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Abstract

In this study, we have formulated a mathematical model based on a system of ordinary
differential equations to study the dynamics of typhoid fever disease incorporating protection
against infection. The existence of the steady states of the model are determined and the basic
reproduction number is computed using the next generation matrix approach. Stability analysis
of the model is carried out to determine the conditions that favour the spread of the disease
in a given population. Numerical simulation of the model carried showed that an increase in
protection leads to low disease prevalence in a population.
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1 Introduction

Typhoid fever was so named because its signs and symptoms resembles that of typhus. It is an
endemic infectious disease caused by a highly virulent and invasive Salmonella enterica serovar Typhi
(S. Typhi) that affects human. The bacteria is transmitted through food and water contaminated
with faeces and urine of an infected patient or a carrier [1]. Signs and symptoms includes; sustained
fever, poor appetite, vomiting , severe headache and fatigue. Incubation period for typhoid fever
is about 7-14 days. The intestine is a natural habitat for those enteric bacteria. During acute
infection, the bacteria multiplies in mononuclear phagocytic cells before being released into the
bloodstream [2].

Treatment is based on antibiotic susceptibility of the patient blood culture. The oral chloramphenicol,
amoxicillin may be used if the strain is sensitive. The chronic carrier state may be eradicated
using oral therapy using ciprofloxacin or norfloxacin. Multi-drug resistant strains of S.Typhi are
increasingly common worldwide which makes treatment by antibiotics more difficult and costly [3].

In many developing nations, the public health goals that can help prevent and control the spread of
typhoid fever disease through safe drinking water, improved sanitation and adequate medical care
may be difficult to achieve. Health education is paramount to raise public awareness and induce
behavior change [4].

Typhoid fever affects millions of people worldwide each year, where over 20 million cases are
reported and kills approximately 200,000 annually. For instance, in Africa it is estimated that
400,000 cases occur annually, an incidence of 50 per 100,000 [5]. It is believed that vaccinating
high-risk populations is the best way to control typhoid fever disease. There two types of typhoid
fever vaccines namely; oral and injectable vaccines. However they are not 100% effective. If one
acquires drug-resistant strain of typhoid fever and is not treated with effective antibiotics, a serious
and prolonged illness may result.

A number of mathematical models have been developed and analyzed to explain the dynamics of
infectious diseases in humans. Many of these models are described by systems of ordinary differential
equations formulated under reasonable assumptions and parameters.

A model is developed in [6]. In the model, the number of newly infected persons is expressed
as a function of the infectious and susceptible people in a community within a given time. The
age structures of the population are established, which enables more detailed simulation of the
effect of various interventions and strategies to control the disease in different age groups. The
study indicates that once the incidence of the infection has fallen below the threshold, it cannot be
maintained in a community due to the loss of the main source of infection chronic carriers as they
die out naturally.

Mathematical model for transmission dynamics of typhoid is developed in order to evaluate the
potential direct and indirect effects of vaccination [7]. The model is validated against randomized
vaccine trials. It is evaluated on school based vaccination strategies, and it is discovered that
typhoid vaccination is expected to lead a short term indirect protection and decrease in typhoid
incidences, but vaccination alone is unlikely to lead to elimination of typhoid. Both short- and long-
term carriers contribute to transmission, but not necessarily at the same rate as primary infections.
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In [8], a simple mathematical model is developed on direct and indirect protection by vaccine
and benefits of generic vaccination program. The population is split into vaccinated and the
unvaccinated subgroups and its effectiveness redefined. It is found that vaccination reduces the
number of susceptible to infection and fewer infected individuals spreads the disease among both
vaccinated and unvaccinated persons.

