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ABSTRACT 
 

The particle swarm optimization (PSO) is a population-based algorithm belonging                                      
into metaheuristic algorithms and it has been used since many decades for handling and solving 
various optimization problems. However, it suffers from premature convergence and it can                  
easily be trapped into local optimum. Therefore, this study presents a new algorithm called                 
multi-mean scout particle swarm optimization (MMSCPSO) which solves reactive power 
optimization problem in a practical power system. The main objective is to minimize the active 
power losses in transmission line while satisfying various constraints. Control variables to                            
be adjusted are voltage at all generator buses, transformer tap position and shunt capacitor.                   
The standard PSO has a better exploitation ability but it has a very poor exploration                             
ability. Consequently, to maintain the balance between these two abilities during the                            
search process by helping particles to escape from the local optimum trap, modifications        
were made where initial population was produced by tent and                                                                 
logistic maps and it was subdividing it into sub-swarms to ensure good distribution of particles 
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within the search space. Beside this, the idle particles (particles unable to improve their personal 
best) were replaced by insertion of a scout phase inspired from the artificial bee colony in the 
standard PSO. This algorithm has been applied and tested on IEEE 118-bus system and it has 
shown a strong performance in terms of active power loss minimization and voltage profile 
improvement compared to the original PSO Algorithm, whereby the MMSCPSO algorithm reduced 
the active power losses at 18.681% then the PSO algorithm reduced the active power losses at 
15.457%. Hence, the MMSCPSO could be a better solution for reactive power optimization in 
large-scale power systems. 

 

 
Keywords: Particle swarm optimization (PSO); multi-mean scout particle swarm optimization algorithm 

(MMSCPSO); reactive power optimization; active power loss; voltage profile improvement. 

 
1. INTRODUCTION 
 
Optimal power flow (OPF) is one of the most 
crucial keys to the power system operation 
analysis for not only the security and economic 
aspects but also for stability and power quality 
[1]. The optimization of reactive power                                 
is very important in electric power systems 
because it helps to improve the voltage                     
profile and reduce the active power losses                  
of the power system network by satisfying                   
some physical and practical constraints                    
[2].  
 
In power system, proper adjustment of control 
variables such as generator voltage, transformer 
tap position, shunt capacitors at a proper value 
contribute to the control of reactive power within 
the network. The OPF aims in general to find 
proper adjustment of aforementioned control 
variables in order to maintain the voltage at 
acceptable level and minimize the active power 
losses [3]. 
 
A wide range of conventional optimization 
techniques have been used to handle the 
reactive power optimization problem, it has been 
found that all of these techniques were dealing 
mainly with continuous variable and they were 
suffering from convergence toward the local 
optimal solutions, these methods required some 
mathematical assumptions such as differential 
convexity property of the objective function 
[4],[5]. As the years went by, many researchers 
got interested in the field of reactive power 
optimization and proposed various optimization 
techniques.  
 
C. Mamandur et al. [6], presented a 
mathematical formulation of the optimal reactive 
power control (optimal VAR control) for 
minimizing the active power losses in the 
electrical system. Utilizing the dual linear 
programing and employing the method of 

linearized sensitivity relationship of power 
system, they have determined the adjustments 
of control variables.  
 
