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ABSTRACT

Despite their attractive properties of invariance, robustness and reliability, statistical motion
descriptions from temporal templates have not apparently received the amount of attention they
might deserve in the human action recognition literature. In this paper, we propose an innovative
approach for action recognition, where a novel fuzzy representation based on temporal motion
templates is developed to model human actions as time series of low-dimensional descriptors. An
NB (Näıve Bayes) classifier is trained on these features for action classification. When tested on
a realistic action dataset incorporating a large collection of video data, the results demonstrate
that the approach is able to achieve a recognition rate of as high as 93.7%, while remaining
tractable for real-time operation.
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1 INTRODUCTION

The automatic recognition of human actions in
unconstrained settings is still an underdeveloped
area due to the lack of a general purpose
model [1]. Furthermore, most approaches in
the literature remain limited in their ability. For
this, much research still needs to be undertaken
to address the ongoing challenges.

The non-rigid nature of human body and
clothes in video sequences, that results from
drastic illumination changes, changing in
pose, and erratic motion patterns presents a
grand challenge to action recognition [2] It
is clear that developing good algorithms for
recognizing human actions [3] in real-world
scenes provides huge potential for a large
number of real-life applications, such as human-
computer interaction, video surveillance, gesture
recognition, and robot learning and control [4].

While the real-time performance is a major
concern in computer vision, especially for
embedded computer vision systems, the
majority of recognition systems often employ
sophisticated feature extraction and learning
techniques, creating a barrier to the real-time
performance of these systems.

In this work, we attempt to address the
recognition of human actions in real-world
scenarios which is an important but challenging
problem with prosperous applicability into
Human-Computer Interactions (HCI) and
security industry.

The remainder of this paper is structured as
follows. Section 2 briefly reviews previous work.
The proposed framework for action recognition
is described in Section 4. In Section 5, the
results of the preliminary experiments conducted
to evaluate the stability of the system and its
effectiveness in recognizing actions are presented
and discussed. Finally, Section 6 concludes
the paper by results summary and possible
extensions.

2 RELATED WORK

In the past four decades or so, a great deal of
research has been conducted into the recognition
of human actions. Despite these years of work,
the problem still provides a great challenge to
researchers. Human actions can generally be
recognized using various visual cues such as
motion [5, 6, 7] and shape [8, 9, 10]. Scanning the
literature, we notice that a great deal of research
focuses on using spatial-temporal keypoints and
local feature descriptors [11, 12].

Another thread of research focuses on analyzing
patterns of motion to recognize actions. For
instance, in [13] the authors analyze the periodic
structure of flow patterns for gait recognition.
Moreover, in [6], Sadek et al. propose approach
for action recognition in real-world scenes, where
a new fuzzy motion descriptor is developed to
model actions as time series of fuzzy directional
features.

Some researchers have opted to use both
motion and shape cues [14]. For example,
in [15] the authors detect the similarity between
video segments using a space-time correlation
model. In [16], Rodriguez et al. present
a template-based approach using a Maximum
Average Correlation Height (MACH) filter to
capture intra-class variabilities, whereas Jhuang
et al. [17] perform action recognition by building
a neurobiological model using spatio-temporal
gradient. In parallel, a significant amount of
work is targeted at modelling and understanding
human motions by constructing elaborated
temporal dynamic models [18, 19].

There is also a research area that concentrates
on using generative topic models for visual
recognition based on the so-called Bag-of-Words
(BoW) model. The underlying concept of a
BoW is that the video sequences are represented
by counting the number of occurrences of
descriptor prototypes, so-called visual words.
Topic models are built and then applied to
the BoW representation. Three of the most
popularly used topic models are Latent Dirichlet
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(a) (b) 

Fig. 1. (a) A frame from a waving sequence, (b) MHI for the sequence

Allocation (LDA) [20], Correlated Topic Models
(CTM) [21] and probabilistic Latent Semantic
Analysis (pLSA) [22].

