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ABSTRACT 
 

The assessment of the radiation hazard indices of solid minerals and sand in mining sites of Benue 
State, Nigeria was carried out using well calibrated radalert-50 and 100 meters and a Global 
Positioning System (Garmin 765). The sites investigated are Lessle (Barite), Gboko (Limestone), 
Owukpa (Coal) and Akuana (Salt) deposits fields. The mean background radiation ionization 
exposure rate of 0.019±0.004, 0.019±0.004, 0.014±0.002 and 0.023±0.005 mRh-1 were obtained 
respectively. The mean of absorbed dose rates estimated for the mining fields are 161.53, 169.40, 
120.35 and 201.84 nGy/hr respectively. Estimated values of the annual effective dose equivalent 
(AEDE) for outdoor exposures 0.25, 0.26, 1.61, and 2.71 mSv/yr respectively while the mean 
excess lifetime cancer risk calculated for the mine fields values are (0.82, 0.86, 5.33 and 8.94) x  
10-3 respectively. The obtained values for background ionizing radiation were higher than the 
recommended standard limits by ICRP while the AEDE calculated in the entire mine fields are 
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within safe values but the absorbed dose (D) and excess lifetime cancer risk (ELCR) estimated 
were higher than their world permissible values of 89 nGy/hr and 0.29 x10-3 respectively. The work 
indicated that there is tendency for the residents near the mining sites to get high radiation doses 
and could develop radiation-related illness after a long time exposure. 
 

 
Keywords: Solid minerals; radalert-(50 and 100); radioactivity; excess lifetime cancer risk and 

effective dose. 
 
1. INTRODUCTION 
 
Mining industries have been viewed as key 
drivers of economic growth and the development 
process [1]. Due to the presence of mineral 
deposits of economically viable grades, mining 
and extraction of metals are carried out in such 
mineralised zones of Benue State, Nigeria. 
Mining activities all over the world have 
contributed immensely to the disequilibrium of 
mineral elements and therefore affect the 
terrestrial ecosystem due to the excavation of 
large amount of sands [2]. 
 
Natural radioactivity is widespread in the earth 
environment and it exists in various geological 
formations such as earth crust, rocks, soils, 
plants, water and air. When rocks are 
disintegrated through natural process, 
radionuclides are carried to soil by rain and      
flows [3]. The ways minerals incorporate the 
radionuclide depend on several geological 
conditions, but is most strongly dependent on the 
mineral species and geological formation from 
which they originate. 
  
Exposure to all these radiations from the mineral 
mining sites that has been contaminated with 
radioactive waste may pose a threat to human 
health. Furthermore, consuming water and 
fishery resources may cause internal exposure 
which can lead to radiation related sicknesses 
like cancer, turmour and sterility [4]. Several 
studies of radiological survey have been carried 
out in some mineral mining sites in Nigeria and 
outside the country to monitor radiation level and 
it’s associated radiation risk [5-10]. None of the 
investigations done in similar environment in 
Nigeria determined level of radiological burden 
for different range of minerals of exposure to 
such background radiations. Hence, there is 
need to investigate the present radioactivity 
status of the mineral mining sites. 
 
This work assessed the background radiation 
level of mining sites in Benue State and its 

surroundings and to estimate the radiation risk 
parameters in order to assess its biological effect 
to exposed populace. 
 
2. MATERIALS AND METHODS 
 
2.1 Study Area 
 
The study areas are located in Benue State 
which lies within the lower river Benue trough in 
the middle belt region of Nigeria and are within 
the geographical points situated on longitude 7° 
47’ and 10° 0’ East and Latitude 6° 25’ and 8° 8’ 
North. The geology of the study area is 
principally of sedimentary formation with pockets 
of basement complex which is made up of 
sandstones, mudstones and limestone that 
influences both surface and ground water 
availability [11,12]. Benue State is endowed with 
solid mineral resources such as industrial 
minerals – barites, kaolin, gypsum, limestone; 
Energy mineral – coal, Chemical mineral – brine; 
Metallic mineral – wolframite, bentonite clay, lead 
and zinc etc, which are evenly distributed over 
the existing geographical location, some of which 
are not yet being mined but are being 
investigated [13]. Fig. 1 shows the location map 
of the study area. 
 
