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Abstract

In this paper, we establish the closedness and convexity of the fixed point set of asymptotically
demicontractive mappings in the intermediate sense introduced by Olaleru and Okeke
[Convergence theorems on asymptotically demicontractive and hemi-contractive mappings in the
intermediate sense. Fixed Point Theory and Applications 2013, 2013:352]. We also establish the
equality of the fixed point set and asymptotic fixed point set.
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1 Introduction

The classes of asymptotically demicontractive maps and asymptotically hemicontractive maps
were first introduced in 1987 by Liu [1], and they properly contain the class of asymptotically
pseudocontractive maps and asymptotically strict pseudocontractive maps in which the fixed point
set F (T ) is nonempty. Xiaolong et al. proved some convergence theorems on asymptotically
pseudocontractive mappings in the intermediate sense [2]. Zhang gave a strong convergence criteria
for the class of the mappings [3].

In 1991, Shcu introduced the class of asymptotically pseudocontractive maps [4].

In 2013, Olaleru and Okeke introduced new classes of nonlinear maps; asymptotically demicontractive
mappings in the intermediate sense and asymptotically hemicontractive mappings in the intermediate
sense as generalizations of the classes of asymptotically demicontractive mappings and asymptotically
hemicontractive mappings, respectively [5].

Zhou [6] showed that every uniformly L-Lipschitzian and asymptotically pseudocontractive mapping
which is also uniformly asymptotically regular has a fixed point. Moreover, the fixed point set is
closed and convex.

In this paper we show this same properties for asymptotically demicontractive mapping in the
intermediate sense which is a more general map.

2 Preliminaries

Definition 2.1. Convex Set

A subset C of R is said to be convex if for all x, y ∈ C, we have λx+ (1− λ)y ∈ C for 0 ≤ λ ≤ 1.

In what follows, we shall define C as a convex subset of a Hilbert space H.

Definition 2.2. Fixed point set [7]

We define the fixed point set F (T ) set of a map T : C → C as

F (T ) = {x ∈ C | Tx = x} .

Subsequently, we shall simply write T for T : C → C.

Definition 2.3. Asymptotic fixed point set

A point p ∈ C is called an asymptotic fixed point of T if there exists a sequence {xn} ⊂ C which
converges weakly to p and {xn − Txn}∞n=1 converges strongly to 0. The set F̂ (T ) of all such point
p is called the asymptotic fixed point set.

Definition 2.4. L−Lipschitzian map [8, 9]

T is L−Lipschitzian if
∥ Tx− Ty ∥≤ L ∥ x− y ∥ (2.1)

for some constant L > 0 for all x, y ∈ C and it is uniformly L−Lipschitzian [5] if

∥Tnx− Tny∥ ≤ L∥x− y∥

for some constant L > 0 for all n ∈ N and x, y ∈ C.

If 0 < L < 1 in (2.1), then T is strictly contractive but nonexpansive if L = 1 in (2.1) [8].
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Definition 2.5. Quasi-nonexpansive [8]

T is said to be quasi-nonexpansive if F (T ) ̸= ∅ and

∥Tx− p∥ ≤ ∥x− p∥ ∀ p ∈ F (T ), x ∈ C

Definition 2.6. Firmly nonexpansive [8]

T is said to be firmly nonexpansive if

∥Tx− Ty∥ ≤ ⟨x− y, Tx− Ty⟩∀ x, y ∈ C.

Definition 2.7. Strict pseudocontractive [5]

T is strict pseudocontractive if there exists k ∈ [0, 1) such that

∥Tx− Ty∥2 = ∥x− y∥2 + k∥ (x− Tx)− (y − Ty) ∥2 ∀x, y ∈ C (2.2)

Definition 2.8. Asymptotically nonexpansive [10]

T is asymptotically nonexpansive if there exists a sequence {kn} with kn ≥ 1 and lim kn = 1 such
that

∥Tnx− Tny∥ ≤ kn∥x− y∥ (2.3)

for all integers n ≥ 0 and x, y,∈ C.

Definition 2.9. Asymptotically strict pseudocontractive [11]

T is asymptotically strict pseudocontractive if there exists a constant k ∈ [0, 1) and a sequence
{kn} ⊂ [1,∞) with kn → 1 as n → ∞ such that

∥Tnx− Tny∥2 ≤ kn∥x− y∥2 + k∥ (I − Tn)x− (I − Tn) y∥2 ∀ x, y ∈ C. (2.4)

Remark 2.1. If kn = 1 and Tn = T for all n ∈ N in (2.4), we have the class of strict pseudocontractive
mappings as in (2.2) and if k = 0, we have (2.3).

