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ABSTRACT 
 
Currently, research in robotic vision faces numerous challenges, predominantly because of noisy 
sensor input and the processor hungry practices of object detection. Conventional machine vision 
algorithms are unable to handle real-time scenarios efficiently because they mostly rely on local 
storage for objects and a limited training process. In real life, there are endless number of objects 
which requires a huge storage capacities and a high level of hardware to handle real-time images 
quickly. In this paper, we address the challenges of current robotic vision and propose a novel 
framework (C-Semantic) based on cutting-edge semantic web technologies. The framework divides 
the entire robotic vision process into three functional layers in which each layer performs a set of 
predefined tasks. The process begins with a vocal command that is further converted into a 
SPARQL query. We design a C-Semantic ontology that semantically stores the domain information 
along with objects’ physical and geometrical features. The image-processing module of the 
framework receives an input image of an object and looks up for the object from the virtual 
environment by consulting the semantic features. An inference engine aids the image-processing 
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module to rapidly detect and associate the object based upon the semantic relationships. Overall, 
the semantic powered kernel transforms the proposed framework into a robust, intelligent and 
interoperable system proficient to handle real-time scenarios. C-Semantic framework is evaluated 
against some scenarios from the literature. Based on the current experiments, the system displays 
favorable results. Based on our review, the integration of semantics with robotic vision algorithms is 
the first attempt of its kind that will pave the way for future research in this domain. 
 

 
Keywords: Semantic web; robotics vision; NLP; SPARQL; object detection; ontology. 
 
1. INTRODUCTION 
 
Will robots help make life better? Will it really 
see, understand & decide one day!? 
 
From earliest of times, artists conceptualized 
mechanical devices in the shape of humanoids. 
Later, these drawings took practical shapes 
when these sketches were transformed into real 
life by wooden structures that resembled 
humans. The prime motivation for inventing such 
structures was for entertainment purpose. Later 
on, these structures were called robots. 
 
Robots have taken numerous shapes and sizes 
specifically suited to tasks that humans could not 
perform in light to heavy industrial processes. 
Advancement in robotic technology has been 
taking shape since the pre-industrial era and is 
currently capable of performing various functions 
that have revolutionized the automation process 
[1]. 
 
As time progresses, robots became more 
sophisticated and even wirelessly controlled. 
Currently, robots are utilized in various industrial 
applications without retaining the humanoid 
perspective in order to integrate robotic systems 
with industrial processes [2]. 
 
One of the most important components of a robot 
are the sensors. Sensors are input devices like a 
camera that provides vision for a robot. The use 
of sensors to hear, touch and move is also 
utilized to manifest human-like qualities and 
capabilities [3]. Vision is achieved through 
cameras and sonars and the resulting images 
are processed using complex algorithms. 
 
The touch sensory feature for a robot is achieved 
through the robot’s own processing of its 
movements. These movements are then utilized 
to create the desired movements and to attain 
the desired objectives. One such example is 
achieving a balanced state of physical movement 
which is a typical feature of humanoid robots [4]. 
 
Robots sensors gather data from the surrounding 
environment, then process it and take the 

appropriate actions depending on robots’ goals 
and abilities. The main challenge in robotics 
vision is how to gather the information correctly 
and interpret them? 
 
In order to resolve these challenges in the realm 
of information technology, computer researchers 
and programmers have developed semantic 
interoperability, by which computers ‘understand’ 
the meaning of data. Semantic interoperability 
works by adding metadata in-line with actual data 
and analyze this data by connecting each data 
element with a suitable ontology term. The 
performed process primarily depends on special 
data structures such as XML and RDF [5]. 
 
The structures of XML and RDF are linked with 
software to share data and capable of creating 
links with external software resources. The 
shared bank of vocabulary that indirectly links 
with the ontology basically provides the 
infrastructure that supports the interpretation, 
analytics and logic creation of the computer 
system, which manifests the Semantic Web [6]. 
 
Using techniques that incorporate XML codes 
defines the semantic philosophy, which further 
facilitates the analysis of web contents. The RDF 
system is responsible for arranging the contents 
into special triples. The object logic is created in 
the process as the RDF system works. Due to its 
varied usefulness, many industries are currently 
employing the RDF tool [7]. 
 
In this paper, we address the challenges of 
current robotic vision which includes: i) The 
weakness of machine understanding and ii) The 
limitations in robotic vision and objects 
recognition. 
 
