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ABSTRACT 
 

Random sets are common spatial statistical concepts that allow quantifying uncertainty in spatial 
objects. For objects extracted from remote sensing images, quantification of the uncertainty is 
important, as many objects are relatively small with respect to the pixel size and are sometimes 
poorly defined. Remote Sensing (RS) data are important in land cover identification, classification 
and estimation. The aim of this paper is to address problems associated with the presence of 
edges between objects. Such edges occur on images in different shapes, for example as borders 
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between agricultural parcels. The study was applied on an NDVI map of a Landsat 5 TM image. 
Field boundaries are normally irregular and often transitional. Modeling agricultural fields as spatial 
objects helps to identify the extensional uncertainties and therefore to characterize inaccuracy in 
parcel size estimation. The study was carried out in the Sharifabad region in Iran. The Douglas 
Paucker algorithm was used to establish a single boundary that separates different parcels of 
agricultural fields. The results of the study indicate that Gaussian thresholding of image 
segmentation generated random sets for six agricultural fields. Quantification of extensional 
uncertainty presented two parcels with a larger extensional uncertainty than the other four parcels. 
A question we addressed in this study was identification of the boundaries between two adjacent 
parcels. An overall accuracy of 91% shows that random sets were effective for modeling the 
extensional uncertainty of the agricultural fields and for the delineation of the agricultural field 
boundaries. We conclude that the geometric model used to delineate the agricultural field 
boundaries is able to properly handle irregular shape boundaries. 
 

 
Keywords: Random sets; parcels; NDVI; field boundaries; spatial data quality; geometric model. 
 
1. INTRODUCTION 
 
Random sets are defined as a relation between a 
set and a measure space. This is an extension of 
random variables that relate a number with a 
measure space. Agricultural parcels were 
extracted from remote sensing images. Their 
boundaries are defined as level sets for different 
probability values applying Gaussian 
thresholding. 
 
Modeling uncertainties in spatial studies is 
focusing increasingly on an object based 
approach. A major reason is that object oriented 
classification [1,2] is becoming important and is a 
common approach [3] nowadays for spatial 
studies. In addition, methods that were used in 
the past were based primarily on a fuzzy 
approach and hence were lacking a solid 
probabilistic frame [4]. The third reason is that 
spatial data quality is an important field of 
science that has been developing rapidly during 
the last decades [5] and has resulted so far 
mainly within a remote sensing context in pixel 
based approaches, whereas an object based 
approach is missing. Here, the use of modern 
spatial statistical methods becomes more and 
more convenient. 
 
Spatial Data Quality (SDQ) is defined as the 
precision and accuracy of spatial data in relation 
to its fitness for use. From this definition, there is 
a clear link between the basic element that is 
identified (being either the pixel or the object) to 
the intended use of the information. Since long 
[6, 7, 8] it has been realized that spatial variation 
is present, and that the point data have a spatial 
dependence. As the scale of variation is usually 
relatively large as compared to the scale of the 
objects of interest to be identified from an image, 

the spatial variation translated into spatial 
dependence cannot be ignored. It depends upon 
the user, however, to decide upon the relevance 
within the application domain. 
 
Spatial data are data that are either measured 
directly or data that are observed from a 
distance. Examples of point data are data on 
crops, vegetation, water and health. Examples of 
objects are agricultural parcels, water bodies or 
buildings. The decision maker (the user) ranges 
in these examples from the farmer through the 
land manager towards the water manager. They 
have to make a decision often based upon 
uncertain information, where the uncertainty as 
such may be difficult to get and understand. 
 
Spatial data quality becomes a major issue when 
precise information has to be collected and 
processed. In such cases, spatial statistics can 
be of a major assistance. There are several 
issues of SDQ where spatial statistics has shown 
ways for resolving problems. For point-like data, 
positional accuracy has been addressed at 
length, as for remote sensing images in the 
particular case of spatial resolution, and likewise 
attribute accuracy. The same applies to temporal 
quality with the recent advent of spatio-temporal 
statistics [9]. 

 
This study focuses on agricultural fields. Those 
are generally well identifiable remote sensing 
objects, at current images well identifiable as 
regular or irregular polygons. At various 
resolutions there is a clear variation visible within 
the fields. In addition, the resolution of the 
images can be such that fields are covered with 
a small number of pixels, and that hence a large 
uncertainty as concerns the boundaries of the 
field is present. In that sense, agricultural fields 
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could serve as uncertain objects, and current 
theory can be applied to those. 
  
