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Abstract

The purpose of this article is to establish the equivalence between a K-functional and a modulus

of smoothness generated by a Dunkl type operator on the real line.
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1 Introduction

Given a positive real number r and a positive integer m, the classical modulus of smoothness is
defined for a function f ∈ L2(R) by

ωm(f, r) = sup
0<h≤r

‖∆m
h f‖2,
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where
∆m
h f =

(
τh − I

)m
f, (1.1)

I being the unit operator and τh stands for the usual translation operator given by τhf(x) =
f(x+ h). While the classical K-functional, introduced in [1], is defined by

Km(f, r) = inf
{
‖f − g‖2 + r

∥∥Dmg
∥∥

2
: g ∈ Wm

2

}
,

where D = d/dx and

Wm
2 =

{
f ∈ L2(R) : Djf ∈ L2(R), j = 1, 2, ...,m

}
.

An outstanding result of the theory of approximation of functions on R, which establishes the
equivalence between modulus of smoothness and K-functionals, can be formulated as follows:

Theorem 1.1. (see [2]) There are two positive constants c1 and c2 such that for all f ∈ L2(R) and
r > 0:

c1 ωm(f, r) ≤ Km(f, rm) ≤ c2 ωm(f, r).

Considerable attention has been devoted to discovering generalizations to new contexts for
Theorem 1.1, see for instance [3]-[7]. The intention of this paper is to prove an analogue of
Theorem 1.1 when in (1.1) the usual translation operators τh are substituted by certain generalized
translation operators on R tied to the first-order singular differential-difference operator

Λf(x) = f ′(x) +

(
γ +

1

2

)
f(x)− f(−x)

x
+ q(x)f(x),

where γ > −1/2 and q is a C∞ real-valued odd function on R. For q = 0, we retrieve the differential-
difference operator

Dγf(x) = f ′(x) +

(
γ +

1

2

)
f(x)− f(−x)

x
, (1.2)

which is referred to as the Dunkl operator with parameter γ + 1/2 associated with the reflection
group Z2 on R. Such operators have been introduced by Dunkl [8]-[10] in connection with a
generalization of the classical theory of spherical harmonics. Besides its mathematical interest,
the Dunkl operator Dγ has quantum-mechanical applications; it is naturally involved in the study
of one-dimensional harmonic oscillators governed by Wigner’s commutation rules [11]-[13].

In [14]-[15] the second author has initiated a completely new harmonic analysis related to the
differential-difference operator Λ in which several analytic structures on R were generalized. The
tools actually required for the discussion in the present paper, are essentially the Fourier transform
and the translation operators linked to Λ. It is noted that the results stated in [4] may be recovered
from those obtained in the present paper by simply taking q = 0.

2 Preliminaries

Throughout this section, we recapitulate some facts about harmonic analysis related to the differential-
difference operator Λ. We cite here, as briefly as possible, only those properties really required for
the discussion. For further details, we refer to [14]-[15]. From now on assume γ > −1/2.

The one-dimensional Dunkl kernel is defined by

eγ(z) = jγ(iz) +
z

2(γ + 1)
jγ+1(iz) (z ∈ C),
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jγ being the normalized spherical Bessel function of index γ given by

jγ(z) = Γ(γ + 1)

∞∑
n=0

(−1)n (z/2)2n

n! Γ(n+ γ + 1)
(z ∈ C).

The following properties collected from [3]-[4], [14] will play a key role in the sequel.

Lemma 2.1. (i) For each λ ∈ C, the function eγ(λ·) is the unique solution of the differential-
difference equation

Dγu = λu, u(0) = 1. (2.1)

(ii) For all z ∈ C and n = 0, 1, ..., ∣∣∣∣ dndzn eγ(z)

∣∣∣∣ ≤ e|Rez|. (2.2)

(iii) There is cγ > 0 such that |1− eγ(ix)| ≥ cγ for all x ∈ R with |x| ≥ 1.

(iv) For all x ∈ R− {0}, eγ(ix) 6= 1.

(v) For all x ∈ R,
|1− eγ(ix)| ≤ |x|.

Notation 2.1. Put

Q(x) = exp

(
−
∫ x

0

q(t)dt

)
, x ∈ R.