A mathematical model on the impact of control strategies to effectively control the burden of the
effect of carriers on the typhoid fever in Kisii town is developed and analyzed. This model studied
the dynamics of typhoid fever by formulating and analyzing the impact of carriers, diagnosis and
health education on typhoid carriers control in Kenya. The model considers that exposed individuals
developed the typhoid fever due to endogenous reactivation and exogenous re-infection. Treatment
is ordered to all infected individuals except including those latently infected. A structure for the
kind of individual contacts that can result in the infection transmission is then incorporated in the
population. This contact structure can be non-homogeneous and it is modeled as a random graph,
whose edges describe the contacts between individuals. The research work allows the latent and
infectious period to have a distribution other than the exponential. Numerical results show that
reducing the typhoid carriers by 9.5% could assist Kisii county government in Kenya to achieve a
typhoid free status by 2030 [9].

2 Description and Formulation of the Model

We formulate a model in which the total population is subdivided into the following sub-population
classes; S Susceptible class, P Protected class , I Infected class and T Treated class. Susceptible
individuals are recruited into the population at per capita rate (1 − α)Λ. Susceptible individuals
acquire typhoid infection at per capita rate λ. The general form of this model is given by

dP

dt
= αΛ− (γ + µ)P

dS

dt
= (1− α)Λ + γP − (λ+ µ)S

dI

dt
= λS − (δ + β + µ)I

dT

dt
= βI − µT

(2.1)

Here, αΛ is the recruitment rate into the class of individuals protected against typhoid, (1−α)Λ is
the recruitment rate into the class of individuals susceptible to typhoid, µ is the natural mortality
rate, δ is the disease induced mortality rate, β is the rate of treatment. The assumption of this
model is that there is no re-infection once an individual is treated. The total population size at any
time t is given by

N = P + S + I + T (2.2)
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Fig. 1. Flow diagram

3 Analysis of the Model

Since we are dealing with a population, we expect that all population compartments be non negative
∀t > 0 in the feasible region Γ where S(t), P (t), I(t), T (t)∈Γ ⊂ R4

+. It can be shown that all the
solutions are bounded in Γ, ∀t > 0 such that 0 ≤ N ≤ Λ

µ
. Thus the model is epidemiologically well

posed in the region Γ and can be analysed.

3.1 Existence of equilibrium points

In this section, we shall quantitatively analyse the model to investigate stability of its equilibria both
at Disease-free equilibrium(DFE) and at endemic equilibrium(EE). The disease free equilibrium
points of the model are its steady state solutions in the absence of infection or disease.

Consider the model(1)

dP

dt
= αΛ− (γ + µ)P

dS

dt
= (1− α)Λ + γP − (λ+ µ)S

dI

dt
= λS − (δ + β + µ)I

dT

dt
= βI − µT

To obtain the equilibrium points for the model we set the right hand side to zero.

αΛ− (γ + µ)P = 0

(1− α)Λ + γP − (λ+ µ)S = 0

λS − (δ + β + µ)I = 0

βI − µT = 0 (3.1)
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where

λ =
πθI

N
. (3.2)

Let π be defined as the probability rate of acquiring typhoid fever disease and θ be the contact rate
of infection. Let ϑ be the probability of success of protection against typhoid fever disease, thus
the effective force of infection λp becomes

λp =
πθ(1− ϑ)I

N
. (3.3)

To calculate the DFE,we set (P, I, T ) to be equal to zero. Thus

S =
(µ+ γ − αµ)Λ

µ(µ+ γ)
. (3.4)

The disease-free equilibrium point E0 is given by

E0 = (0,
(µ+ γ − αµ)Λ

µ(µ+ γ)
, 0, 0). (3.5)

To calculate the EE, we set P, S, I, T not equal to zero.