The overall objective of this application was to 
use random sets for modeling the extensional 
uncertainty of the agricultural fields in space. As 
different random set models for neighboring 
parcels may partly overlap, modeling the 
boundary between random sets was identified as 
the objective of study. The novelty of the current 
study, however, is to emphasize the borders 
between the fields that are all modeled as 
random sets. It is this identification of borders 
and their uncertainty that has triggered our 
interest. 
 

2. METHODS 
 

2.1 Study Area 
 
The study area is located close to Sharifabad in 
the center of the Ghazvin province, NW Iran. The 
NDVI pixels of the selected study area are shown 
in Fig. 4. Table 1, shows the statistical 
information for the six parcels selected for further 
investigation within the study area using the 
existing parcel boundaries. We chose these 
parcels because the parcels are adjacent and 
neighboring fields have spectrally similar. 
 
The procedure to identify the parcels was 
running as follows. From the LANDSAT image, 
after geometric correction, an NDVI image of the 
study area was derived. A segmentation was 
carried out by setting minimum and maximum 
thresholds on the NDVI image. This resulted in 
six parcels in the study area (Fig. 4) that were 
close to each. For each parcel the covering 
function (Equation 2.2) was determined. 
 

2.2 From Pixels to Objects 

 
Spatial information on buildings, vegetation and 
land use was extracted from remotely sensed 
imagery. Traditionally, remote sensing and earth 
observations data were analyzed using pixel 
oriented approaches. Out of the pixels segments 
were created and classified. There is now more 
attention to an object based approach than in the 
past. These objects, however, can be uncertain. 
Uncertainty mainly comes from imprecise 
boundaries, uncertain class definitions, spectral 
overlap between objects, spatial variation at the 
earth surface, mixture of classes in the sampling 
grid along the object boundary, atmospheric 

distortions, whereas other SDQ components play 
a role as well. 
 

In order to address these problems, random sets 
have been adopted recently [10]. Random sets 
were developed in the context of stochastic 
geometry [11,12]. They serve as a generalization 
of probability, possibility, interval analysis and 
evident theory [13] that have all been used in the 
past (Fig. 1). They are more flexible, with 
applications including image processing [14], 
particle statistics in material science [15], 
vegetation patches [16], glacier debris [17] and 
traffic islands [18]. 

 

2.3 Random Variables 

 
As random sets are not so common in spatial 
studies, we now introduce them starting with 
recalling random variables. Random variables 
are defined as follows. We assign to each 
outcome  of an experiment (or of an event) a 
number X(). This establishes a relationship 
between the elements  of  and numbers X(). 
Such a function is called a random variable. A 
random variable represents a process of 
assigning to every outcome of an experiment a 
number X(). Thus a random variable is a 
function with domain given by the set of 
experimental outcomes and range contained in a 
set of numbers (Fig. 2).  

 

A probability space is a triple (,,Pr). The 
symbols denote the following:  is the set of all 
possible outcomes for which a probability is to be 
defined,  is a -algebra on  that defines the 
events and Pr is the probability function that 
applies to the events (Fig. 3). All probabilities are 
defined to produce real numbers. That means 
that the range of the probability function Pr is a 
measure space. Both for continuous and for 
discrete probabilities this holds. Formally, we let 
(,,Pr) be a probability space and (, ) be 
a measure space. A random variable X() is a 
measurable function from the probability space  
to the measure space . 

 
The concept of a random variable easily expands 
towards random sets. Heuristically, we replace 
the numbers by sets. A random set  is defined 
as a random variable from the sample space  
to U, where U is a set of subsets of , i.e. U  
P(). 
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Fig. 1. Four different ways of modeling uncertainty of spatial objects 
 

 
 

Fig. 2. The definition of a random variable from the space of outcomes  to a variable  in the 
measure space  

 

 
 

Fig. 3. The definition of a random set from the space of outcomes  to a set U in the measure 
space  



The distribution of random set  is defined as
 
                                                                       
 
In the special case that B is a singleton and 
 , we are back at the random variables, i.e. 
the random set  becomes a random variable. 
The distribution of the random set 
special case is called the one point coverage 
function or covering function: 
 

                                                                 

 
To be able to make inference on random sets, 
use is commonly made of a covering function. An 
estimator of the covering function of the random 
set  is defined as: 

 
                                                                                 

                                                                  
 
 
where IOi(x) is the indicator function of 
IOi(x) = 1 if xOi and IOi(x) = 0 if x 
the realizations of . With the distribution 
collected, the next step was to define and use its 
moments and parameters. The set 