2.2 Field Measurements 
 
The in situ measurements of the terrestrial 
radiation from the surface of the soil of the mine 
fields were done directly in an undisturbed 
manner. Using a well calibrated rad-monitor, 
Digilert – 50 and Radalert – 100 nuclear radiation 
monitoring meter (S.E. International 
Incorporation, Summer Town, USA), containing a 
Geiger-Muller tube capable of detecting alpha, 
beta, gamma and X-rays within the temperature 
range of 10°C and 50°C. The Giegermuller tube 
generates a pulse current each time radiation 
passes through the tube and causes ionization 
[14]. Each pulse is electronically detected and 
registered as a count. The radiation meters were 
calibrated with a 137Cs source of a specific
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Fig. 1. Map of the study area  
 
energy and set to measure exposure rate in milli-
Roentgen per hour (mRhr-1). The meter has an 
accuracy of ±15%. The measurements were 
carried out by positioning the radiation meter at 
the targeted sample (rock aggregates and 
surface samples) located at varying distance 
from the mineral deposit mine field(s) established 
by Geographical Positioning System (GPS). 
Measurements were taken within the hours 
necessary since exposure rate meter has a peak 
response to environmental radiation within these 
hours, then the background radiation level was 
recorded. In order to ensure quality assurance 
the provisions taken include: Two measuring 
instruments was deplored to field and 
standardization of the measuring instruments 
before use was done, multiplicity of 
measurement for each sample point (n = 4 for 
radiation measurements for each sample point). 
The switch (knob) was turned to return the meter 
to zero after each measurement. 
 

2.3 Data Analysis/Conversion 
 
The generated data were converted to absorbed 
dose rate nGy h-1 using the relation for the 
external exposure rate by [9]. 

1� � ℎ   ⁄ = 8.7 �� ℎ ⁄  =

8.7 ×  10��� � �1 8760⁄ �⁄  ,  
 
The results are presented as means and 
standard deviations while the bar chart 
illustrations were carried out to determine the 
significant relationships between the radiations 
from different sample types as shown in      
Tables 1-4.  
 
3. RESULTS AND DISCUSSION 
 
3.1 Results  
 
The results for the in-situ measurement of  
terrestrial radiation level and the calculated 
values for gamma dose, annual effective dose 
equivalent (AEDE) and excess lifetime cancer 
risk (ELCR) of the barite, limestone, coal and salt 
mining fields are presented in Tables 1-4 and 
while Table 5 presents the summary of 
parameters calculated. Figs. 2 and 3 show the 
comparison of excess lifetime cancer risk with 
average world standard value for barite, 
limestone, coal and salt mining fields 
respectively. 
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3.2 Radiation Risk Parameters 
 
The data obtained for the radiation exposure rate 
and the absorbed dose does not actually provide 
the exact indication about the total radiation 

hazards. The γ radiation hazards as a result of 
the exposure to background ionizing radiation in 
selected mining fields and its environs are 
estimated by calculating radiation risk 
parameters. 

 
Table 1. The mean radiation exposure rate and estim ated radiation risk parameters of the 

barite mineral deposits fields in Lessle area 
 
Sample 
location  

Geographical 
positions  

AVE. RAD. 

value mRhr
-1

 

Absorbed dose  
nGy/hr  

AEDE 
(mSv/yr)  

ELCR  

X 10
-3

 
Lessle area N07°08’11.2’’ 

E009°01’28.1’’ 
0.021±0.004 182.7 0.2401 0.7922 

Ge-Mbagwa 
area 

N07°07’46.4’’ 
E009°00’49.7’’ 

0.019±0.005 165.3 0.2667 0.8802 

Akegh-Dyege 
area 

N07°08’01.7’’ 
E009°01’00.1’’ 

0.032±0.005 278.4 0.4268 1.4084 

Ushongo N07°08’07.4’’ 
E009°01’20.8’’ 

0.019±0.008 165.3 0.2267 0.7482 

Mbakoa N07°08’34.4’’ 
E009°01’24.5’’ 

0.018±0.004 156.6 0.2667 0.8802 

Nyamge area N07°08’19.5’’ 
E009°01’30.2’’ 

0.017±0.003 147.9 0.1867 0.6162 

Ushongo 
community(Host) 

N07°08’11.0’’ 
E009°01’16.4’’ 