3 MOTION TEMPLATES

Temporal templates are 2D images constructed
from image sequences, which effectively
reduce a 3D spatio-temporal space to a 2D
representation [23]. They are conformed with
the successive images differences to show where
and when motion in the image sequence occur;
while one dimension is eliminated, the temporal
information is retained and depicted in the
related 2D image. To construct temporal
templates, either the camera and the background
are assumed to be static, or the motion of the
object of interest is assumed to be separable
from the motion induced by camera and/or
background movements. When a temporal
template is constructed without maintaining
the information about the time instance at
which the motion occurred, in this case the
resulting temporal template is referred to as a
Motion Energy Image (MEI). Instead, when the
temporal information (i.e., motion history) is
preserved through assigning different intensities
to different moments of the motion, then the
temporal template is termed a Motion History
Image (MHI), as shown Fig 1. A serious
drawback inherent to the originally proposed

temporal template approach [23] is the so-
called “motion self-occlusion” problem due to
overwriting. To show this problem, let us
consider, for instance, a motion occurs on a
spatial location χ at two time instances t1 and
t2 where t2 > t1, then the recent motion that
occurs at t2 will overwrite the prior motion
(occurring at t1). One way to circumvent this
problem is to record motion history at multiple
time intervals (i.e., multilevel MHIs), instead of
recording the motion history once for the entire
image sequence (single MHI).

4 PROPOSED APPROACH

In this section, the proposed method for action
recognition is described. The main steps in
this method can be summarized as follow.
First, temporal templates called Motion History
Images (MHI’s) are constructed from the image
sequence. Then, few statistical low-level features
characterizing human motion parametrically are
extracted form the temporal templates. For
dimensionality reduction, we present an adaptive
fuzzy feature selection technique to reduce
the size of the extracted features without or
with little recognition performance degradation.
Finally, feature vectors are applied to train
an NB classifier for action recognition. The
technical details of each of these steps are
provided in the following subsections.
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Fig. 2. Action moves along with their MHIs; from left to right and top to bottom

actions are walking, jogging, running, boxing, waving, and clapping

4.1 Temporal Template
Construction

Let I(x, y, t) be the image brightness that
changes in time to provide an image sequence.
Further, let D(x, y, t) be the binary image
resulting from brightness variation detection
(e.g., obtained from frame subtraction:
D(x, y, t) = |I(x, y, t) − I(x, y, t ± ∆)|, where
(x, y) are the spatial image coordinates and

∆ is the difference distance). Specifically,
within an MHI denoted as Hτ with τ decides
the temporal duration of the MHI (e.g., in
terms of frames), the intensity value at each
point is a function of the motion properties
at the corresponding spatial location in the
image sequence. Therefore, Hτ (x, y, t) can be
computed from an update function ψ(x, y, t)
with the following recursive formula:
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Hτ (x, y, t) ={
τ, if ψ(x, y, t) = 1
max(0, Hτ (x, y, t− 1)− ε), o.w

(4.1)

where ψ(x, y, t) signals object’s presence (or
motion) in the current frame and ε is the decay
parameter. The MHI is generated fromD(x, y, t)
using a predetermined threshold ξ:

ψ(x, y, t) =

{
1, if D(x, y, t) > ξ
0, o.w

(4.2)

It is worthwhile mentioning here that if the
information about when the motion of interest
begins and ends is not available, it may be
necessary to vary the observed period τ and
then attempt to classify all MHIs. While on
the contrary, when the beginning and the end
of action are known and they coincide with the
duration of image sequence, there will be no need
to vary the parameter τ . The temporal behavior
can be efficiently normalized by distributing the
gray values inside the MHI over the available
range (e.g. [0-255], assuming 8-bit gray scale
level representation). Successively, variations in
display duration of an action unit can be wiped
out. This allows actions having a different period
but otherwise identical to be compared against
to each other.

Initially, each input image sequence might
comprise of different number of frames. Hence,
the history levels in MHIs would have different
numbers from one sequence to another. In
order to compare the sequences properly, the
multilevel MHI (MMHI) approach tries to create
all MHIs such that they have a fixed number of
history levels n. Therefore each image sequence
is sampled to n + 1 frames. Using the known
parameter n, the MHI operator is modified into:

H(x, y, t) =

{
αt, if ψ(x, y, t) = 1
H(x, y, t− 1), o.w

(4.3)

where α = 255/t is the intensity step between
two history levels. Note that (4.3) implies that
for t = 0, H(x, y, t) = 0. With a MMHI, the
main objective is to encode motion occurring

at different time instances on the same pixel
location such that it is uniquely decodable
afterwards. To achieve this objective, a simple
bitwise coding scheme is used. If motion occurs
at pixel location (x, y) and time t, the term 2t−1

is added to the old value of the MMHI as follows,

M(x, y, t) =M(x, y, t−1)+2t−1ψ(x, y, t) (4.4)

whereM(x, y, t) = 0 for t = 0. With this bitwise
coding scheme, it is possible to separate multiple
motions occurring at the same location. Fig 2
shows six actions and their MHIs. In this figure,
we observe that the regions of newer motion
appear more reddish than those of old motion
in MHIs.