Ma et al. [7] by considering the non-convex 
optimization problem even though there are mild 
condition and saddle point, they have shown that 
active power losses can be minimized by 
application of dynamic gradient approach. 
Amrane and Boundour [8] using the linear 
decreasing inertia weight, they improved the 
PSO algorithm for reducing the active power loss 
in 114-bus Algerian power system and to IEEE 
30 and the results werecompared with other 
algorithms. In [9] Cao et al, presented an 
algorithm which solves the multi-objective 
reactive power optimization problem. This 
algorithm uses an opposition learning as main 
tool to improve the algorithm’s search efficiency, 
this technique adopts the inertia weight strategy 
to balance the global and local exploration. 
Improvement of particles’ diversity, a modal 
based crossover, mutation and neighborhood 
strategy has been used to solve the reactive 
power problem. Khunkitti et al. [10], based on 
the weak global search ability of the PSO and 
good global search ability of dragon fly algorithm 
(DA), they proposed a hybrid which equilibrate 
both exploration and exploitation abilities for 
solving the problem of reactive power 
optimization within power system. Bansal et al. 
[11] due to the optimal power flow complexity 
mathematical formulation, they proposed an 
algorithm based on modified artificial bee colony 
by considering the impact of global and local 
neighborhood for determining the optimal 
settings of OPF control variables. Zhou et al. [12] 
solved the optimal power flow problem by 
proposing new algorithm based on incorporating 
the cooperation approach within artificial bee 
colony algorithm to improve its performance. 
Their method was based on using multiple 
artificial bee colonies to optimize different 
components of solution cooperatively for 
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improving the performance of the algorithm in 
finding optimal solution.  
 
Dai at al. [13] solved the optimal reactive power 
dispatch (ORPD) problem by using the seeker 
optimization algorithm (SOA) taking into account 
the minimization of the active power loss in the 
transmission network. The proposed algorithm 
has been evaluated on standard IEEE 57-bus 
and IEEE 118-bus systems. In addition, the 
proposed algorithm has been compared to 
conventional nonlinear programming method, 
two versions of genetic algorithm (GA), three 
versions of differential evolution (DE) and four 
versions of PSO. The simulation results show 
that the proposed algorithm outperform other 
algorithms compared with it in terms of balancing 
global search ability and convergence speed 
while solving the ORPD problem. 
 
Duman et al. [14] proposed a gravitational 
search algorithm (GSA) for solving the ORPD 
problem. The proposed algorithm has been used 
to determine the settings of control variables 
including generator terminal voltages, 
transformer tap settings and reactive power 
output of the compensating devices with the aim 
of minimizing the active power loss in the 
transmission system. The standard IEEE 30-bus, 
IEEE 57-bus and IEEE 118-bus systems were 
employed to examine the effectiveness of the 
proposed algorithm compared to other 
algorithms found in the literature. The simulation 
results revealed that the proposed algorithm is 
robust and effective in solving the ORPD 
problem. 
 
Sulaiman at al. [15] determined the solution of 
the ORPD problem by using the gray wolf 
optimizer (GWO) considering the minimization of 
the active power loss and minimization of 
voltage deviation. The proposed algorithm has 
been employed to determine the best 
combination of control variables including 
generator voltages, tap changing transformer’s 
ratios and the amount of reactive compensation 
devices. The performance of the proposed 
algorithm has been tested on IEEE 30-bus and 
IEEE 118-bus systems. The simulation results 
show that the proposed algorithm yielded better 
results compared to other algorithms compared 
with it in solving the ORPD problem. 
 
Mei et al. [16] utilized the moth-flame 
optimization algorithm (MFO) to address the 
ORPD problem considering the minimization of 
the power loss and minimization of voltage 

deviation. They tested their algorithms on IEEE 
30-bus, IEEE 57-bus and IEEE 118-bus 
systems. The proposed algorithm has been 
compared to other algorithms surfaced in the 
literature and yielded promising results. 
 
In the present work, the multi-mean scout 
particle swarm optimization (MMSCPSO) 
algorithm is implemented on IEEE 118 bus test 
power system and the aim is to prove its 
performance in comparison with other algorithms 
presented in the literature review. The main 
objective was to minimize the active power 
losses by improving the voltage profile of the 
power system. 
 
The rest of this paper is arranged as follows: 
 
Section 2 presents the optimal power flow 
problem formulation, Section 3 presents PSO 
algorithm, Section 4 describes the ABC 
algorithm, Section 5 details the method 
proposed for optimizing the reactive power in 
large-scale power systems. Section 6 consists of 
simulation results and discussion, and at the end 
an overall conclusion is drawn in Section 7. 
 

2. PROBLEM FORMULATION 
 
The reactive power optimization problem is 
mainly formulated as minimization of total active 
power losses of the whole electric power system. 
The objective fiction is mathematically stated as 
follows: 
 

     (1) 
 

Where lossP is the total active power loss, ,i jV V  

are voltages of i
th
 and j

th
 buses respectively,

,i j   are voltage angles of i
th
 and j

th
 buses, kg  

is the branch conductance.  
 