The current machine and robotic vision suffers 
from: 
 

• Disunion in objects databases: there is 
no shared datasets and no standard 
classification environments for object 
recognition. 
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• Differences in the recognition 
approaches: the main challenge of 
objects recognition is to reach the 
maximum level of accuracy with the 
minimum possible time. Most of the current 
approaches rely on traditional images 
processing, which is relatively slow and 
needs a lot of training. 

• Image training: This requires a massive 
amount of data storage to store each 
object in many positions. 

• Objects are getting complex: with the 
advancement of web approaches, objects 
representation is getting more complex 
with more relations which are getting more 
complex. 

 
The objective of this study is to make the robotic 
vision faster and more intelligent by enhancing 
their ability to realize objects, their relations and 
properties. 
 
The contribution of this work is a shared 
framework and an API for machine vision that 
gives the ability to access graphs of objects that 
are shared on the internet without the need to 
use a database. All of these components are 
open source and available for researchers and 
developers. 
 
The rest of this paper is organized as follows: In 
Section 2, the related work is presented. Section 
3 elaborates the proposed framework in detail. 
Section 4 explains the experiments and 
discusses the problems that we encounter during 
the experiments. The paper concludes in Section 
5 with a proposal for future work.  
 
2. RELATED WORK 
 
Prestes et al. [8] presented the Service-oriented 
Ubiquitous Robotic Framework (SURF), an idea 
to improve robotic intelligence. The SURF 
technology basically incorporates a service-
oriented approach into special stimulations and 
environments to achieve the final objective of 
networking robots. SURF relies on semantic 
technologies for interlinking robots and 
computing devices. This is a revolutionary idea 
that has the capacity to inspire the next 
generation of advancement in robotics and 
interlinking of computing devices. 
 
Research work on evaluation of ontology has 
taken many shapes and is an active subject of 
consideration when we talk about robotics and its 
interlinking of networking hardware devices. The 

research in this area is suggestive of the fact that 
METHONTOLOGY can be a method to further 
define ontology. Therefore, advanced research 
has been conducted in the fields of robotics and 
interlinking of service devices through the 
method mentioned above [8]. 
 
Further researches on robotics suggest that 
Ontology systems can also rely on Microsoft 
Robotics Studio (MSRS) simulations as an 
implementation framework. When applying 
robotics to service-oriented sectors and 
technologies, MSRS system can be used 
successfully in the specialty of robotics to 
achieve many goals. These goals include 
developing faster processes with the benefit of 
in-depth integration of diverse ontology systems 
[9].  
 
The most beneficial aspect of MSRS is that it 
incorporates a Service-Oriented Architecture 
(SOA) simulation software, thus transforming 
robotics simulations while keeping within the 
limits of ontology-based approaches. When 
exploring the topic of cognitive robotics, it is 
important to develop a model that is based on 
the SOA and related to ontology. SOA 
technology provides a verification approach for 
the robotic system. Furthermore, this system 
ensures that the ontology-based system that is 
in-line with SOA framework is a real possibility 
when it comes to cognitive robotics [9]. 
 
In [10], a fuzzy logic based robotic vision system 
is presented in order to identify the real-time less 
precise objects with accuracy. The main 
contribution of this research work is to provide a 
state based system to maintain context that 
works with fuzzy logic controller to imitate the low 
level imprecise reasoning of humans to abridge 
the vision tasks for a common serving robot. The 
usage of fuzzy logic helps a robotic vision system 
to process vague images. Moreover, a fuzzy 
based robotic vision system enables the usage of 
less complex image processing operations and 
algorithms. 
 
These characteristics of fuzzy based robotic 
vision system make it favorite to use in real-time 
object detection. In order to detect the indoor 
obstacles, a linear structured light vision system 
is presented in [11]. This research work simplifies 
the calibration process by introducing a 
coordinate system based on structured light 
vision system.  
 
Researchers in [11] have employed 650 nm light 
filter in front of the camera lens to project a 
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structured light that facilitate a robot vision 
system to gather the environment information. 
Vision system keeps records of all objects along 
with their local coordinates. This approach 
assists to detect the change of linear structured 
light per frame. This information uses an image 
processing algorithm to understand the obstacle 
characteristics such as size and dimensions. 
Researchers claim that their experiments 
describe the linear structured light vision system 
is the most appropriate system for mobile robot 
obstacle detection in indoor environment.  
 