Definition 2.10. Asymptotically strict pseudocontractive in the intermediate sense [12]

T is Asymptotically strict pseudocontractive in the intermediate sense if there exists a constant
k ∈ [0, 1) and a sequence {kn} ⊂ [1,∞) with {kn} → 1 as n → ∞ such that

lim sup
n→∞

sup
x,y∈C

(
∥Tnx− Tny∥2 − kn∥x− y∥2 − k∥ (I − Tn)x− (I − Tn) y∥2

)
≤ 0. (2.5)

Define

ζn = max

{
0, sup

x,y∈C

(
∥Tnx− Tny∥2 − kn∥x− y∥2 − k∥ (I − Tn)x− (I − Tn) y∥2

)}
.

Then it follows that ζn → 0 as n → ∞ and (2.5) becomes

∥Tnx− Tny∥2 ≤ kn∥x− y∥2 − k∥ (I − Tn)x− (I − Tn) y∥2 + ζn, (2.6)

∀ n ≥ 1, x, y ∈ C.

Clearly, if ζn = 0 for all n ≥ 1 in equation (2.6), then we obtain (2.4).

Definition 2.11. Asymptotically demicontractive mappings [11]

3



Oke and Kayode; ARJOM, 6(4): 1-7, 2017; Article no.ARJOM.36218

T is asymptotically demicontractive if there exists a sequence {an} such that lim
n→∞

an = 1 and

0 ≤ k < 1
∥Tnx− p∥2 ≤ a2

n∥x− p∥2 + k∥x− Tnx∥2 ∀ n ∈ N, x ∈ C, p ∈ F (T ) (2.7)

Definition 2.12. Asymptotically demicontractive in the intermediate sense [5]

T is asymptotically demicontractive in the intermediate sense if there exists a sequence {an} such
that lim

n→∞
an = 1 and 0 ≤ k < 1 if

lim sup
n→∞

sup
(x,p)∈C×F (T )

(
∥Tnx− p∥2 − a2

n∥x− p∥2 − k∥x− Tnx∥2
)
≤ 0, ∀ (x, p) ∈ C × F (T ).

(2.8)
Observe that on setting

vn = max

{
0, sup

(x,p)∈C×F (T )

(
∥Tnx− p∥2 − a2

n∥x− p∥2 − k∥x− Tnx∥2
)}

(2.9)

for which lim
n→∞

vn = 0, (2.8) becomes

∥Tnx− p∥2 ≤ a2
n∥x− p∥2 + k∥x− Tnx∥2 + vn (2.10)

Remark 2.2. If vn0 ∀ n then (2.10) becomes (2.7).

In order to prove our result we need the following lemma:

Lemma 2.1. [8]Let H be a real Hilbert space and x, y ∈ H with 0 ≤ λ ≤ 1, then

∥λx+ (1− λ)y∥2 = λ∥x∥+ (1− λ)∥y∥ − λ(1− λ)∥x− y∥

3 Main Results

Theorem 3.1. Let H be a Hilbert space, C a nonempty closed and bounded convex subset of H
and T : C → C be uniformly L-Lipschitzian and asymptotically demicontractive mapping in the
intermediate sense. If F (Tn) is nonempty, then F (Tn) is closed and convex.

Proof. Suppose {xn} is a sequence in F (Tn) which converges to x, we shall show that x ∈ F (Tn).
Consider

∥Tnx− x∥2 = ∥Tnx− Tnxn + Tnxn − x∥2,
≤ (∥Tnx− Tnxn∥+ ∥Tnxn − x∥)2 ,
≤ ∥Tnx− Tnxn∥2 + ∥Tnxn − x∥2 + 2∥Tnx− Tnxn∥∥Tnxn − x∥.

Since xn ∈ F (Tn) and Tnxn = xn then

∥Tnx− x∥2 ≤ ∥Tnx− xn∥2 + ∥xn − x∥2 + 2∥Tnx− Tnxn∥∥xn − x∥,

and since T is L−Lipschitzian then

∥Tnx− x∥2 ≤ ∥Tnx− xn∥2 + ∥xn − x∥2 + 2L∥x− xn∥∥xn − x∥,
= ∥Tnx− xn∥2 + (1 + 2L)∥xn − x∥2,
≤ a2

n∥x− xn∥2 + k∥x− Tnx∥+ vn + (1 + 2L)∥xn − x∥2,
(1− k) ∥Tnx− x∥2 =≤

(
1 + 2L+ a2

n

)
∥xn − x∥2 + vn,
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So that as n → ∞,xn → x and vn → 0, we have