The objective function is subjected to different 
constraints.  
 

2.1 Equality Constraints 
 
The equality constraints were satisfied by 
Newton Raphson load flow algorithm: 
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Where
iG

P  is the active power at i
th
 generator 

bus,
iG

Q  the reactive power at ith generator bus,

iC
Q is the reactive power of shunt capacitor at i

th
 

bus, ijG  is the transfer conductance, ijB  is the 

transfer susceptance and busN  is the bus 

number. 
 

2.2 Inequality Constraint 
 
 Non-control variables: 

 

      (4) 

 

  (5) 

 

Where 
min

IL
V is the minimum voltage at i

th
 load 

bus, 
max

iL
V  is the maximum voltage at i

th
 load 

bus, 
iL

V is the voltage at ith load bus, 
min

ig
Q is the 

minimum reactive power at i
th
 generator bus, 

max

ig
Q  is the maximum reactive power at ith 

generator bus, 
ig

Q is the reactive power at i
th

 

generator bus, PQN  is the number of load buses 

and gN  is the number of generator buses. 

 
 Control variables: 

 

    (6) 

 

   (7) 

 

(8) 

 

Where 
ig

V is the voltage at i
th
 generator bus, 

min

ig
V is the minimum voltage at ith generator bus, 

max

ig
V is the maximum voltage at i

th
 generator 

bus, iT  is the transformer tap position at ith bus, 

min
iT is the minimum value of transformer tap 

position at i
th
 bus, 

max
iT is the maximum value of 

transformer tap position at i
th
 bus, 

ic
Q is the 

reactive power of shunt capacitor at ith bus, 
min

ic
Q

is the minimum reactive power of the shunt 

capacitor at i
th
 bus, 

max

ic
Q is the maximum 

reactive power of the shunt capacitor at i
th
 bus.  

 
The vector of independent variables (or control) 
variables is represented in eq.9 whereas the 
vector of dependent variable (or non-control 
variables) is presented in eq.10. 
 

       (9) 

 

       (10) 

 
The augmented objective function is shown in 
eq.11. 
 

   (11) 

 
The augmented objective function is shown in 
eq.11. 
 
Where F is the augmented objective function, 

1f  is the power loss, 
LV

 is the penalty factor for 

load bus voltage violating its limits, 
gQ

 is the 

penalty factor for generator bus violating its 

limits, 
iL

V is the voltage at i
th
 load bus, 

lim

iL
V is the 

voltage limit at i
th
 load bus, 

lim

ig
Q is the reactive 

power limit at generator bus, 
lim
PQN is the number 

of load buses violating their limits, 
lim
gN is the 

number of generator buses violating its limits. 
 
3. PARTICLE SWARM OPTIMIZATION 
 
Particle Swarm Optimization is a population-
based belonging in the class of metaheuristics. It 
was firstly introduced in 1995 by James Kennedy 
(social psychologist) and RusselEberhart 
(electrical engineer) [17]. The PSO development 
was based on the social behavior of birds 
flocking or fish schooling searching for the food 
and this algorithm is applicable in various fields 
including engineering fields due to its simplicity 
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and efficacy in implementation [18]. In the PSO 
algorithm the search process is conducted by 
particles grouped in a swarm where each 
particle is representing a candidate solution and 
particles update the velocity and                
position according to eq.12 and eq.13 
respectively. 
 

  (12) 

 

 (13) 

 

Where idx  is the position of i
th
 particle in d-

dimension, idv  is the velocity of ith particle in d-

dimension, 21,rr  are random numbers, 1 2,c c  

are acceleration coefficients, w is the inertia 

factor, idp is the personal best position of i
th

 

particle in d-dimension, gp is the global best 

position of particle.  
 