0.011±0.008 95.7 0.1467 0.4841 

Mean field value  0.019±0.004 161.5 0.2476 0.8172 
 

Table 2. The mean radiation exposure rate and estim ated radiation risk parameters of the 
limestone mineral deposits fields in Gboko area 

 
S/N Geographical 

positions  
AVE. RAD. 

value mRhr
-1

 

Absorbed  
dose 
nGy/hr  

AEDE 
(mSv/yr)  

ELCR  

X 10
-3

 

Amua  N07°24’38.2’’ 
E008°59’01.0’’ 

0.021±0.005 182.7 0.2267 0.7482 

Limestone deposit 
Ridge 

N07°24’45.7’’  
E008°58’43.1’’ 

0.019±0.005 165.3 0.1734 0.5722 

Gboko-Yandev N07°24’52.2’’  
E008°58’27.9’’ 

0.018±0.003 156.6 0.1600 0.5281 

Gboko community 1 N07°24’36.0’’  
E008°58’55.2’’ 

0.017±0.008 147.9 0.3068 1.0123 

Limestone deposit 
Pit 

N07°24’17.1’’  
E008°58’42.8’’ 

0.020±0.005 174.0 0.2667 0.8802 

Gboko factory N07°24’00.8’’ 
E008°58’31.9’’ 

0.031±0.001 269.7 3.6218 11.952 

AMUA 
community(Host) 

N07°24’38.2’’ 
E008°59’01.0’’ 

0.013±0.007 113.1 0.1734 0.5722 

Mean field value  0.019 169.36 0.25963 0.8567 
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Table 3. The mean radiation exposure rate and estim ated radiation risk parameters of the coal 
mineral deposits fields in Owukpa-Orokam area 

 
Sample area  Geographical 

positions  
AVE. RAD. 

value mRhr
-1

 

Absorbed  
dose nGy/hr  

AEDE 
(mSv/yr)  

ELCR X 10
-3

 

Otukpo area N06°58’44.1’’ 
E007°37’05.3’’ 

0.011±0.002 95.7 1.5188 5.0121 

Orokam area N06°58’40.9’’ 
E007°36’45.7’’ 

0.014±0.002 121.8 1.7525 5.7832 

Otupka area N06°57’12.4’’ 
E007°37’00.4’’ 

0.024±0.004 208.8 2.8040 9.2532 

Owupka area N06°57’18.2’’ 
E007°37’12.5’’ 

0.021±0.002 182.7 2.4535 8.0965 

Bagba area N06°57’24.4’’ 
E007°37’54.0’’ 

0.016±0.005 139.2 2.4535 8.0965 

Bagba 
community 

N06°57’32.5’’ 
E007°37’03.4’’ 

0.013±0.002 113.1 1.6357 5.3977 

Owupka 
community (Host) 

N06°56’58.1’’ 
E007°37’22.3’’ 

0.008±0.003 69.6 0.9347 3.0844 

Mean field value  0.014 120.35 1.61 5.33 
 
Table 4. The mean radiation exposure rate and estim ated radiation risk parameters of the salt 

mineral deposits fields in Akuana area 
 
Sampled area Geographical 

positions 
AVE. RAD. 

value mRhr
-1

 

Absorbed  
dose 
nGy/hr 

AEDE 
(mSv/yr) 

ELCR  

X 10
-3

 

Akuana phase 1 N07°47’02.6’’ 
E009°09’48.3’’ 

0.025±0.006 217.5 2.57 8.48 

Akuana salt lake N07°47’04.8’’ 
E009°09’35.6’’ 

0.034±0.004 295.8 3.97 13.11 

Akuana phase 2 N07°47’01.5’’ 
E009°09’42.5’’ 

0.022±0.002 191.4 3.15 10.40 

Akuana phase 3 N07°47’58.0’’ 
E009°09’49.9’’ 

0.021±0.005 182.7 3.04 10.02 

Akuana phase 4 N07°47’05.6’’ 
E009°09’53.3’’ 

0.031±0.005 269.7 3.62 11.95 

Akuana community 
(Host) 

N07°47’08.1’’ 
E009°09’53.4’’ 

0.016±0.007 139.2 1.87 6.17 

Mean field value  0.023 201.8 2.71 8.94 
 

Table 5. Summary of the measured exposure rate and the estimated radiation hazard 
parameters 