We denote by

• S(R) the space of C∞ functions f on R, which are rapidly decreasing together with their
derivatives, i.e., such that for all m,n = 0, 1, ...,

pm,n(f) = sup
x∈R

(1 + |x|)m
∣∣∣∣ dndxn f(x)

∣∣∣∣ <∞.
The topology of S(R) is defined by the semi-norms pm,n, m,n = 0, 1, ... .

• SQ(R) the space of C∞ functions f on R such that for all m,n = 0, 1, ...,

Pm,n(f) = pm,n(Qf) <∞.

The topology of SQ(R) is defined by the semi-norms Pm,n, m,n = 0, 1, ... .

• S1/Q(R) the space of C∞ functions f on R such that for all m,n = 0, 1, ...,

Nm,n(f) = pm,n(f/Q) <∞.

The topology of S1/Q(R) is defined by the semi-norms Nm,n, m,n = 0, 1, ... .

• P(R) the space of C∞ functions f on R which are slowly increasing together with their
derivatives; that is, for all n = 0, 1, ..., there is m = 0, 1, ... such that

sup
x∈R

(1 + |x|)−m
∣∣∣∣ dndxn f(x)

∣∣∣∣ <∞.
• P1/Q(R) the space of C∞ functions f on R such that f/Q ∈ P(R).

• S ′(R) the space of tempered distributions on R.

• S ′Q(R) the topological dual of SQ(R).

• S ′1/Q(R) the topological dual of S1/Q(R).

• M the map defined by
Mf(x) = Q(x)f(x).
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Remark 2.1. (i) It follows from (2.2) that eγ(iλ·) ∈ P(R) for λ ∈ R.

(ii) M is a topological isomorphism

• from SQ(R) onto S(R);

• from S(R) onto S1/Q(R).

(iii) M is one-to-one from P(R) onto P1/Q(R).

(iv) M2 is a topological isomorphism from SQ(R) onto S1/Q(R).

Lemma 2.2. The Dunkl operator Dγ maps

• C∞(R) into itself;

• P(R) into itself.

Proof. (i) Let f ∈ C∞(R). By writing

Dγf(x) = f ′(x) + (γ +
1

2
)

∫ 1

−1

f ′(tx)dt

and by using the derivation theorem under the integral sign we see that Dγf ∈ C∞(R) and

(Dγf)(k)(x) = f (k+1)(x) + (γ +
1

2
)

∫ 1

−1

f (k+1)(tx) tkdt (2.3)

for all k = 0, 1... .

(ii) Let f ∈ P(R) and n = 0, 1... . By hypothesis there are C > 0 and m = 0, 1... such that∣∣∣f (n+1)(x)
∣∣∣ ≤ C(1 + |x|)m,

for all x ∈ R. So using (2.3) we obtain∣∣∣(Dγf)(n)(x)
∣∣∣ ≤ C(1 + |x|)m + C(2γ + 1)

∫ 1

0

(1 + t|x|)m tndt

≤ C(1 + |x|)m + C(2γ + 1)(1 + |x|)m
∫ 1

0

tndt

= C

(
1 +

2γ + 1

n+ 1

)
(1 + |x|)m

≤ C(2γ + 2)(1 + |x|)m,

for all x ∈ R. This shows that Dγf ∈ P(R).

Lemma 2.3. The Dunkl operator Dγ is a linear bounded operator from S(R) into itself.

Proof. Let f ∈ S(R) and m,n = 0, 1... . By (2.3) we have for |x| ≤ 1,

(1 + |x|)m
∣∣∣(Dγf)(n)(x)

∣∣∣ ≤ 2m
(

1 + (γ +
1

2
)

∫ 1

−1

|t|ndt
)

sup
x∈[−1,1]

∣∣∣f (n+1)(x)
∣∣∣

= 2m
(

1 +
2γ + 1

n+ 1

)
sup

x∈[−1,1]

∣∣∣f (n+1)(x)
∣∣∣

≤ 2m+1(γ + 1)p0,n+1(f).