4. ARTIFICIAL BEE COLONY (ABC) 
 
Artificial Bee Colony Algorithm is one of the 
intelligent algorithms belonging in the class of 
metaheuristic, it was proposed for the first time 
by Dervis Karaboga in 2005. It depicts the 
behavior of natural behavior of real honey bees 
in food foraging [19]. Basically, the ABC has four 
phases which are as follows: the first phase is 
the initialization phase, the second is employee 
bee phase, the third is onlooker bee phase and 
the forth is scout bee phase [20]. The employed 
bees search for neighborhood solution based on 
eq.14 and through the waggle dance in the hive 
they share information with onlooker bees which 
choose the best source based on the     
efficiency of the source (fitness) and on 
probability (potential in having good nectar) as 
presented in eq.15 and eq.16 respectively 
[17],[18]. After a given number of iterations,               
the food sources which are no longer                   
having nectar are replaced by new ones as in 
eq.14. 
 

        (14) 

 

       (15) 

 

                      (16) 

 

Where the parameter ij is chosen in the interval 

 1,1 , ijx is the i
th
 reference food source, kjx is 

a random selected food source, ijv is new 

solution,  fit x is the fitness function and 

 if x is the function of i
th
 food source, ip is the 

probability of the ith source. 
 
5. METHODS 
 
Based on the drawbacks and handicap of PSO, 
this paper proposes a new hybrid called “multi-
mean scout particle swarm optimization 
(MMSCPSO)” which combines both PSO and 
ABC algorithms to perform the reactive power 
optimization in large-scale power systems. In the 
standard PSO all particles generated remains in 
the search space during the whole search 
process and these ones do not get replaced 
even though they do not improve their objective 
functions (fitness) after many iterations. The 
MMSCPSO introduces an alleviation to this 
scenario whereby population is generated by 
both tent and logistic maps as shown in eq.17 
and eq.18 respectively, as the initial population 
plays a significant role in metaheuristic algorithm 
for achieving the global solution. These two 
chaotic maps allow the particle to be well 
dispatched within the search space to facilitate 
the global search. Introduction of the scout 
phase allows the replacement of particles which 
are not able to improve their fitness after several 
iterations (idle particles). This mechanism allows 
the algorithm to achieve the balance of both 
exploration and exploitation abilities so that the 
optimal solution can be easily found. The flow 
chart of the MMSCPSO is shown in the Fig.1. 
 

     (17) 

 

   (18) 

 

Where 0x is the initial vector, nx is the vector at 

n
th
 iteration. The eq.19 shows the improvement 
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of velocity equation while the particles are 
performing the search for global solution. 
Velocity equation becomes:  
 

 (19) 

 

Where ,
k
mean dp is the mean value of personal best 

of the subswarm at k
th
 iteration, _

k
g subswarmp is the 

global best of the subswarm, _
k
g swarmp is the 

global best of the whole swarm. 
 
In this scenario, particles are subdivided into 
subswarm so that to allow them to learn from the 
mean value of personal best of the subswarm 
and the global best of the whole swarm in order 
to improve the communication among particles 

during the search. 1r , 2r and 3r are obtained by 

using both tent and logistic maps. Then 

acceleration factors 1c , 2c  and 3c are obtained 

as shown in eq.20 and eq.21 respectively 

whereby 2 3c c . 

      (20) 

 
 (21) 

 

Where finalc is the maximum value of 

acceleration factor, initialc is the minimum value 

of acceleration factor, maxiter is the maximum 

number of iteration and iter is the current 
iteration. 
 
The inertia weight factor plays an important role 
in controlling the previous velocity of particles. It 
is calculated by using eq.22: 
 

 (22) 

 

Where w is the inertia weight factor, minw is the 

minimum inertia weight, maxw is the maximum 

inertia weight. 