4.2 Feature Extraction

The first set of extracted feature is statistical
features, which includes: (1) The filling ratio
of the bounding box around the largest ROI
of the MHI region. This feature represents
the percentage of the bounding box of the
motion occurring at a specific time instance,
which provides us with a significant information
about motion shape. (2) The average direction
in each moving region, which is the estimated
angle between the motion orientation and the
horizontal axis. This direction is calculated
from the weighted orientation histogram, where
a recent motion has a larger weight and the
motion occurred in the past has a smaller weight,
as recorded in MHI. (3) The ratio between the
width and height of the bounding box around
the motion part of MHI. This feature serves as
a most characteristic to the motion shape. (4)
The shortest distance between the start and end-
point of the motion trajectory.

As we are interested to represent actions in more
local level, we propose to define an additional
set of geometric features. To achieve this goal,
the bounding box around the detected motion
is partitioned into a number of sub-regions.
Then, a set of affine geometric invariants can
be derived from each of the sub-regions. This
set is invariant under affine transformations and
moment-based descriptors [24], and is given as,
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where ηpq is the central moment of order p+ q.

4.3 Fuzzy Feature Selection

The key idea of our method for feature selection
is to temporally decompose action sequences (i.e.
snippets) into a finite number of time slices in
a fuzzy way [4, 25]. This would enable the
approach to achieve better feature reduction
ratios without loss in recognition accuracy.
Formally, at each time instant t, feature vector
can be created from extracted features as follows,

ft = (ft;1, ft;2, . . . , ft;k)
⊤ (4.6)

where k is the total number of features at time
t. Since the features in (4.6) are computed at
each time instant of a given snippet, the snippet
can then be represented as a time series of these
features: A = {ft}τ−1

t=0 , which provide a rigorous
approach to classify and recognize actions. To
obtain the final feature vector for a snippet, it
is partitioned into several time-slices defined by
linguistic intervals [14, 26]. A Gaussian fuzzy
membership function is used to describe each of
these intervals,

Gj(t;α, β, γ) = e
−
∣∣∣ t−α

β

∣∣∣γ
(4.7)

where α, β and γ are scalar parameters, i.e.
the center, width, and fuzzification factor,
respectively. Therefore, a feature vector for
a time-slice can be created by calculating the
weighted average feature vector of all frames
within the time-slice. Formally, the feature
vector for time-slice j is given by,

Fj =
1

∆t

∑
t∈slicej

Gj(t)ft, j = 1, 2, . . . ,m (4.8)

where Gj(t) is the membership function
representing the j-th time slice, ∆t is the
duration of the time slice, and m is the
total number of time slices. Thus, the
full feature vector for an action snippet can
straightforwardly be derived by concatenating
all m feature vectors of time slices:

A = F1 ⊕F2 ⊕ · · · ⊕ Fm (4.9)

where ⊕ is the concatenation operator. From
the above mentioned, it follows that the process
of slicing action snippets into a finite number
of temporal steps achieve the primary goal of
effective feature dimensionality reduction and
de-correlation by removing probable redundancy
in the features set, while retaining the
information essential for effective recognition.

4.4 Action Classification

In this work, we formulate the action recognition
task as a multi-class learning problem, where
there is one class for each action, and the
goal is to assign an action to an individual
in each video sequence. Näıve Bayesian (NB)
classifier is used for action classification [14].
The main advantage of the NB is that it
requires a small amount of training data to
estimate the parameters (means and variances
of the variables) necessary for classification.
In spite of their naive design and apparently
over-simplified assumptions, NB classifiers have
shown to work quite well in many complex real-
world situations [27, 28]. Formally speaking,
given a final feature vector X extracted from a
test action snippet, posteriori probabilities are
calculated using training action snippets. This
is accomplished using Bayes rule, as follows,

p(ωi|X) =
p(X|ωi)p(ωi)

p(X)
(4.10)
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where p(X) =
∑K

i=1 p(X|ωi)p(ωi). p(ωi|X) is the
posteriori probability of observing the class ωi

given the feature vector X. p(ωi) is the priori
probability of observing the class ωi, p(Xi|ωi)
is the conditional density, and K is the total
number of classes. For this recognition task, it is
assumed that each action is uniquely described
by the value of its a posteriori probability.
Moreover, all priori probabilities are assumed to
be equal, and thus find the density functions for
each class. Hence, such K densities are found,
corresponding to K different actions. Having
obtained K values for all action classes, the most
likely action is given by,

P = max[p1, p2, . . . , pK ] (4.11)

where P is the probability of the most likely
class and p1, p2, . . . , pK are the probabilities of
K actions.