 
                                                                       
 
is called a p-level set, with as special cases: the 
median set defined the 0.5-level set, the 
is the 0-level set, i.e. the possible part of 
the core is the 1-level set, i.e. the certain part of 
. The core, median and support sets of random 
regions have been obtained from the p
 
The core set equals: 

 
                                                           

 
the support set equals to: 
 

                                                               
 
and the median set equals: 
 

                                                                
 
The mean of the random set has been defined in 
several ways. It is common to use the Vorob’ev 
expectation defined as 
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is defined as: 

                       (2.1) 

is a singleton and                
, we are back at the random variables, i.e. 

becomes a random variable. 
The distribution of the random set   in this 
special case is called the one point coverage 

                                                                 (2.2) 

To be able to make inference on random sets, 
use is commonly made of a covering function. An 
estimator of the covering function of the random 

                                                                                  
                                                                  (2.3) 

) is the indicator function of Oi, i.e. 
Oi and Oi are 

. With the distribution 
collected, the next step was to define and use its 

 

                                                                       (2.4)  

level set, with as special cases: the 
level set, the support 

level set, i.e. the possible part of  and 
level set, i.e. the certain part of 

. The core, median and support sets of random 
een obtained from the p-level set. 

                                                           (2.5)       

                                                               (2.6) 

                                                                (2.7) 

The mean of the random set has been defined in 
several ways. It is common to use the Vorob’ev 

                                 (2.8) 

where pm is such that m has the mean area 
E(A()) of the random set: 
 

                                                                

 
Using the mean, we can now continue to also 
define the set-theoretic variance of a random set 
as: 

 
                                                                     
 
and the coefficient of variation (CV)  is defined as
 

  
                                                                     
 
 
 
These definitions are all used to model identified 
objects. They describe the size of the area, the 
likeliness that a point belongs to an object and 
the variation within the objects. In the past, 
interest focused on the identification of objects 
themselves, as stand-alone objects within 
otherwise stable environment. The current study 
extends upon this, by addressing the possibility 
that two (or more) random sets touch each other 
and hence show a boundary that it is uncertain.

 
3. RESULTS 
 

3.1 Application: Delineation of 
Agricultural Field Boundaries

 
The problem that we address in this application 
concerns the identification of agricultural field 
boundaries where the crops of neighboring fields 
have spectral similarity. 
 
The NDVI pixels of the selected stud
shown in Fig. 4. Table 1, shows the statistical 
information for the six parcels selected for further 
investigation within the study area using the 
existing parcel boundaries. We chose these 
parcels because the parcels are adjacent and 
neighboring fields have spectrally similar crops. 
On the one hand, existing parcel boundaries 
were determined using visual interpretation. In 
addition, we used random sets to model the 
uncertain parcel boundaries, where uncertainty is 
provided by i) the spectral similarity of the crops 
and ii) the relatively coarse resolution of the 
image as compared to the sizes of the 
agricultural crops. 
 

 

UBB },
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                                                                (2.9) 

Using the mean, we can now continue to also 
iance of a random set 

                                                                     (2.10) 

and the coefficient of variation (CV)  is defined as 

                                                                     (2.11) 

These definitions are all used to model identified 
objects. They describe the size of the area, the 
likeliness that a point belongs to an object and 
the variation within the objects. In the past, 
interest focused on the identification of objects 

alone objects within 
otherwise stable environment. The current study 
extends upon this, by addressing the possibility 
that two (or more) random sets touch each other 
and hence show a boundary that it is uncertain. 

Delineation of 
Agricultural Field Boundaries 

The problem that we address in this application 
concerns the identification of agricultural field 
boundaries where the crops of neighboring fields 

The NDVI pixels of the selected study area are 
shown in Fig. 4. Table 1, shows the statistical 
information for the six parcels selected for further 
investigation within the study area using the 
existing parcel boundaries. We chose these 
parcels because the parcels are adjacent and 

g fields have spectrally similar crops. 
On the one hand, existing parcel boundaries 
were determined using visual interpretation. In 
addition, we used random sets to model the 
uncertain parcel boundaries, where uncertainty is 

ilarity of the crops 
and ii) the relatively coarse resolution of the 
image as compared to the sizes of the 
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Table 1. The means (Mean) and standard 
deviations (SD) of the NDVI pixel values for 

the six different parcels 
 

Parcel Mean SD 
1 0.4 0.05 
2 0.04 0.005 
3 0.13 0.01 
4 0.38 0.05 
5 0.036 0.002 
6 0.34 0.01 

 
Some parcels are quite similar to each other in 
terms of their NDVI values, like parcels 1, 4 and 

6, which have relatively high NDVI values, 
indicating presence of crop on the land. Parcels 
2 and 5 have similar, but low NDVI values 
indicating absence of crop, whereas parcel 3 is in 
between and may contain remnants of previous 
crops, weeds, or a freshly planted crop. 
 