6. RESULTS AND DISCUSSION 
 
This section presents the results carried out on 
IEEE 118-bus system by using the proposed 
MMSCPSO algorithm whereby the main purpose 
is to determine good settings of control variables 

which are voltages at all generator buses ( ), 

tap position of transformers ( ) and shunt 

capacitor ( ) connected in the system so that 

to minimize the total active power of the network. 
This network comprises 1 slack bus (reference 
bus), 53 voltage-controlled buses or PV buses 
among which there are 18 generators and 35 
synchronous condensers, 64 load buses or PQ 
buses, 177 transmission lines, 9 transformers 
and 14 shunt capacitors/reactors. The system 
loads total active power and total reactive power 
are 4242 MW and 1438 Mvars respectively. The 
total active power and reactive power losses of 
the system obtained by applying Newton 
Raphson are 133.694 MW and 796.372 Mvars. 
The system has 77 dimensions/variables namely 
voltage generator buses, transformer tap 
position and shunt capacitors/reactors. The step 
size for transformer tap position is 0.01 p.u 
whereas the step size for switchable shunt 
capacitor is 5 Mvar. 
 
The Table 1. shows the results obtained after 
implementing both PSO and MMSCPSO 
algorithms for different control variables located 
at different buses as indicated in the table. 
 
The voltage profile has improved as shown in 
Fig. 2 which compares the base case (Newton 
Raphson), PSO and MMSCPSO algorithms. 
 

The Fig. 3 illustrates the loss minimization 
comparing both PSO and MMSCPSO 
algorithms. 
 
After conducting 20 runs both PSO and 
MMSCPSO algorithms have been compared to 
show the outperformance of MMSCPSO in terms 
of both accuracy and convergence as shown in 
Table 2. The worst loss shows the maximum 
value of active power loss among those 20 runs, 
the best loss shows the minimum value of active 
power loss and the mean value represents the 
active power loss obtained by using Newton 
Raphson algorithm computation. The table also 
captures other values of losses obtained in the 
researches mentioned in the literature review to 
prove the efficacy of the method proposed for 
minimizing the active power in the power 
system. 
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Fig. 1. The flow chart for the MMSCPSO 
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Table1. Control variables and their respective maximum and minimum values before and after 
optimization case of IEEE 118-bus system 