To improve the robotic vision system in 3-D 
image application, [12] introduced a 3-D Time-
Of-Flight system (TOF) that works in integration 
with robotic vision system. This system helps to 
correct segmentation of objects with equal gray-
level values unlike stereo vision system that face 
difficulties to find the relevant image coordinates. 
 
In [12], S.Y. Chen briefly surveys the recent 
developments for robot vision by using Kalman 
filters. Kalman filters have more than fifty 
different variations and most actively used to 
resolve the issues relating to solve uncertainties 
in robot localization, navigation, following, 
tracking, motion control, estimation and 
prediction, visual serving and manipulation, and 
structure reconstruction from a sequence of 
images. The major contribution of S.Y. Chen [12] 
works to provide the idea of vision localization 
that has proved itself while experimentation a 
reliable method to detect the complex objects. 
 
A single point marker technique is introduced in 
[13] to improve the assembly process. An 
accurate robot camera calibration plays a key 
role in the whole process. Therefore, researchers 
in [13] have focused on the intrinsic camera and 
hand-eye calibration on a robot vision system 
using a single point marker. The single point 
markers make the object calibration process 
simple and a user do not require bulky special 
purpose calibration objects. More of this 
technique, it accelerates the on line accuracy 
checking and re-calibration when needed, 
without altering the robots production 
environment. 
 
Seung-Ho Baeg in [14] proposed an object 
recognition system for a robot-assisted future 
home environment based on RFID tags and 
Visual Descriptors. In that system, every product 
is registered through visiTag, software for object 
recognition based on RFID visual descriptors 
extraction. The system is supported with an 
annotation tool that generates a variety of visual 

descriptors of MPEG-7 specification in the 
extensible markup (XML) and stores the 
descriptors into their own Object Information 
Server (OIS). Those description data include 
colour, texture and shape descriptors and is used 
for the matching processes. The robot gets the 
RFID code of the object and sends it to an Object 
Naming Server (ONS) which maintains the 
addressed information about which OIS 
maintains the object data currently requested. 
 
Priyamvada Singh, in [15], created a domain 
ontology with contextual and image features to 
retrieve and generate a list of URI’s of the 
Electronic Health Records (EHR) of patients. 
They combined this ontology with the concept of 
CBMIR (Context Based Medical Image Retrieval) 
which is only specific to medical images, and 
uses only the low level features with the 
SPARQL as a query language to retrieve the 
results from the ontology. The image features 
class deals with the image properties such as the 
color distribution, color histogram and the region 
of interest, while the features in the contextual 
ontology class are based on the context of the 
data such as the dependent, partially dependent 
and the independent features. The used 
semantic approach showed better and more 
precise results as compared to the normal 
keyword based search. 
 
Visual information contained in a document may 
not be reachable due to lack of adequate or 
proper textual and or low level image descriptor, 
to address this problem Alberto Chavez-Aragon 
[16] introduced Image Retrieval by Ontological 
Description of Shapes (IRONS), he suggested 
that low level image descriptors does not have a 
semantic value and cannot satisfy users query 
intention accurately, he used an ontology that 
describe a domain of shapes with image 
database in which images are in specific 
categories, his method is to extract the simplest 
shapes from an image then matches these 
shapes with the previous ontology, Test result 
indicated the accuracy decreased as the number 
of image increased ranging from 40% up to 60%. 
 
The subject of robotics and its functional 
dependence can also be tested with a broader 
array of ontology related to designing of systems 
for the efficient working of robotics. Researchers 
in [17] employ ontology-based approaches to 
align robotics in humans’ daily lives with the help 
of open robot ontology concepts that primarily 
achieve the objective of successful functioning of 
robots. 
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As the field of ontology of robotics is further 
explored, robotics and mobility can be validated 
and explored with systems dependent on 
structured architecture. The structured 
architecture is derived from knowledge-based 
systems and tools. This architecture when 
implemented on a wider level is known as the 
global architecture of ontology of robotics [18]. 
 