5 EXPERIMENTAL RESULTS

To evaluate the performance of our recognition
approach, we decided to create our own realistic
action dataset (i.e. so called IIKT action
dataset) which is going to be publicly available
free of restrictions on use for action recognition
research on the Web very soon [29, 12].
Analogous to benchmark KTH dataset [30], six
action categories are contained in our IIKT
dataset; three “leg actions” (i.e., walking,
jogging, and running) and three “arm actions”
(i.e., boxing, hand-waving, and hand-clapping).
Contrary to KTH dataset, the sequences in
IIKT dataset were taken over various non-
homogeneous backgrounds at 30 fps frame rate.
Within the sequences, actions are performed by
nine subjects, each subject was asked to wear a
different clothing item. This is expected to make
recognizing actions slightly more challenging.
Fig 3 shows example actions in IIKT dataset.
A series of experiments have been carried out to
quantify the effect on recognition performance of
altering the feature description parameter (i.e.,
m) in order to establish the optimum recognition
rate.

As there was no control over the video
capturing process, the action sequences in

the dataset exhibit some degree of variation
in the actors, scale, pose, camera views,
appearance inside the same action category,
coupled with cluttered background and different
illumination conditions. Considering that most
previous research experiments were conducted in
controlled or partially controlled environments
(e.g., KTH and Weizmann datasets), we
intuitively expect that the experimental results
using this dataset will be more realistic. The test
data consists of a total of 300 action snippets
derived from the video sequences recorded in
the dataset. These streams were saved in AVI
format with a resolution of 640×480-pixel frame
dimensions with 24-bit color depth at 30 fps
frame rate. An additional total of 480 streams
are used to train the NB classifier.

Fig. 4 shows an example of visualization of the
applied features extracted from different action
categories. By inspecting the plots in this figure,
one can observe that the features reflect the
actual similarity/dissimilarity between different
categories of actions. One more interesting
observation is that the descriptor remains
constant or slightly changes with time; this
suggests that a relatively few number of time
slices will suffice to construct such a descriptor.

With the eventual goal of developing a high
performance recognition system, we investigate
the recognition performance of the framework
under the values of the feature description
parameter m varying. To achieve this, we
compute the feature descriptors a total of five
times (m ∈ {1, 2, 3, 4, 5}) for all samples in
training set. To facilitate the visualization
of the system’s performance, the confusion
matrices that tabulate the correct and incorrect
classifications are calculated through majority
voting. The performance of the system can
be presented directly in the form of confusion
tables. Instead, for the sake of clarity, we
graphically represent these confusion tables
through a series of 3D bar plots, presented in
Fig 5. By inspecting all plots shown in the
figure, it is explicitly observed that the feature
representation parameter m is significant and
directly affects the results of the recognition.
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walk box wave  clap jog run 

Fig. 3. Some example frames from the IIKT action dataset
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Fig. 4. Plots of simple statistical features computed on the temporal motion

templates of walking, jogging, running, boxing, waving, and clapping actions

Furthermore, the accuracy metric is used to
gauge the holistic performance of the recognition
scheme. The experiments demonstrate two
points of particular interest. First, the feature
parameter m is significant and directly affects
recognition results. Secondly, in terms of
recognition performance, the larger values of m
provide a greater improvement in recognition
rate. The best recognition accuracy achieved
by the approach is 94.7% that can be
regarded as ”encouraging“ and confirms the
basic correctness of the approach, regarding the

realistic environments. All the routines have
been coded in Visual Studio 2013 and executed
on a PC equipped with an Intel Core 2 processor
operating at 3.1 GHz with 8 MB of cache and
4 GB of SDRAM. The final experiment was
conducted with the purpose of localizing action
objects as moving regions of interests (ROIs)
identified by motion information. In practice,
the approach has proved to be more efficient for
scenes with a relatively stable background, even
with very high levels of noise.
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Fig. 5. Sample 3D bar plots visualizing the confusion in action recognition results,

each corresponding to different value of the feature parameter m

6 CONCLUSION AND FUTURE

WORK

This paper has presented an innovative approach
for action recognition, in which a compact
fuzzy descriptor is constructed using temporal
templates and fuzzy temporal slicing. The
simplicity and computational efficiency of the
employed features allow the approach to
be amenable for integration into real-time
applications. Future work will involve further
investigations on larger realistic datasets to
discuss the substantive correctness, robustness,
and large-scale feasibility of the approach.
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