P ∗ =
αΛ

µ+ γ

S∗ =
N(µ+ δ + β)

πθ(1− ϑ)

I∗ =
1

(µ+ δ + β)
(
(µ+ γ − αµ)Λ

(µ+ γ)
− µ+N(µ+ δ + β)

πθ(1− ϑ)
)

T ∗ =
β

µ(µ+ δ + β)
(
(µ+ γ − αµ)Λ

(µ+ γ)
− µN(µ+ δ + β)

πθ(1− ϑ)
) (3.6)

Therefore the endemic equilibrium E∗ = (P ∗, S∗, I∗, T ∗) is given by

E∗ = (
αΛ

µ+ γ
,
N(µ+ δ + β)

πθ(1− ϑ)
,

1

(µ+ δ + β)
(
(µ+ γ − αµ)Λ

(µ+ γ)
− µ+N(µ+ δ + β)

πθ(1− ϑ)
),

,
β

µ(µ+ δ + β)
(
(µ+ γ − αµ)Λ

(µ+ γ)
− µN(µ+ δ + β)

πθ(1− ϑ)
)

3.2 The basic reproduction number

The dynamics of the model are highly dependant on the basic reproduction number. The basic
reproduction number commonly denotedR0 in a given population is the average number of secondary
infections caused by a single infectious individual during his her entire life time as an infective when
introduced into a totally/ purely susceptible population. The basic reproduction number R0 , is
important in that it is directly related to the effort required to eliminate infection. We determine
the R0 using the next generation matrix approach. Consider a matrix

G = FV −1 (3.7)

where F is the Jacobian of fj , where fj is the rate of new infections in compartment j and V is the
Jacobian of vj where vj is the rate of transfer of infections from one compartment to another.
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From the model the associated matrices are

z = ( πθ(1−ϑ)IS
N

)

Upon taking the derivative with respect to the disease compartment I, we have

F = ( πθ(1−ϑ)S
N

)

At DFE, S = N then

F = ( πθ(1− ϑ) )

and the matrix V is given by

ν = ( (µ+ δ + β)I )

Taking the derivative with respect to I we get

V = ( µ+ δ + β )

On computing V −1 we have

V −1 = ( 1
(µ+δ+β) )

thus

FV −1 = ( πθ(1−ϑ)
(µ+δ+β) )

The basic reproduction number R0, which is the spectral radius of the matrix FV −1 is given by

ρ(FV −1) =
πθ(1− ϑ)

(µ+ δ + β)
(3.8)

Therefore

R0 =
πθ(1− ϑ)

µ+ δ + β
(3.9)

which is the measure of the severity of an epidemic and one of the most important concern parameter
for the disease to invade a population.

3.3 Local stability of the Disease-free Equilibrium (DFE)

We now analyse the model to investigate stability of its equilibria(DFE). The disease free equilibrium
points of the model are its steady state solutions in the absence of infection or disease.

Theorem 3.1. The disease-free equilibrium E0of the model(1) is locally asymptotically stable
whenever R0 < 1.

Proof. From the model system(1) we have the Jacobian matrix of the linearized system is given by

J =


−(γ + µ) 0 0 0

γ −(µ+ πθ(1−ϑ)I
N

) −πθ(1−ϑ)S
N

0

0 πθ(1−ϑ)I
N

πθ(1−ϑ)S
N

− (δ + µ+ β) 0
0 0 β −µ


We now compute the Jacobian matrix at DFE and investigate its stability effect due to the
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reproduction number R0.

JE0 =


−(γ + µ) 0 0 0

γ −µ −k1 0
0 0 k2 0
0 0 β −µ


where k1 = πθ(1− ϑ), k2 = πθ(1− ϑ)− (µ+ δ + β).

To analyze the stability of the Jacobian at DFE, we compute the trace and the determinant and
set the conditions. The Trace(τ) at DFE,E0 is given by

τ(JE0) = −(µ+ γ)− µ+ k2 − µ

τ(JE0) = −(µ+ γ)− µ+ πθ(1− ϑ)− (µ+ δ + β)− µ (3.10)

On substituting the R0, we have

τ(JE0) = −(µ+ γ)− 2µ+ (R0 − 1)(µ+ δ + β) (3.11)

which is negative provided that R0 < 1, and the determinant is given by

DetJE0 = µ2(µ+ γ)(1−R0) (3.12)

The determinant of the Jacobian matrix at DFE remains positive provide that R0 < 1. The model
has a stable disease-free equilibrium when R0 < 1.