Advanced researches on robotics ontology also 
incorporate the process to avoid collisions by 
assessing collision risks and collision avoidance 
protocol. These researches have contributed 
greatly to the generation of current state of 
robotics, which can perform diverse useful 
functions [19]. It is a known fact that specialized 
ontologies are required for very specialized 
robotics. For example, in underwater vehicles 
research, researchers have reported that 
Support Vector Machines (SVM) have been 
developed to recognize images which eventually 
allows unmanned underwater vehicles for use in 
exploratory services [20].  
 
Furthermore, when considering the strides in the 
development of humanoid robots, the ontologies 
related to robotics have been developed in such 
a way that robots can recognize gestures and 
voices. The gesture detection in robotics is 
implemented through a Gaussian matrix model. 
This is a great sophistication in the robotic life 
cycle [21]. 
 
3. THE PROPOSED C-SEMANTIC 

FRAMEWORK 
 
We coin the term C-Semantic to denote the 
operation of the framework in which the letter ‘C’ 
represents ‘see’ for vision and ‘Semantic’ 
represents the technology for seeing. In 
proposing the framework for intelligent robotic 
vision, we divide the C-Semantic architecture into 
three functional layers. 
 
In Layer 1, a sensor receives a vocal command, 
(e.g., find a remote TV controller), from an 
operator, which is then processed by a Natural 
Language Processing (NLP) module. The result 
of the NLP module yields a formalized query 
which is transformed into a SPARQL query. The 
framework matches the SPARQL query against 
the C-Semantic ontology that concurrently links 
semantic rules and the image processing module 
of the system.  
 
In Layer 2, an inference engine is employed that 
infers the commanded object by generating a 

virtual semantic map of the object’s physical and 
geometrical features. The final result is stored as 
a triple along with the RDFized properties and 
relations.  
 
Layer 3 provides access to the system in three 
ways based on user type and competency. A 
developer can access the C-Semantic API and 
can utilize the features to develop his/her own 
application. A researcher who works on semantic 
integration projects can utilize the SPARQL 
endpoint to get a federated view while a naive 
user can access the system through a 
semantically driven interactive interface.  
 
Fig. 1 shows the three layers of the C-Semantic 
framework. The sections below explain the 
internal working of each layer. 
 
3.1 Activities in Layer 1 
 
3.1.1 Sensor interaction utility (SIU) 
 
The sensor interaction utility provides a vocal 
command interface for an operator. Upon 
receiving the voice input, a microphone passes 
the signal to a machine perception algorithm that 
performs the preprocessing on voice signals by 
removing the noise and by adjusting the sound 
pitch. The intelligent algorithm automatically 
adjusts the sound according to defined criteria 
and asks for repetition in case the sensor failed 
to recognize the command.  
 
SIU handles both action commands and query 
commands. Query commands are commands 
with which an operator requests to locate 
something, e.g., locate the refrigerator in the 
room, while the action commands refer to the 
commands that control the actions of robots such 
as: Start search, stop, set camera directions, set 
directions, etcetera.  
 
3.1.2 NLP processor 
 
The sensor interaction utility forwards the refined 
input to NLP module as Natural Language 
Command (NLC). In Layer 1, the system 
decomposes NLC into small data chunks and 
converts it into textual format. We employ the 
Google Text to Speech API along with the 
Natural Language Tool Kit (NLTK).  
 
NLTK is a freely available natural language 
processing framework that uses the WordNet 
and other artificial neural networks in its 
background to optimally process a natural 



language input. Fig. 2 shows the steps of N
stage in C-Semantic. 
 
The lexical analysis stage performs some 
advanced functions on the textual input. For 
instance, a stemmer algorithm resolves each 
query word into its root; words like moving, 
moved and mover are resolved to its root word 
‘move’. The tagger component takes each word 
and segregates it into categories such as noun, 
verb, linking clause and etc. The Stop
reduction discards special component in lexical 
analysis; it removes all the articles and unwanted 
prepositions and auxiliary verbs including is, am, 
are, the, of, at and etc. Finally, the parser 
function parses the resulting texts and generates 
a random query. The output of this function 
forwards the query to the query formulation 
module that verifies the lexical order for further 
processing. 
 
