where conservation
laws had been violated.

Consideration of observables js as orthogonal
components of (path) velocity (j0 is its absolute
value in such interpretation) in the Euclidean
space allows one to attain a second, along with
probabilistic, interpretation of the Hermitian forms
in quantum mechanics [3], [4]. Furthermore,
connection of js and its derivatives with curvature
and torsion leads to set the line for point-like
object described by the Schroedinger equation,
along which all conservation laws are fulfilled,
under known of all initial conditions, of course.
It is well known from differential geometry [17]
that these two parameters, the curvature and the
torsion, define the spatial line to within a position
in space.

In particular, free particle under k = const and
arbitrary initial conditions is moving along spiral
line having the curvature and the torsion to be
fixed as far as all necessary conservation laws
are fulfilled along this line. The last circumstance
leads to an opportunity to consider free quantum
particle trajectory as the Euclidean straight line
on the Euclidean plane with zero Gaussian
curvature which is rolled up into the cylinder
surface with the same Gaussian curvature.

Such behaviour of free quantum particle allows
one to propose a qualitative explanation [3],
[4] double-slit experiment under extremely low
intensity of a particles source [18], [19].

Obviously, the particle at the potential step may
be considered similar to described above but
the trajectory in this case would be disposed
onto the conical surface with the same zero
Gaussian curvature due to the identity (2.8) as
well. The last one is also fulfilled at the step
when propagator and corresponding Hermitian
forms are varying together with variation of k
under conditions j2 = const, j3 = const, [3], [4].

*Since the time Schroedinger equation contains only first order time derivative, it has the same
Hermitian forms complete set as the stationary one, i.e. the set (2.9).
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3 “UNCERTAINTY”

Completeness of set of the Hermitian forms
forces to look for another basis for probability
concept, which is more compatible with
conservation laws then it takes place now, for
example in the simplest case of potential step, as
it was shown in [20].

Ad interim, let us investigate the uncertainty
principle from the group-theoretic point of view.

Transformations of solutions of the Schroedinger
equation (2.1), or its spinor representation
(2.3), belong to the group SU(1, 1). Matrix
representations of this three-parameter group
may be expressed as

Q = exp(aσ) = exp(a1σ1 + a2σ2 + ia3σ3) (3.1)

with real parameters a1, a2, a3, a2 = a21 +a
2
2 −a23,

or, for example, as

Q = exp(iMσ3)exp(Lσ1)exp(iNσ3) (3.2)

with also real N,L,M .

Basis of arbitrary transformations of two-
component spinor (2.4) consists of four matrices
σs, but expression for propagator (2.11), just as
(3.2), contains only matrices σ3 and σ1.

Let us analyze these expressions from standpoint
of basis completeness, on the one hand, and
from approximate calculations of propagators
under ∆zm and ∆km, which are supposed to
be small in some sense, often even in the
experimental one, and also under large ∆zm,
∆km, when exact calculations are valid, on the
other hand.

Parameters N and M may be calculated exactly
in areas with k = const, in just the same way
as parameter L on the potential wall directly [3].
These circumstance allows one to consider both
small and large N,L,M (but we do not consider
turning points here ). Taking (3.1) and (3.2)
into account, one may calculate them as matrix

identity

Q = σ0 cosh a+ (aσ) sinh a/a =
σ0 coshL cos(M +N)+
+iσ3 coshL sin(M +N)

+σ1 sinhL cos(M −N)− σ2 sinhL sin(M −N),
(3.3)

from where all components of geodesic vector
a1, a2, a3, and its length a may be calculated
exactly.

One may see that all matrices σs enter
propagator Q in general case. As far as this
matrix belongs to the SU(1, 1) group, then all
conservation laws, arisen from the Schroedinger
equation, are satisfied also exactly in accordance
with the Noether theorems. In spite of the
circumstance that the component a2 goes to zero
under small parameters N,L,M more quickly
then others, neglect of this term immediately
leads to violation of conservation laws due to
failure of the condition detQ = 1, i.e. one of the
group-theoretic requirements in this case.

Moreover, one may see, that a21 − a23 = 0 in
expression (3.1) under condition of tanhL =
sin(M+N)/ cos(M−N), and the length of vector
a is defined only by the component a2 in this
case. In other words, even if a1 and a3 are large,
there may appear conditions, when the solution
is defined by a2, and the last term with σ2 in the
expression (3.3) has to be taken into account in
general case.