3.4 Local stability of the endemic equilibrium of the model (EE)

A disease is endemic in a population if it persists in the population. The stability of endemic
equilibrium of the model is studied using the following theorem.

Theorem 3.2. The endemic equilibrium E∗of the model(1) is locally asymptotically stable whenever
R0 > 1.

Proof. The stability of the endemic equilibrium is investigated using the trace and the determinant.
The Jacobian matrix at E∗ is given by

JE∗ =


−(γ + µ) 0 0 0

γ −(µ+ πθ(1−ϑ)h3
N

) −πθ(1−ϑ)h2
N

0

0 πθ(1−ϑ)h3
N

πθ(1−ϑ)h2
N

− (µ+ δ + β) 0
0 0 β −µ


where h2 = N(µ+δ+β)

πθ(1−ϑ)
, h3 = 1

(µ+δ+β)
( (µ+γ−αµ)Λ

(µ+γ)
− µN(µ+δ+β)

πθ(1−ϑ)
)

The Trace(τ) at E∗ is given by

τ(J(E∗)) = −(µ+ γ)− (µ+
πθ(1− ϑ)h3

N
+

πθ(1− ϑ)h2

N
− (µ+ δ + β)− µ

upon substitution we have

τ(JE∗) = −(µ+ γ)− µR0 (3.13)

7



Nthiiri et al.; BJMCS, 14(1), 1-10, 2016; Article no.BJMCS.23325

which is negative provided that R0 > 1 and

Determinant = µ(µ+ γ)(µ(µ+ δ + β)− µ
πθ(1− ϑ)h2

N
) + (µ+ δ + β)

πθ(1− ϑ)h3

N
)

= µ(µ+ γ)((µ(µ+ δ + β)R0 − µ(µ+ δ + β))

Hence

DetJE∗ = µ2(µ+ γ)(µ+ δ + β)(R0 − 1) (3.14)

Clearly the determinant of the matric is positive provided that R0 > 1. Therefore the model has
an asymptotically stable endemic equilibrium provided that R0 > 1.

3.5 Numerical simulations

Numerical simulations are carried out to graphically illustrate the long term effect of protection on
the dynamics of typhoid fever infection.

4 Discussion

Fig. 2 shows the graph of infective against time in days. With high success of protection, there
is low contact rate and low prevalence rate hence the infective in the population decreases sharply
over time. With low protection there is high contact rate and hence a high disease prevalence in
the population.

Table 1. Parameters values of the mode

Parameter description Symbol Value Source

Recruitment rate Λ 0.0044 [10]
Adjustment parameter α 0.8 Estimated
Natural mortality rate µ 0.016 [10]
Disease induced mortality rate δ 0.005 Estimated
Loss of protection rate γ 0.001 Estimated
Rate of treatment β 0.9 Estimated
Transmission probability rate of typhoid π 0.0011 Estimated
Contact rate of infection θ 0.0002 [11]
Modification parameter ϑ 0 < ϑ < 1 Assumed

Fig. 3 shows the graph of susceptible against time in days. With high success of protection there
is low contact rate and low prevalence rate hence the susceptible in the population decreases over
time. On the contrary, when the protection rate is low, the number of susceptible individuals will
be high.

The model shown exhibits that the stable disease-free equilibrium co-exists when the reproduction
number is less than unity. Also stable endemic equilibrium co-exists when the reproduction number
is greater than unity.
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Fig. 2. The graph of I against t

Fig. 3. The graph of S against t

5 Conclusion

We conclude that effective control of typhoid fever prevents rapid progression to infection especially
in scarce resource setting where treatment is not readily available. Vaccination is effective to prevent
disease induced mortality rate. Moreover improving life standards e.g sanitation and supply of clean
water, will reduce the probability of infection hence resulting to less people contacting the infection.
Typhoid fever prevention is equally effective in susceptible population. This leads to a very small
fraction of individuals in a given population progressing to infective stage.
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