3.1.3 SPARQL query generator (SQG)
 
SPARQL query generator module takes the 
formulated text query and transforms it into a 
SPARQL query [22]. SQG algorithm processes 
the text and segregates the classes and objects 

Fig. 1. The 

Fig. 2. Natural language processing stages 
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language input. Fig. 2 shows the steps of NLP 

The lexical analysis stage performs some 
advanced functions on the textual input. For 
instance, a stemmer algorithm resolves each 
query word into its root; words like moving, 
moved and mover are resolved to its root word 

e tagger component takes each word 
and segregates it into categories such as noun, 
verb, linking clause and etc. The Stop-word 
reduction discards special component in lexical 
analysis; it removes all the articles and unwanted 

bs including is, am, 
are, the, of, at and etc. Finally, the parser 
function parses the resulting texts and generates 
a random query. The output of this function 
forwards the query to the query formulation 
module that verifies the lexical order for further 

(SQG) 

SPARQL query generator module takes the 
formulated text query and transforms it into a 

. SQG algorithm processes 
the text and segregates the classes and objects 

and properties from the query by consulting the 
WordNet and semantic terminologies stored in C
Semantic ontology. We store several commands 
and alternate commands in the ontology by using 
‘sameAS’ semantic mapping. For instance, the 
basic command to execute a query is ‘run’, 
however the natural language interface allows a 
user to choose alternate words to ask a question.
 
If a user ask ‘Please find the white ASTRO 
remote control’, as shown in Fig. 3. The word 
‘the’ and ‘Please’ are removed; ‘the’ 
and ‘Please’ is a sentence starter. We have 
manually created an ignore-words list that allows 
the algorithm to remove those words from the 
natural language input at the time of processing. 
However, words like ‘Please’ that can also be 
used as a command like, ‘Could You Please’ is 
retained by allowing the algorithm to annotate
Such words with the ‘+’ symbol, which indicate
that these words are part of query and should not 
be removed. Consequently, NLP algorithm takes 
care of those words and does not remove such 
words but instead the algorithm looks up for an 
alternate word which could formulate a more 
optimal query to process. 

 

 
Fig. 1. The graphical framework of C-Semantic 
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Fig. 3. SPARQL query generator 
 
3.2 Activities at Layer 2 
 
3.2.1 Image processing and object detection 
 
The image processing module performs all the 
necessary tasks that are required to get fast and 
accurate detection of an object. Therefore, the 
image-processing module is linked directly with 
C-Semantic ontology, which is explained in 
section 3.2.3; image features repository and a 
rule and inference engine. After getting the 
SPARQL query from the first layer, the 
framework passes the output to the query 
manipulation function that executes the query 
against the C-Semantic Ontology. The                              
C-Semantic ontology holds domain information 
that is semantically stored and returns possible 
features of an object. 
 

The image processing utility works in stages. It 
performs the image pre-processing in the first 
stage; when the image processing utility receives 
an image from the camera, it checks for image 

resolution, increases the resolution and adjust 
the layout, if required. We have preset a 
threshold limit for image resolution and scaling in 
the code.  
 
In the second stage, the image-processing 
engine connects itself with the object feature 
repository and constructs a virtual environment to 
precisely recognize an image. For instance, if the 
algorithm finds a door lock or handle in the 
sensor input, it tries to construct a set that adds 
the door and surrounding walls and other objects 
in it. The C-Semantic ontology stores the 
hierarchical information about a searching 
environment. Therefore, it could infer related 
information for example; it could infer walls, a 
roof, door and a floor if a query comes with word 
‘room’ in it.  
 
In the third stage, the image processing module 
detects an object and registers its updated 
features in the object feature repository and in 
the ontology. We utilize the OpenCV to process 
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the images. OpenCV (Open Source Computer 
Vision Library) is an open-source BSD-licensed 
library that includes several hundreds of 
computer vision algorithms [23]. 
 
3.2.2 Object feature repository 
 
The object feature repository is a special kind of 
repository that holds images and their related 
metadata such as their physical and geometrical 
features. Moreover, to increase object detection 
precision and to observe the efficiency of the 
algorithm, we add trained datasets of various 
domains. The physical features about an object 
includes, length, height, width, color, object 
nature, e.g. liquid, solid and etcetera, while the 
geometrical features cover the position of the 
object with reference to another. 
 
The object feature repository also holds a corpus 
that stores the related object. Whenever a user 
queries to find a particular object and the robot 
discovers it correctly, a log file is generated along 
with the associated objects. Related object 
corpus read the log file and populates itself with 
related images. The self-learning approach 
saves object searching time and exceptionally 
increases the precision. 
 