 
S/N Control 

Variables 
Voltage in 
p.u before 
optimization 

Voltage in p.u 
after 
optimization by 
PSO 

Voltage in p.u 
after optimization 
by MMSCPSO 

Minimu
m 

Maximu
m 

1 Vg1 0.9550 1.0405 1.0593 0.95 p.u 1.1 p.u 
2 Vg4 0.9980 1.0645 1.0847 0.95 p.u 1.1 p.u 
3 Vg6 0.9900 1.0497 1.0788 0.95 p.u 1.1 p.u 
4 Vg8 1.0150 1.0604 1.0599 0.95 p.u 1.1 p.u 
5 Vg10 1.0500 1.1000 1.0697 0.95 p.u 1.1 p.u 
6 Vg12 0.9900 1.0480 1.0723 0.95 p.u 1.1 p.u 
7 Vg15 0.9700 1.0450 1.0678 0.95 p.u 1.1 p.u 
8 Vg18 0.9730 1.0369 1.0719 0.95 p.u 1.1 p.u 
9 Vg19 0.9630 1.0372 1.0675 0.95 p.u 1.1 p.u 
10 Vg24 0.9920 1.0565 1.0714 0.95 p.u 1.1 p.u 
11 Vg25 1.0500 1.1000 1.0975 0.95 p.u 1.1 p.u 
12 Vg26 1.0150 1.1000 1.1000 0.95 p.u 1.1 p.u 
13 Vg27 0.9680 1.0588 1.0629 0.95 p.u 1.1 p.u 
14 Vg31 0.9670 1.0488 1.0579 0.95 p.u 1.1 p.u 
15 Vg32 0.9640 1.0479 1.0600 0.95 p.u 1.1 p.u 
16 Vg34 0.9860 1.0574 1.0784 0.95 p.u 1.1 p.u 
17 Vg36 0.9800 1.0585 1.0742 0.95 p.u 1.1 p.u 
18 Vg40 0.9700 1.0339 1.0493 0.95 p.u 1.1 p.u 
19 Vg42 0.9850 1.0355 1.0555 0.95 p.u 1.1 p.u 
20 Vg46 1.0050 1.0663 1.0735 0.95 p.u 1.1 p.u 
21 Vg49 1.0250 1.0699 1.0901 0.95 p.u 1.1 p.u 
22 Vg54 0.9550 1.0346 1.0658 0.95 p.u 1.1 p.u 
23 Vg55 0.9520 1.0326 1.0634 0.95 p.u 1.1 p.u 
24 Vg56 0.9540 1.0349 1.0649 0.95 p.u 1.1 p.u 
25 Vg59 0.9850 1.0499 1.0857 0.95 p.u 1.1 p.u 
26 Vg61 0.9950 1.0598 1.0882 0.95 p.u 1.1 p.u 
27 Vg62 0.9980 1.0457 1.0827 0.95 p.u 1.1 p.u 
28 Vg65 1.0050 1.0743 1.0777 0.95 p.u 1.1 p.u 
29 Vg66 1.0500 1.0700 1.1000 0.95 p.u 1.1 p.u 
30 Vg69 1.0350 1.0874 1.1000 0.95 p.u 1.1 p.u 
31 Vg70 0.9840 1.0480 1.0696 0.95 p.u 1.1 p.u 
32 Vg72 0.9800 1.0334 1.0587 0.95 p.u 1.1 p.u 
33 Vg73 0.9910 1.0382 1.0629 0.95 p.u 1.1 p.u 
34 Vg74 0.9580 1.0268 1.0563 0.95 p.u 1.1 p.u 
35 Vg76 0.9430 1.0405 1.0640 0.95 p.u 1.1 p.u 
36 Vg77 1.0060 1.0739 1.0820 0.95 p.u 1.1 p.u 
37 Vg80 1.0400 1.0861 1.0945 0.95 p.u 1.1 p.u 
38 Vg85 0.9850 1.0977 1.0990 0.95 p.u 1.1 p.u 
39 Vg87 1.0150 1.0266 1.0755 0.95 p.u 1.1 p.u 
40 Vg89 1.0050 1.1000 1.0997 0.95 p.u 1.1 p.u 
41 Vg90 0.9850 1.0722 1.0802 0.95 p.u 1.1 p.u 
42 Vg91 0.9800 1.0730 1.0891 0.95 p.u 1.1 p.u 
43 Vg92 0.9930 1.0892 1.0993 0.95 p.u 1.1 p.u 
44 Vg99 1.0100 1.0639 1.0861 0.95 p.u 1.1 p.u 
45 Vg100 1.0170 1.0756 1.0926 0.95 p.u 1.1 p.u 
46 Vg103 1.0010 1.0611 1.0795 0.95 p.u 1.1 p.u 
47 Vg104 0.9710 1.0559 1.0673 0.95 p.u 1.1 p.u 
48 Vg105 0.9650 1.0553 1.0660 0.95 p.u 1.1 p.u 
49 Vg107 0.9520 1.0414 1.0583 0.95 p.u 1.1 p.u 
50 Vg110 0.9730 1.0424 1.0609 0.95 p.u 1.1 p.u 
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51 Vg111 0.9800 1.0397 1.0665 0.95 p.u 1.1 p.u 
52 Vg112 0.9750 1.0272 1.0471 0.95 p.u 1.1 p.u 
53 Vg113 0.9930 1.0531 1.0789 0.95 p.u 1.1 p.u 
54 Vg116 1.0050 1.0674 1.0721 0.95 p.u 1.1 p.u 
55 T8-5 0.9850 1.1000 0.9800 0.9 1.1 
56 T26-25 0.9600 1.0500 1.0700 0.9 1.1 
57 T30-17 0.9600 1.1000 1.0500 0.9 1.1 
58 T38-37 0.9350 0.9000 1.0200 0.9 1.1 
59 T63-59 0.9600 0.9000 1.0700 0.9 1.1 
60 T64-61 0.9850 1.1000 1.0600 0.9 1.1 
61 T65-66 0.9350 0.9000 1.0300 0.9 1.1 
62 T68-69 0.9350 0.9000 1.0300 0.9 1.1 
63 T81-80 0.9350 0.9000 1.0600 0.9 1.1 
64 Qc5 -40 25 25 0Mvar 25Mvars 
65 Qc34 14 25 25 0Mvar 25Mvars 
66 Qc37 -25 15 25 0Mvar 25Mvars 
67 Qc44 10 25 15 0Mvar 25Mvars 
68 Qc45 10 0 0 0Mvar 25Mvars 
69 Qc46 10 0 5 0Mvar 25Mvars 
70 Qc48 15 25 5 0Mvar 25Mvars 
71 Qc74 12 25 25 0Mvar 25Mvars 
72 Qc79 20 0 0 0Mvar 25Mvars 
73 Qc82 20 10 25 0Mvar 25Mvars 
74 Qc83 10 20 25 0Mvar 25Mvars 
75 Qc105 20 10 0 0Mvar 25Mvars 
76 Qc107 6 0 10 0Mvar 25Mvars 
77 Qc110 6 25 10 0Mvar 25Mvars 
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Fig. 2. Voltage improvement at all buses before and after optimization for IEEE 118-bus 
system 
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Fig. 3. Active power loss minimization in IEEE 118-bus system 
 