One may also see that dimensionless coefficient
k∆z before σ3 in expression (2.11) has a sense
of action measured in ~-units along z-axis under
constant value of k. It means that coefficient
∆k/(2k), dimensionless in any units, is also an
action on the wall directly, but ~ enters only
the first term. This circumstance allows one to
compare actions of these two kinds, one of which
contains the Planck constant, but another does
not.

As far as expression (3.3) is valid under
arbitrary values of parameters N,L,M , let us
consider this matrix under small its absolute
values. Since our aim is to examine not only
accuracy of calculations but also completeness
of transformations basis in (2.11), we shall retain
lowest order terms before each matrix of basis.

7
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Then the expression (3.3) goes over to

σ0 cosh a+(a1σ1+a2σ2+ ia3σ3) sinh a/a ≃ σ0+

i(M +N)σ3 + Lσ1 − L(M −N)σ2, (3.4)

where the last term has the second order in this
case. One may see that matrix Q from (3.1)-(3.3)
contains all matrices of basis, detQ ≡ 1, Q ∈
SU(1, 1) and conservation laws are fulfilled under
any values of parameters N,L,M . Approximate
expression (3.4) for Q under small ones also
contains all matrices of basis, but detQ ̸= 1, then
Q does not belong to the group SU(1, 1), and
conservation laws are violated.

Comparing expression (3.3) and (3.4), one may
also see that in spite of the term with σ2 appears
only in the second order under small N,L,M in
(3.4), it would be extremely essential to take this
term into account for fulfillment conservation laws
in general case.

In accordance with above-stated, one may
arrive at the conclusion that appearance of the
term with σ2 is equivalent to inclusion of the
supplementary dimension, in addition to σ3 and
σ1, into approximate expression for propagator
Q, which is absent in the first order of smallness.
Moreover, the terms ik∆zσ3 and (∆k/2k)σ1 may
be large, but the term with with σ2 in (3.3) will
dominate under condition k∆z ≈ ∆k/(2k) even
in this case, whereas a21 − a23 ≈ 0.

As a rule, uncertainty relations are considered to
be connected with non-commutativity of opera-
tors forming commutators of kind [A,B] = AB −
BA, belonging to the Lie algebra of the group.
Keeping in mind appearance of the third matrix,
σ2, in the general expression (3.1) so as in (3.4),
it is interesting to determine its relation with such
kind commutator.

Using the Baker-Campbell-Hausdorff formula
expA expB ∼= exp(A + B + (1/2)[A,B]),
conserving the group properties of matrices,
and restricting with only one commutator of Lie
algebra of the group supposing that commutators
of higher order are negligible, one may carry out
that the integrand in expression (2.11) has to be
replaced with

ikm∆zmσ3 + (∆km/2km)σ1 − (∆km∆zm/2)σ2,
(3.5)

where sign minus before σ2 appears due to what
first term in sum of matrices was taken as the first
one in their product.

The last term, arisen as commutator of the Lie
algebra of the Lie group, was established without
any assumptions on smallness of ∆k,∆z in any
sense, theoretical or experimental. Moreover,
they may be arbitrary small or large, as it is seen
from consideration of the step-wall potential,
where propagator may be calculated exactly. This
term in (3.5) is similar to the same, entered the
Heisenberg uncertainty relation.

It should be noted that the third term in (3.5) was
obtained exclusively theoretically, without any
references on experimental causes, similar to
accuracy and so on. But this approach does not
exclude such interpretation of ∆k and ∆z. More
definitely, the approach allows consideration of
these values as consequence of experiment,
but does not accept their origin as exceptionally
experimental.

As a rule, ∆k and ∆z in the uncertainty
relation are considered to be small at least
in some sense. However, non-commutativity
is exclusively important property of pairs of
conjugate variables in quantum mechanics,
therefore it is difficult to imagine, that such
discrete symmetry may become apparent mainly
under small values of these parameters. For
example, non-commutativity appears clearly
under long paths in navigation, but vanishes
under small ones. This circumstance engages us
to find some kind of significant physical problem,
in which non-commutativity becomes apparent
more forcibly then it takes place under ordinary
consideration of the uncertainty relation.

Let us pay attention to irreversibility in quantum
mechanics, the problem, considered to be
unsolved up to now [21]. It is appropriate to
bring here merely a brief description of the
subject, only with an aim to show connection
between non-commutativity and irreversibility,
more detailed description may be found in [15],
[4] and, especially, in [16].

The Schroedinger equation is reversible,
therefore its solution, presented by propagator
Q from (2.11), is also reversible. It means, that

8
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vector a goes over to −a under time inversion.
This conclusion is valid up to any solution, but
different propagators are non-commutative in
general case.