3.2.3 C-Semantic ontology and rules 
 
Ontology can be explained as a branch of 
metaphysics that is primarily focused on actual 
essence and existence of an entity. Ontology can 
be further explained by dynamic specifications of 
shared idealism or conceptualization of a domain 
[24, 25].  
 
C-Semantic framework utilizes the ontology 
concept in which hierarchical order is used to 
form subclass and superclass hierarchy with a 
primary focus on concepts of domains. The 
primary motive to develop an ontology system is 
to facilitate a platform that allows mutual 
understanding of the knowledge content in the 
domain. This purpose can be achieved with the 
help of software. The software basically utilizes 
varied classes of domains instead of remodeling 
the data. 
 
The ontology concept is dependent on modeling 
that uses special programming language called 
OWL [25]. OWL stands for Ontology Writing 
Language. There are various versions of OWL 
that include the OWL 2. OWL 2 has improved 
features such as better meta-modeling features 
for increased elaborative expressivity. These 

extended features basically facilitate the powerful 
modeling capacity of OWL 2 systems. 
Furthermore, there are several ways that have 
been employed to generate OWL 2 which make 
OWL 2 comprehensive data mining software with 
enhanced features [24].  
 
Several theories also surround the ontology 
development process that is comprehensively 
defined in the seven-step process: 
 

(i) The recognition of the scope and domain 
of Ontology. 

(ii) Reutilization of older versions and existing 
Ontologies. 

(iii) Decoding and enumerating process 
description in Ontology. 

(iv) Defining the steps and hierarchical 
structure for Ontology. 

(v) Defining the various classes in detail. 
(vi) Defining the slots and facets. 
(vii) Create various instances 

 
We develop the C-Semantic ontology to 
semantify the process involved in object 
detection and recognition. The semantic 
knowledge about objects minimizes the object 
detection time and system resources. We 
integrate the semantic web rules with our 
ontology that gets the object feature information 
from object feature repository and facilitates the 
system to infer based on semantic knowledge 
instead of using the conventional training and 
testing methods for object detection and 
recognitions that have been used for decades. 
 
We build our ontology in Protégé, a free, open-
source ontology editor and framework for 
building intelligent systems. Protégé is supported 
by a strong community of academic, government, 
and corporate users, who use Protégé to build 
knowledge-based solutions in areas as diverse 
as biomedicine, e-commerce, and organizational 
modeling [26]. Protégé add rules through the 
SWRL tab. The Semantic Web Rule Language 
(SWRL) is a language that provides the 
necessary logic to ontology. The SWRL 
recommendation was submitted in 2004 by the 
National Research Council of Canada (NRC).  
 
Based on the logical feature, a user can retrieve 
inference information out of ontology. SWRL is 
considered as powerful as OWL DL but at the 
price of decidability and practical 
implementations. For example, if we arranged a 
doorbell and handle as parts of a door, when a 
robot is commanded to find a door from similar 
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objects that look like a door, a door lock or bell 
helps the inference engine to deduce that the 
object is a door based on its association with 
doors and surrounding objects [27]. 
 
3.2.4 Object inference engine and triple store 
 
We utilize the ‘Pellet inference engine’ [28] to 
generate inference in order to enhance the 
robotic vision. The inference engine connects 
itself with the ontology and the SWRL rules upon 
receiving a query and suggests the possible 
results to the user. An important feature of 
inference generation algorithm is self-
optimization; the algorithm learns from its history 
and utilizes the saved knowledge to generate 
new results.  
 
The framework RDFizes the object’s physical 
and geometrical data along with its actual object 
references and stores it in the triple store. We 
utilize the Sesame Triple store in our 
experiments to store the semantic knowledge. 
Sesame is a powerful open source framework for 
processing and handling RDF data. This includes 
creating, parsing, storing, inferencing and 
querying over such data. It offers an easy-to-use 
API that can be connected to all leading RDF 
storage solutions [29]. We develop a number of 
web services that perform the transportation and 
display functions. An inference engine or an 
image processing unit can ask for stored 
RDFized data anytime while processing a 
request [30]. A web service that connects with 
the triple store pulls out the requested 
information from the repository. 
 