Table 2. Comparison of algorithms performance 
 

ALGORITHM ACTIVE POWER LOSS (MW) Standard Deviation (SD) 
Worst Loss Best loss Mean loss 

Base Case (NR) - - 133.694 - 
PSO 172.9232 112.4116 113.0280 5.322x10-3 
 MMSCPSO 118.8206 108.5942 108.7185 2.234x10

-4
 

SOA 116.34725 114.95013 115.67443 3.5908x10-3 
GSA - 127.7603 - - 
GWO - 120.65 - - 
MFO - 116.4254 - - 

 

7. CONCLUSION 
 
This paper has dealt with reactive power 
optimization where the main objective function 
was the minimization of reactive power within 
large-scale electric power systems. Various 
constraints were also considered, the equality 
constraints were satisfied by Newton Raphson 
load flow computation whereas inequality 
constraints were transformed into equality 
constraints and were being added to the main 
objective function in form of penalty function so 
as to penalize those violating their limits. The 
objectives of the research were achieved 
because both PSO and MMSCPSO algorithms 
were successfully developed, implemented in 
MATLAB 2015(a) and were applied on IEEE 
118-bus system to ensure the optimization of 
reactive power by not only fine-tuning the control 
variables (voltage at generator bus, transformer 

tap position and shunt capacitor), reducing the 
entire active power losses of the system but also 
improving the voltage profile of all buses. For the 
case of IEEE 118-bus system, using the PSO 
algorithm the active power losses have reduced 
from 133.694MW up to 112.4116MW which 
means 15.457% of loss reduction whereas using 
MMSCPSO the active power losses have 
reduced up to 108.5942MW which means 
18.681% of loss reduction. As the results have 
been shown the MMSCPSO algorithm 
outperformed the standard PSO algorithm, and 
this was due to two main modifications made. 
Initialization of initial population by using chaotic 
map (logistic map and tent map) have had a 
great impact in letting particles being well spread 
all over the search space compared to uniform 
random distribution as to increase not only the 
diversity but also the chance of find good optimal 
solution. The insertion of scout phase has also 
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brought big contribution because it has alleviated 
the handicap of PSO by sustaining the 
resurgence of idle particles (particles unable to 
improve their personal best position) and this 
has contributed in balancing the exploration and 
exploitation abilities of the algorithm. The 
method proposed illustrated also good 
performance in terms of active power 
minimization as it obtained the best value of 
losses comparing with other algorithms cited in 
literature review.  
 
For future work, the MMSCPSO will be applied 
to other power system optimization problems 
such as optimal reactive power dispatch (ORPD) 
problem considering FACTS, ORPD problem 
considering the impact of renewable energy 
sources, etc. In addition, other chaotic maps 
including Gauss/mouse map, Chebychev map, 
Liebovitch map, sine map and sinusoidal map 
may be employed to examine their impact on the 
performance of the MMSCPSO. 
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