On the basis of the coverage functions, six 
random sets were generated, using 60 iterations 
for each of the parcels. This resulted into 60 
coverage functions. In doing so, we found the 
support set (Equation 2.6), the median set 
(Equation 2.7) and the core set (Equation 2.5) of 
the six parcels as shown in Fig. 5. 

  

 
 
Fig. 4. Left: Location of the study area in the Ghazvin province in Iran in a snapshot of Google 

Earth from the area. Middle: The six parcels with the existing parcel boundaries.  
Right: The NDVI map of the LANDSAT image for the study area 

 

 
 

Fig. 5. The core set (left), median set (middle) and support set (right) of the six parcels. The 
core sets with coverage function equal to 1 (Equation 2.5) show clearly different objects, 

whereas the support indicating a coverage function above 0 (Equation 2.6) shows overlapping 
fields. The median set with coverage function equal to 0.5 (Equation 2.7) is in between 

 



 
 
 
 

Stein et al.; AJAEES, 8(2): 1-11, 2016; Article no.AJAEES.20462 
 
 

 
7 
 

Clearly, the six different core sets (Equation 2.5) 
are all well separated, indicating that the parts of 
the field that were covered with vegetation were 
clearly different from each other. However, 
median sets (Equation 2.7) already partly 
overlap, which indicates that the presence of 
relatively large pixels and edge effects result in 
transition zones. That is even more apparent 
when considering the support sets (Equation 
2.6), where we notice that overlap between the 
different parcels could in principle be substantial. 
When considering the mean sets of the random 
sets (Equation 2.8), a similar picture emerges 
(Fig. 6). 
 
Clearly, parcels 3 and 4 have a large probability 
of overlapping, whereas for example parcel 6 is 
well separated from the other parcels. As the 
next stage we considered the boundaries 
between the different parcels, and we focused in 
the analysis on the boundary between parcels 1 
and 3. 
 

 
 

Fig. 6. Mean sets (Equations 2.8 and 2.9) of 
the six different parcels 

 
Figs. 6 and 7 illustrate the typical pixel-based 
representation of a Landsat image segmentation 
resulting in pixelated edges instead of the 
required smooth and straight GIS object 
boundaries that correspond to field conditions. 
The boundaries of the actual agricultural fields 
are approximated by the pixel edges and in this 
representation lead to a blocky pixelated 

structure. To improve the representation of the 
boundaries we analyzed the pixel numbers of 
boundaries with the related covering function 
values for each pixel. Fig. 7 illustrates the 
boundary between parcels 1 and 3 with its 
related pixel numbers. 
  

 
 

Fig. 7. The boundary between parcels 1 and 3 
with related pixel numbers and the typical 

pixel-based pixilated representation of 
agricultural field boundaries 

 
Fig. 8 describes the pixel numbers in horizontal 
axis and the values of the covering function 
along the vertical axis of the graph. Apparently, 
values of the covering function for the related 
pixels of the boundary in the parcel 1 differ from 
those of parcel 3. In other words, from the graph 
it is apparent that for determining the boundaries 
of the agricultural fields as real world objects, the 
typical pixel-based and pixelated representation 
derived from the pixel edges is problematic. As 
such, methods that are able to simplify and 
smooth the boundaries have to be used. Similar 
analyses could be done for the boundaries 
between other fields. To do so, we used the 
Douglas Paucker algorithm that generates a 
single boundary between different parcels. After 
the application of this algorithm the following 
boundaries were identified (Fig. 9). After 
resolving the small polygons issue, the final 
NDVI map with the agricultural field boundaries 
(parcels 1-6) overlaid was obtained (Fig. 10).
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Fig. 8. Covering function values for the pixels of the boundary between parcels 1 and 3 
  

 
 

Fig. 9. Implementation of the Douglas Paucker algorithm (a) Before and (b) After applying the 
algorithm 

 

4. DISCUSSION 
 
This paper shows a step forward in relation to 
previous studies, in the sense that it describes 
innovative way of identifying boundaries between 
random sets. Identification of sets as such has 
been done before, but the novelty lies in the 
interaction between sets, in the sense of the 
covariance between them. 
 