 
Samples/ areas  Background ionizing 

radiations (Mean) 
(mRhr -1) 

Absorbed dose 
rates (Mean)  
(nGyhr -1) 

Annual effective 
dose equivalent 
(Mean) (mSvyr -1) 

Excess lifetime 
cancer risk (10 -3) 
(Mean) 

Barite (Lessle) 0.017-0.032 (0.019) 147.9-278.4 (161.53) 0.19-0.43 (0.25) 0.62-1.41 (0.82) 
Limestone 
(Gboko) 

0.017-0.031 (0.019) 147.9-269.7 (182.70) 0.27-3.62 (0.26) 0.88-1.36 (0.86) 

Coal (Orokam) 0.011-0.024 (0.013) 95.7-208.8 (120.35) 1.52-2.80 (1.62) 5.01-9.25 (5.33) 
Salt (Akuana) 0.021-0.034 (0.023) 182.7-295.8 (201.84) 2.57-3.97 (2.71) 8.48-13.11 (8.94) 
 



Fig. 2. Comparison of 
 

 
Fig. 3. Comparison of mean ELCR of mineral deposition field with World Safe 

3.2.1 Annual effective dose equivalent 
 
The AEDE can give a clue on indication
radiological contamination in an outdoor 
environment which may result to inhalation of 
high level of radon gas emitted and its progeny 
from the mining activity that can lead to lung 
cancer from accumulated doses [15].
absorbed gamma dose rates were used to 
calculate the annual effective dose equivalent 
(AEDE) received by individuals within and 
around the selected mining fields. In calculating 
AEDE, dose conversion factor of 0.7 Sv/Gy and 
the occupancy factor for outdoor of 0.25 (6/24) 
was used. The occupancy factor for outdoors 
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Comparison of measured BIR levels with standard 

ELCR of mineral deposition field with World Safe 
 

effective dose equivalent (AEDE)  

The AEDE can give a clue on indication of 
radiological contamination in an outdoor 
environment which may result to inhalation of 
high level of radon gas emitted and its progeny 
from the mining activity that can lead to lung 

[15]. Measured 
were used to 

calculate the annual effective dose equivalent 
(AEDE) received by individuals within and 
around the selected mining fields. In calculating 
AEDE, dose conversion factor of 0.7 Sv/Gy and 
the occupancy factor for outdoor of 0.25 (6/24) 

The occupancy factor for outdoors 

was calculated based upon interviews with 
peoples of the area. People of the study area 
spend almost 6 hours outdoors due to the nature 
of their routine. The annual effective dose 
equation was estimated using the followin
relation [16]: 
 

AEDE (outdoor) (mSv/y) = Absorbed dose 
rate (nGy/h) ×8760 h ×0.7Sv/Gy × 0.25

                                                             
The annual effective dose equivalent for the 
barite, limestone, lead, coal and salt 
fields of Benue state ranges from 0.19 to 0.43 
mSvy-1, 0.27 to 3.62 mSvy-1, 1.52 to 2.80 mSvy
and 3.04 to 3.97mSvy-1 respectively.

(LESSLE) LIMESTONE-(GBOKO) COAL-(OROKAM) SALT-(ANYIN)

Mineral Deposition Fields

BIR LEVELS ICRP STANDARD

LIMESTONE-(GBOKO) COAL-(OROKAM) SALT-(ANYIN)

Sample Location 

ELCR

WORLD STANADARD
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ELCR of mineral deposition field with World Safe limit value 

was calculated based upon interviews with 
peoples of the area. People of the study area 
spend almost 6 hours outdoors due to the nature 
of their routine. The annual effective dose 
equation was estimated using the following 

AEDE (outdoor) (mSv/y) = Absorbed dose 
rate (nGy/h) ×8760 h ×0.7Sv/Gy × 0.25     (2) 

                                                              
The annual effective dose equivalent for the 
barite, limestone, lead, coal and salt deposition 
fields of Benue state ranges from 0.19 to 0.43 

, 1.52 to 2.80 mSvy-1, 
respectively. 

WORLD STANADARD
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3.2.2 Excess life cancer risk (ELCR)  
 
The probabilities of contacting cancer by the 
mine workers and residents of the study area 
who will spend all their life time in this 
environment can be estimated using the excess 
lifetime cancer risk (ELCR) even in the absence 
of outbreak radioactive components. 
 