3.3 Activities in Layer 3 
 
The C-Semantic API is a collection of reusable 
classes and methods that can be accessed and 
utilized to develop an application when an 
improved computer vision usage is required. 
Moreover, we provide the SPARQL endpoint for 
users who are interested to explore the process 
of semantic vision. Through endpoint, a user 
writes a query in the SPARQL language and the 
application generates the results in RDF format, 
which could be transformed further into XML, 
JSON to directly utilize it for analysis purpose.  
 
For naive users and multidisciplinary 
researchers, we develop a graphical interface, 
with which a user sends commands to 
accomplish a task through a robot or simply 
performs the semantic vision related 
experiments. 

4. EXPERIMENTS AND RESULTS 
 
C-Semantic is evaluated for (1) Object 
recognition performance and (2) Object 
realization features. 
 
We tested our system on a scenario named: 
“Find a Door”. In this testing scenario, we 
evaluate a real-life recognition task, compare the 
methodology and testing results of a related work 
with ours, and describe how C-Semantic features 
enhance machine intelligence by making objects 
not only recognized but understandable and 
realizable. We are using our custom-made robot 
in a real-life scenario where the robot is in the 
middle of a corridor, a hall or a connecting room. 
And the task is to find a door/doors. 
 
The generic characteristics of a door make it very 
difficult or even impossible to be recognized in a 
real-life scenario. The majority of a door shape is 
an empty space on the wall which is also an 
empty space in with no unique attributes to be 
recognized. Bailey et al. [22] presents a robotic 
vision system which is based on fuzzy logic. This 
system is tested on one scenario which is “door 
locating in a corridor”. Their robot detects doors 
by reading the nameplate of each door and then 
locates the door edges.  
 
Their proposed system in [22] is implemented 
using MATLAB with a large number of input 
images for the corridor from different angles. 
Their robot is able to detect doors in a corridor 
only when the robot is aligned in the middle of 
the corridor. According to Bailey et al. [22], they 
still need to develop the alignment mechanism. 
And no any numerical or graphical representation 
of their results is provided. Fig. 4 shows the State 
transition diagram for searching for a door. 
 
The methodology of finding a door using C-
Semantic is more flexible, where it is not 
necessary to have a nameplate or to align the 
robot in the middle of a corridor.  
 
In our system, the process start with a vocal 
command which is in our scenario “Find all 
doors”, the speech-to-text API converts this vocal 
command into a text command. The output text 
is passed as an input to the NLP unit for 
processing which passes the result to the C-
Semantic engine which prepares the command 
“Find All doors” along with the NLP analysis to 
the Order Extraction unit, Semantic Reasoning 
unit, Domain Selector and Ontology Parser 
respectively in order to create the SPARQL 
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query and execute it on the C-Semantic graph 
which in turn cooperates with linked data unit and 
locates the triple of our object “Door”. 
 
Fig. 5 shows the SPARQL query result, it 
became ready in 4 seconds on 1Mbs internet 
connection speed. 
 
By finding the triple of the “Door”, C-Semantic will 
have a powerful access to unlimited number of 
“Door” characteristics, attributes and relations, 
and doing this before starting the image 
processing functions will totally change the 
process of object recognition. The knowledge 
gathered from the graph in Fig. 5 manages the 
image capturing and processing of our robot. 
 
From the C-Semantic graph, the robot extracts 
the Shape Style of the “Door” which is a 
“Rectangle” as shown in Fig. 6a, for shape style 
operations we start with a simple image 
processing for “Edge detection” as shown in Fig. 
6b. 
 
The image processing module builds array of 
rectangle objects, and starts a multi-threading 
operation looking for the related objects 

recursively. Each abstracted object is linked to 
many Image triples, where each triple contains a 
URI for a physical image stored in the internet. 
Before starting the regular image recognition, the 
strategy of C-Semantic is to obtain as much 
knowledge as possible for the related object, 
characteristics and attributes, the knowledge 
obtained supports the recognition process by 
minimizing the image search criteria which leads 
to faster processing time comparing with 
conventional image training recognition 
approaches. As shown in the extendable graph 
in Fig. 5, the objects related to a door are 
“Hinge”, “Closer” and “Handle”. 
 
Recognizing a “Handle” for example either by 
recognizing its related object the “Lock” 
recursively, or using the image processing 
module to loop over the physical linked Images 
of the “Handle” as in Fig. 7, object will finally lead 
to recognize the “Door”. 
 
We applied this scenario 8 times in a corridor 
with 4 doors. In each experiment, the doors state 
was different. Table 1 shows the environment 
and results of each experiment. 