(1− k) ∥Tnx− x∥2 → 0,

=⇒ Tnx = x =⇒ x ∈ F (Tn). (3.1)

To show that F (Tn) is convex, consider

z = λp1 + (1− λ)p2 p1, p2 ∈ F (Tn)

then,
z − p1 = (1− λ) (p2 − p1) z − p2 = −λ (p2 − p1) . (3.2)

Now,

∥Tnz − z∥2 = ∥Tnz − (λp1 + (1− λ)p2) ∥2,
= ∥λ (Tnz − p1) + (1− λ) (Tnz − p2) ∥2,
= λ∥Tnz − p1∥2 + (1− λ)∥Tnz − p2∥2 − λ (1− λ) ∥p2 − p1∥2, (3.3)

but
λ∥Tnz − p1∥2 ≤ λa2

n∥z − p1∥2 + λk∥z − Tnz∥2 + λvn, (3.4)

and
(1− λ) ∥Tnz − p2∥2 ≤ (1− λ) a2

n∥z − p2∥2 + (1− λ) k∥z − Tnz∥2 + (1− λ) vn, (3.5)

therefore,

λ∥Tnz − p1∥2 + (1− λ) ∥Tnz − p2∥2 ≤ λ (1− λ) a2
n∥p2 − p1∥2 + k∥z − Tnz∥2 + vn. (3.6)

So that

∥Tnz − z∥2 ≤ λ (1− λ) a2
n∥p2 − p1∥2 + k∥z − Tnz∥2 + vn − λ (1− λ) ∥p2 − p1∥2, (3.7)

= λ (1− λ)
(
a2
n − 1

)
∥p2 − p1∥2 + k∥z − Tnz∥2 + vn, (3.8)

and

∥Tnz − z∥2 ≤ 1

1− k

(
λ (1− λ)

(
a2
n − 1

)
∥p2 − p1∥2 + vn

)
. (3.9)

Since an → 1 as n → ∞then a2
n − 1 → 0 and vn → 0 we have that

Tnz = z =⇒ z ∈ F (Tn)

Theorem 3.2. Let T : C → C be asymptotically demicontractive mapping in the intermediate
sense, then I − Tn is demiclosed at 0.

Proof. I − Tn is demiclosed at 0 if {xn} ⊂ C such that xn
w−→ p and (I − Tn)x → 0. So, define

f : C → [0,∞) (3.10)

as
f(x) = lim sup

n→∞
∥ xn − x ∥2 for eachx ∈ H. (3.11)

Clearly,

f(x) = lim sup
n→∞

∥xn − x∥2

= lim sup
n→∞

∥xn − p∥2 + ∥p− x∥2

= f(p) + ∥p− x∥2 ∀ p ∈ H (3.12)
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So

f(Tnp) = lim sup
n→∞

∥xn − Tnp∥2

= lim sup
n→∞

∥Tnp− xn∥2

≤ lim sup
n→∞

(
a2
n∥p− xn∥2 + k∥p− Tnp∥2 + vn

)
f(Tnp) ≤ lim sup

n→∞
a2
n∥p− xn∥2 + klim sup

n→∞
∥p− Tnp∥2 + 0

Using 3.12 and knowing that lim sup
n→∞

a2
n → 1

f(Tnp) ≤ f(p) + klim sup
n→∞

∥p− Tnp∥2

Using 3.12 again

f(p) + ∥p− Tnp∥2 ≤ f(p) + klim sup
n→∞

∥p− Tnp∥2

(1− k) ∥p− Tnp∥2 ≤ 0.

Thus
p = Tnp =⇒ p ∈ F (Tn)

Theorem 3.3. Let T : C → C be L-Lipschitzian and asymptotically demicontractive mapping in
the intermediate sense, then F (Tn) = F̂ (Tn)

Proof. If p ∈ F (Tn) then there exists {xm} ∈ F (Tn) such that xm −→ p and xm − Tnxm −→ 0
(since xm = Tnxm ∀ xm ∈ F (Tn)), thus p ∈ F̂ (Tn) .

If p ∈ F̂ (Tn) then there exists {xm} ∈ F (Tn) such that xm
w−→ p and {xm − Tnxm} −→ 0. Using

theorem 3.2, (I − Tn) p = 0 and so, p ∈ F (Tn).

Hence,
F (Tn) = F̂ (Tn)
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