Random sets have a logical place in modeling 
spatial uncertainty. The use of random sets 
allows us to better understand the spatial 
uncertainty of objects identified from remote 

sensing images. We have seen examples in the 
past on vegetation patches, glaciers and road 
objects, whereas the current study also shows 
that the approach works fine for agricultural 
parcels. Here uncertainty is caused by the 
following: small size of agricultural fields/parcels 
compared with the size of a pixel (Landsat TM of 
30x30meters), i.e. every parcel is covered with at 
most some 10 pixels. In our agricultural study 
area, about 40percent of the pixels of the 
Landsat TM image fall in field edges. This results 
in an uncertainty in the boundary 
characterization. Moreover, parcels in this 
province of Iran tend to be separated by a 
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relatively large boundary, which is covered by 
grass, mud roads and water bodies. Such a 
mixture of almost linear features leads to a large 
uncertainty in parcel identification. In addition, 
there are the almost common issues like 
Landsat-TM sensor’s spatial response and 
atmospheric distortion that lead to uncertain 
boundaries. This is of interest for resolving the 
mixed boundary pixels, particularly in the case of 
small objects (compared with the size of a pixel). 
 

 
 

Fig. 10. NDVI map with the agricultural field 
boundaries (parcels 1-6) overlaid, after 

resolving the small polygons issue                     
shown in Fig. 9b 

 
Still work has to be done on to identify a single 
boundary, including the uncertainty. The 
algorithm that we applied is a standard algorithm, 
and it is not so sure whether it is the best 
approach in the situation as described. We may, 
in particular whether a boundary might not be 
better described as a line object, similar as was 
done with geological lineaments [19]. We also 
have the intention to use GIS/object-based 
delineation, representation and modeling, 
particularly for the manmade agricultural objects 
with a common boundary as developed as a 
topology-based classification by Janssen et al. 
[20], Abkar et al. [21] and Abkar et al. [22]. The 
focus will be to generate smoother agricultural 
field boundaries with common boundaries 
between random regions, by incorporating the 
analysis at the object level instead of pixel level 
to better understand the spatial uncertainty of 
agricultural field boundary characterization. 

Another issue will be to consider the impact of a 
sensor Point-Spread Function (PSF) on the 
segmentation results and for the case of median 
sets (Equation 2.7) that object are partly 
overlapping each other, following Abkar et al. 
[22], Townshend et al. [23] and Huang et al. [24].  
 

In Fig. 11, a synthetic image composed of two 
agricultural fields allocated to different crops to 
illustrate the need for estimating the sensor PSF 
to estimate the object’s edge parameters is 
shown. 
 

 
 
Fig. 11. True land cover map with two crops, 

dark grey = Wheat (Class A), light grey = 
Barley (Class B), Grey represents a mixture of 

classes at the boundary of two crop fields.  
(a) Map when the effect of the sensor PSF is 

not considered. (b) True land cover map 
using sensor PSF with width 3. For more 
information See Abkar (Section 4.4.2) [25] 

  
For future research it is recommended to test the 
method for separating the agricultural fields 
covered with vegetation from the fields that are 
not fully covered with vegetation, e.g. containing 
freshly planted or recently harvested crops. 
Separating the fields that are partially covered 
with vegetation for example at the beginning of 
the growth stage from other parcels should be 
tested as well. If a canopy is too sparse, the 
background signal, e.g. the soil, can change 
NDVI significantly [26], thus affecting the results. 
Here, other vegetation indices could be more 
advantageous. 
 

5. CONCLUSIONS 
 
The paper describes the use of random sets to 
model uncertainties in spatial studies. The 
application problem addressed in this paper is 
the delineation of uncertain agricultural field 
boundaries from a Landsat TM image from Iran. 
For us, it was most important to provide a reliable 
estimate of the boundaries between areas 
planted with specific crops. Analysis of the image 
in this agricultural area was a challenge, because 
of the spectral confusion of crop types and mixed 
boundary pixels. Agricultural field boundaries 
have been delineated using the basic parameters 
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of random sets, i.e. the mean, covering function, 
level sets and variance with an overall accuracy 
of 91%.  
 
We conclude that the geometric model used to 
delineate the agricultural field boundaries is 
efficient in handling non-rectangular shapes as 
provided by irregular shape boundaries. Hence, 
the algorithm can create irregularly shaped 
segments. This makes the approach generally 
applicable to a wide range of similar cases. 
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