In accordance with [16], let us multiply two
matrices from (3.1):

exp(cσ) = exp(bσ) exp(aσ) =
σ0[cosh b cosh a+ (nbna) sinh b sinh a]+
+σ[nb sinh b cosh a+ na sinh a cosh b+

i[nbna] sinh b sinh a]
(3.6)

This is exact expression. Using BCH-formula,
one may also derive

exp(cσ) = exp(bσ) exp(aσ) ≈ bσ + aσ+
(1/2)[bσ,aσ] = bσ + aσ + iσ[ba],

(3.7)
whence one may see, that commutator in (3.7) is
directly connected with vector product. The terms
in (3.6) or (3.7), which are linear with respect to
na and nb, change sign under time inversion,
they do not describe irreversible evolution. The
last term does not change under time inversion,
it describes irreversible phenomena.

4 DISCUSSION

The non-commutativity, lying in the basis
of uncertainty relations, is an impressive
manifestation of the nonzero Gaussian curvature
of the space of solutions transformations. As
usual, ones connect these relations with an
accuracy of measurements, then one compares
product of some pairs of physical parameters
with the Planck constant. As far as accuracy
of such measurements is near a confidence
level, both from experimental and also theoretical
viewpoints, there is doubt on origin and
interpretation of this relations, see for example,
[22]. As a rule, non-commutativity and smallness
of values, entered relations, are considered
together and their origin becomes too unclear.

Meanwhile, these two factors may be considered
separately, and the group-theoretic approach is a
sufficient tool for such consideration.

During many years quantum mechanics is
accompanied by the probability concept.
During the same years the problem of hidden

parameters is discussed in the papers devoted
to foundations of quantum mechanics. One may
note at the same time that during the same period
the probability density ψψ∗ was not accompanied
by the value ψ′ψ∗′ as long as the (convective)
probability density current i(ψψ∗′ − ψ′ψ∗′) was
not accompanied by the (diffusion) probability
density current ψψ∗′ + ψ′ψ∗′ .

The group-theoretic approach contains the
complete set of observables which presented
by the Hermitian forms. Part of them are used in
the ordinary schemes of quantum mechanics, as
ψψ∗ and i(ψψ

′∗−ψ′ψ∗′) during many years, part
of them, ψ′ψ∗′ and (ψψ

′∗ +ψ′ψ∗′) are appended
in the framework of the group-theoretic approach
[20]. Being together, these four Hermitian forms
generate complete set of observables, they also
well known as the Stokes parameters during
many years.

Besides, the approach, being a consistent
mathematical group theory, includes the Noether
theorems, which supply quantum theory with
fulfillment of conservation laws.

Geometric content is also included into the
scheme. The stationary Schroedinger equation
in its spinor representation leads to conclusion
that the space of spinor transformations is the
Lobachevsky one with the Gaussian curvature
CG = −4 [8]. The frame of reference there
is formed with three Pauli matrices, unit one,
σ0, inclusive, this is the complete basis of any
spinor transformations. Thus, one has a basis
for analysis of completeness of the Schroedinger
equation in any actual case.

It is necessary to note here that, since the
space is curved and transformations are non-
commutative, composition of different solutions,
or alternative transformations, requires to go over
to non-Euclidean superposition principle [12], [8],
[4], taking non-commutativity into account.

The non-Euclidean superposition principle is
formed with four compositions of two matrices,
non-commutative ones, as a rule, with definite
properties with respect to permutations and
inversions, and conserving the group properties
of result. These formulae may be geometrically
presented as sum, difference, and vector product

9
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of two geodesic vectors in the curved space.
The last composition is especially important in
the case of uncertainty relations, so as in the
irreversibility, of course.

The geodesic vectors of two first compositions
are placed at the Lobachevsky plane defined by
two initial vectors. The compositions with vector
product are orthogonal with respect to this plane.
As it was shown above, such compositions lead
to product of ∆k and ∆z, similar to the same
entered the uncertainty relations. Therefore one
may say that consideration of product ∆k∆z
corresponds to inclusion of the third dimension,
this is directed along vector product, or σ2 in the
case of simplified consideration, as above.

It should be noted that the subject connected
with non-Euclidean superposition principle, and,
in particular, one of its composition, containing
vector product, requires more attention. In
particular, the same mathematical tool is
connected with not only ”uncertainty”, but also
with irreversibility in quantum mechanics, as
it was shown in [15], [16]. Moreover, such
compositions from non-Euclidean superposition
principle, due to equality of terms with ∆k and
∆z, may turn out to be sufficient tool in the
problem of transitions in quantum systems, in
particular for consideration of radiation.