 

 
 

Fig. 4. State transition diagram for searching for a door [22]
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We executed the above task in different 
scenarios and stored the results of each 
experiment. Equations 1 and 2 are used to 

calculate the detection precision and recall [31]. 
Table 2 highlight the precision and recall ratio 
derived from the experiments. 

 

 
 

Fig. 5. SPARQL query result for door scenario 

Table 1. C-Semantic testing experiments 
 

No Environment No of 
correctly 
detected 
doors 

No of false 
detected 
doors 

Query 
time (S) 

1 4 closed rectangle doors with standard handle 4 0 3.4 
2 4 closed doors: 2 have a handle in a shape that is slightly 

different from the images linked to the “Handle” object. The other 
2 doors has a standard handle 

3 1 3.1 

3 4 closed doors: 3 doors have a standard handle with no key lock. 
1 door has standard handle shape with key look 

4 0 3.5 

4 4 closed doors with handles that have the same color as the 
door but with different lighting and shadow. 

2 2 2.9 

5 4 open doors and their handles are in robot vision range. 4 0 2.8 
6 4 opened doors.2 doors are in the vision range and 2 are only 

opened to the opposite side of robot vision range. 
3 1 3.6 

7 4 closed doors. 2 open doors with handles in robot vision range. 
2 handles have the same color as the door. 

3 1 3.8 

8 4 closed doors without handles, only key lock. 3 1 3.4 
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Table 2. Average result recorded with C-semantic robotic vision system 
 

 TNOD TCOD TFOD Precision (%) Recall (%) QET (Sec) 
Find a door 8 scenarios 32 26 6 81.25 81.25 3.3 

 
 

a) Original doors image 
 

 
 

b) Doors image after processing 
Fig. 6. Image of doors in a corridor before and 

after processing 
 

Precision = the number of objects correctly 
detected as a percentage of the total number of 
object detected. 
 

��������� = (TCOD	/		����)	× 100          (1) 
 
Recall= the number of objects correctly detected 
as a percentage of the total number of object 
targeted. 
 

������ = (TCOD	 	����⁄ ) 	× 100          (2) 
 
Where: 
 

TNOT = Total number of Objects Targeted 
TNOD= Total Number of Object Detected 

TFOD= Total Number of False Object Detected 
QET   = Query Execution Time 

 
The results of the above scenarios show the high 
efficiency of our proposed system. The only 
cases that C-Semantic robot could not find is the 
cases of not finding any object that is related to a 
door. 
 

 
 

Fig. 7. Door handle 
 
5. CONCLUSION AND FUTURE WORK 
 
In order to overcome the robotic vision 
challenges, we present in this paper a novel 
framework that incorporates the state-of-the-art 
semantic web technologies to make robotic 
vision intelligent and efficient. The robust 
architecture of the C-Semantic system empowers 
a robot to accurately detect an object based on 
its semantic features. The semantic web backed 
system turns the overall robotic vision process 
into interoperable smart semantic activities. 
 
C-Semantic system provides a multi-modal 
access to the system. With C-semantic API, a 
developer can access the system 
programmatically. To perform semantic dataset 
integration and federated queries activities the 
system can be connected through the SPARQL 
endpoint. For researchers and for non-domain 
users, C-Semantic system facilitates a graphical 
user interface. 
 
We design scenario-based evaluation processes 
to monitor the performance of the overall system. 
With initial experiments, the system generated 
favorable results. We face a number challenges 
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due to resource-hungry nature of robotic 
sensors, however, the efficient distribution of 
resources due to our layered approach solved 
those challenges. We can say that with the 
current setup, our system is capable for adoption 
in many commercial products. 
The next version of C-Semantic should mainly 
focus on upgrading the API components.                     
C-Semantic API needs more development for the 
modules of data entry validation, error handling 
and data reliability, although those modules are 
seems not to be playing a major role in the 
framework’s functionality. However, some 
validation functions like non-duplication validation 
might influence the main framework functions if 
not implemented accurately, the object “Door” for 
example should not be added in the graph more 
than one time for the exact same purpose. 
 
C-Semantic API also needs more development 
for better support of knowledge and experience 
sharing. The framework however is well-
designed, analysed and totally flexible to host the 
scenarios of knowledge and experience sharing. 
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