The linear no threshold (LNT) hypothesis 
extrapolation from evidence‑supported, 
high‑dose effects to low‑dose responses claims 
that all acute ionizing radiation exposures down 
to zero are harmful. The harm is proportional               
to dose and is cumulative throughout life, 
regardless of how low the dose rate is [17]. This 
study is based on the traditional worldwide 
radiation protection standards for late 
(stochastic) effects which are based on the LNT 
hypothesis [18]. 
 
The annual effective dose calculated was used to 
estimate the excess lifetime cancer risk (ELCR) 
is calculated using equation (3).  
 

ELCR = AEDE × Average duration of life 
(DL) × Risk factor (RF)                               (3)  
 

Where AEDE, DL and RF is the annual effective 
dose equivalent, duration of life (70 years) and 
risk factor (Sv-1), fatal cancer risk per sievert. For 
low dose background radiations which are 
considered to produce stochastic effects, ICRP 
60 uses values of 0.05 for the public [3,19]. 
ELCR ranges from (0.62 to 1.41) x 10-3 with an 
average of 0.82 x 10-3 for barite deposit fields, 
from (0.88 to 11.95) x 10-3 with an average of 
0.86 x 10-3 for limestone deposit fields while 
ELCR for coal deposit fields range from (5.01 to 
9.25) x 10-3 with a mean value of 5.33 x 10-3. The 
ELCR of salt deposit fields ranges from (8.48 to 
13.11) x 10-3 with a mean value of 8.94 x 10-3. 
 

3.3 Discussion  
 
The terrestrial radiation level and radiation 
parameters of the four mine deposit fields 
(Lessle, Gboko, Otukpo and Akuana) of Benue 
state and its environs was determined with two 
well-calibrated radiation meters and the results 
are presented in Tables 1 to 5. The values of 
radiation exposure level range from 0.017 
(Nyamge area) to 0.032 (Akegh-Dyege) mRh-1 in 
theLesslebarite deposit fields. About 96.7% of 
the values obtained are higher than the ICRP 
standard of 0.013 mRh-1 for normal background 
ionizing radiation and for the host community 

with value of 0.011±0.008 mRh-1. The results 
show that higher values are as a result of the 
anthropogenic activities in the field which have 
exposed radioactive elements in the mine fields. 
The highest radiation level recorded at Akegh-
Dyege and Lessle mine sites may be attributed 
to the anthropogenic activities which have left 
loose the geology of the host rock (sandstone, 
basement gneisses) in the trough. The consistent 
high values obtained in the mine field and nearby 
communities may be seen from spatial vein 
deposits which cut across the communities. 
These vein barites are usually extracted as a by 
or co-product of lead-zinc mining and persisted 
into the basement complex [20]. The radiation 
exposure rates at the limestone and coal mine 
deposit fields of Benue state ranges from 0.017 
(Gboko Community) to 0.031 (Gboko Factory) 
mRh-1, and 0.011 (Otukpo area) to 0.024 
(Otukpa area) mRh-1. About 42%, of the 
limestone mine fields sampling points are higher 
than ICRP standard of 0.013 mRh-1 and 38%of 
the coal mine fields sampling points are higher 
than ICRP standard of 0.013 mRh-1 respectively. 
The values obtained at the limestone and coal 
mine deposit fields host communities (Amua 
community and Owukpa community) are quite 
lower than those obtained in the mine fields. In 
coal mining fields, Otukpa and Owukpa areas 
sample points have higher values of 0.024 mRh-

1and 0.021 mRh-1 radiation exposure. In Akuana 
mine fields, the value of radiation exposure rate 
for salt range from 0.021 to 0.034 mRh-1. About 
44% of the values recorded here are higher than 
the ICRP standard for normal background 
radiation level. The mean exposure rate of the 
four mine deposit fields were found to be higher 
than the value obtained in Akwa-Ibom state 
(0.007-0.015 mR/hr) [21]. Also values obtained 
are higher than the 0.018 ± 0.004 mRh−1 value 
reported for some solid minerals mining 
environment in Enugu state [22] and other 
previously reported value in solid mineral 
environment in Nigeria [23,24]. Results obtained 
here are relatively lower than the results obtained 
in mine tailings of Awo and Ede, Osun state [25] 
and in Akwanga, Jos, Plateaus state, Nigeria [26] 
where mining activities have spanned over many 
years. 
 