All ordinary schemes of quantum theory do not
contain a mathematical scheme of irreversibility
[21], phenomena, where measurements may be
carried out with sufficient confidence level. The
group-theoretic scheme, based on the reversible
Schroedinger equation and using its reversible
solutions, together with non-commutativity,
is capable to explain irreversibility in closed
systems. It means inclusion of unused dimension
in the Lobachevsky space.

This inclusion allows one to explain also the
appearance of ∆k∆z in quantum theory, but
we can not formulate, being in the framework
of mathematical theory, any restrictions,
connected with experimental measurements.
In opposite case, if one will include some
experimental data as a necessary element of
physical theory, it would be considered as if
one recognize impossibility to construct the
fundamental physical theory as a consistent

closed mathematical theory, as it takes place
now.

Moreover, it was shown in previous section, that
the case, when contribution of similar terms,
connected with the Lie algebra commutators,
may be principal, is possible, it is a peculiarity of
the group SU(1, 1). Nevertheless, an ordinary
interpretation of uncertainty relation as an
experimental restriction may be remained, but
as experimental, and only as experimental one.

5 CONCLUSION

All contemporary schemes of quantum theory
contain two exclusively important assertions,
which enter only quantum mechanics and
which are not contained in any other physical
theories. These are the probability concept
and the uncertainty principle. They are closely
connected, and we consider both of them here.

Probability. Observables in quantum mechanics
are the Hermitian forms constructed on basis
of the Schroedinger equation solutions and its
derivatives together with complex conjugate
ones. Ordinarily, only two Hermitian forms,
based on these variables, are used in quantum
theory, they are probability density ρ = ψψ∗

and its current j = i(ψψ∗′ − ψ∗ψ′). These
two observables do not satisfy with at least
some relation, which may be considered as
completeness condition for observables.

In spite of this circumstance, one can construct,
using only the same variables, ψ and ψ′

together with complex conjugate ones, four
Hermitian forms, which satisfy to the algebraic
completeness condition. These four variables are
well known during more then one hundred years
under name of the Stokes parameters, this is a
quadruple of real parameters, they are used in
classical electrodynamics, and the last one does
not need any probability concept as a necessary
element of theory - the set of observables is
complete there.

Another state is in quantum theory.
Incompleteness of observables set is filled by
means of introduction of the probability concept
into the theory as its inseparable element there.

10
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Therefore, inclusion of complete set of the
Hermitian forms, constructed on the base of the
same and only the same variables, which already
used in quantum theory, into consideration,
allows one to hope that the probability concept in
quantum mechanics would be excessive.

Uncertainty. Both, solutions and the Hermitian
forms, which are constructed from these
solutions, have to be described in some base.
Bases of both sets have to be complete
and compatible, since these sets are closely
connected. It leads to the conclusion that such
common and complete basis has to be presented
by the same four matrices, the Pauli matrices with
unit one.

These four matrices correspond to four Hermitian
forms (the Stokes parameters), which form
complete set. It means that all these matrices
have to be presented also in the expression for
propagator.

The Lie algebra of non-Abelian groups contains
commutators of kind [A,B], including also com-
mutators of higher order, as it is evident from
BCH-formula. It is also evident, that integrand
in the expression of the product integral (Texp)
does not contain all matrices of the basis.
Nevertheless, explicit calculations of commutator
lead to appearance of the term (∆k∆z/2)σ2,
corresponding to expression in the Heisenberg
uncertainty relation, and one may see all
matrices of basis in the propagator.

This term has, however, another sense compared
with an ordinary approach. It had been appeared
as restriction on measurement accuracy there.
Here this term has a sense of variable, connected
with matrix σ2, i.e. variable along one of unit
vector of basis, which has pure theoretical, or
even mathematical, origin and which enters the
the group-theoretic scheme of quantum theory.

Evidently, contribution of this term may be zero
or small, may be large, and even, under some
conditions, may be defining, as it was shown
above and as it should be waited for any variable
along any vector of basis. Such behaviour of
the variable, connected with commutator of the
Lie algebra of the Lie group, may be compared
with processes in the closed quantum system, in

which both reversible and irreversible processes,
described by only reversible equations, may take
place simultaneously. Both kind of processes,
reversible and irreversible, may be essential
or not, and, correspondingly, contribution of
commutator may be negligible or large. Therefore
the group-theoretic approach does not contain
any kind inequalities, essentially connected with
experimental measurements, in opposite to an
ordinary sense of the Heisenberg relations.
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