The variation of gamma dose rates from place to 
place may be attributed to changes in weathering 
conditions. UNSCEAR have related that change 
in weathering conditions causes alteration in 
radon posterity concentration in air due to soil 
moisture, rainfall and snow [27]. High absorbed 
dose rates were obtained in all the mineral 
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deposition fields; these may be due to mining of 
the mineral composition of the rock forms which 
may be rich in radioactive bearing minerals [27]. 
The absorbed dose of radiation estimated in the 
barite deposit fields (Lessle) ranges from 95.7 to 
278.4 nGyh-1 with mean value of 161.53 nGyh-1 

and  the limestone deposit fields (Gboko) ranges 
from 113.1 to 269.7 nGyh-1 with mean value of 
182.70 nGyh-1 while the absorbed dose rate at 
the coal deposit fields (Owukpa-Orokam) ranges 
from 69.6 to 208.8 nGyh-1 with mean value of 
120.35 nGyh-1while the absorbed dose rate for 
salt lake deposit fields (Akuana) ranges from 
130.50 to 295.80 nGyh-1with mean value of 
201.84 nGyh-1. The values reported for salt and 
limestone mine fields are higher than those 
reported barite and coal mine fields. Mean 
outdoor gamma dose rate measured for this 
study are higher than the values previously 
reported in South Lebanon [19], in Poonch 
District [8] (106 nGyh-1 and 102 nGyh-1) 
respectively. The measured outdoor gamma 
dose rates are also within the values reported in 
Turkey (78.3-135.7 nGyh-1) [26]. The highest 
outdoor gamma dose rate measured at Akegh-
Dyege (barite) (278.4 nGyh-1), Gboko Factory 
(limestone) (269.7 nGyh-1), Otupka Area (coal) 
(208.8 nGyh-1) and Akuana Salt Lake (salt) 
(295.8 nGyh-1) were higher than the values 
previously reported in South Lebanon( 106 nGyh-

1) [19], and in Poonch District (102 nGyh-1) [8]. 
The measured outdoor gamma dose rates are 
also higher than the values reported in Turkey 
(78.3- 135.7 nGyh-1) [26]. This could be due to 
dissimilarities in the activities that enhance the 
exposure of the geologic constituent of different 
areas. The absorbed doses estimated are higher 
than the world permissible value of 89.0 nGyh-1. 
The annual effective doses estimated in the four 
mineral deposition fields of Benue state (barite 
(Lessle), limestone (Gboko), coal (Owukpa-
Orokam) and salt (Akuana)) were higher than the 
results obtained in Jhelum valley [9] and higher 
than world average of 0.48 mSvy-1in the barite 
and limestone deposition fields and lower than 
the world average at the coal and salt lake 
deposition fields. Excess lifetime cancer risks 
estimated for the entire studied deposition fields 
were higher than the values obtained by in Ogun 
River [4], in Poonch, Turkey [8], and in Greece 
[28]. 
 
The values were found to be higher than average 
world standard of 0.29 x 10-3 as shown in Fig. 3. 
The consequence of this is that individuals 
exposed to this radiation may likely develop 

cancer within their lifetime due to ionization of 
tissues. 
 
4. CONCLUSION  
 
The terrestrial radiation due to solid minerals and 
sand in mining sites- Lessle, Gboko, Orokam and 
Akuana and the minerals fields of Benue State 
have been carried out. We conclude that 
 

1. The Background ionizing radiation in all 
mineral deposition sites are above those of 
the host communities. 

2. The mean absorbed dose rate (D) in all 
mineral fields are higher than the world 
average permissible value and greater 
than the world population weighted 
average dose rates. 

3. The mean annual effective dose equivalent 
rate (AEDE) in all mineral fields is higher 
than the results obtained by other workers 
in similar environment and world average 
acceptable values. 

4. The ELCR calculated in mineral fields are 
higher than safe value. 

 
The high level of gamma dose rates obtained 
may not have any immediate health hazards but 
could lead to some radiological problems for long 
term exposure of people living or working around 
the mine fields, since the fields are radiologically 
degraded.  
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