4



Al Subaie & Mourou; BJMCS, 10(4), 1-14, 2015; Article no.BJMCS.19652

By (1.2) and Leibniz formula we have for x 6= 0,

(Dγf)(n)(x) = f (n+1)(x) + (γ +
1

2
)n!

n∑
k=0

(−1)k

(n− k)!

(
f (n−k)(x)− (−1)n−kf (n−k)(−x)

)
xk+1

.

So for |x| ≥ 1,

(1 + |x|)m
∣∣∣(Dγf)(n)(x)

∣∣∣ ≤ (1 + |x|)m
∣∣∣f (n+1)(x)

∣∣∣
+ (γ +

1

2
)n!

n∑
k=0

(1 + |x|)m
(∣∣∣f (k)(x)

∣∣∣+
∣∣∣f (k)(−x)

∣∣∣)
k!

≤ pm,n+1(f) + (2γ + 1)n!

n∑
k=0

pm,k(f)

k!
.

Therefore

pm,n(Dγf) ≤ 2m+1(γ + 1)p0,n+1(f) + pm,n+1(f) + (2γ + 1)n!

n∑
k=0

pm,k(f)

k!
,

which shows that Dγ is bounded from S(R) into itself.

Corollary 2.1. (i) The differential-difference operator Λ is a linear bounded operator from
S1/Q(R) into itself.

(ii) The dual operator of Λ, defined by

Λ̃f(x) = f ′(x) + (γ +
1

2
)
f(x)− f(−x)

x
− q(x)f(x),

is a linear bounded operator from SQ(R) into itself.

Proof. From [[14], p. 7] we know that Λ and Λ̃ are respectively linked to Dγ via the intertwining
formulas

ΛMf =MDγf, f ∈ C∞(R), (2.4)

DγMf =MΛ̃f, f ∈ C∞(R). (2.5)

Assertion (i) follows from (2.4), Remark 2.1(ii) and Lemma 2.3. Assertion (ii) follows from (2.5),
Remark 2.1(ii) and Lemma 2.3.

Remark 2.2. (i) A combination of (2.4) and (2.5) yields the formula

ΛM2f =M2Λ̃f, f ∈ C∞(R). (2.6)

(ii) By (2.4), Remark 2.1(iii) and Lemma 2.2 we see that Λ maps P1/Q(R) into itself.

(iii) The duality between Λ and Λ̃ is justified by the transposition relationship∫
R

Λf(x)g(x)|x|2γ+1dx = −
∫
R
f(x)Λ̃g(x)|x|2γ+1dx, (2.7)

which is valid for any f ∈ P1/Q(R) and g ∈ SQ(R).
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Notation 2.2. Put

mγ =
1

22γ+2(Γ(γ + 1))2
.

We denote by

• L2
Q(R) be the class of measurable functions f on R for which

‖f‖2,Q =

(∫
R
|f(x)Q(x)|2 |x|2γ+1dx

)1/2

<∞.

• L2
1/Q(R) be the class of measurable functions f on R for which

‖f‖2,1/Q =

(∫
R
|f(x)/Q(x)|2 |x|2γ+1dx

)1/2

<∞.

The generalized Fourier transform of a function f in SQ(R) is defined by

F(f)(λ) =

∫
R
f(x)Q(x) eγ(−iλx)|x|2γ+1dx, λ ∈ R. (2.8)

Remark 2.3. Recall that the one-dimensional Dunkl transform is defined for a function f ∈ S(R)
by

Fγ(f)(λ) =

∫
R
f(x) eγ(−iλx) |x|2γ+1dx, λ ∈ R. (2.9)

By (2.8) and (2.9) observe that
F = Fγ ◦M. (2.10)

Theorem 2.1. The generalized Fourier transform F is a topological isomorphism from SQ(R) onto
S(R). The inverse transform is given by

F−1(g)(x) =
1

Q(x)

∫
R
g(λ) eγ(iλx) dσ(λ),

where
dσ(λ) = mγ |λ|2γ+1 dλ.

Proof. It is well known that the one-dimensional Dunkl transform Fγ is a topological automorphism
of S(R) and its inverse is given by

F−1
γ (g)(x) =

∫
R
g(λ) eγ(iλx) dσ(λ).

The result follows now from (2.10) and Remark 2.1(ii).

Theorem 2.2. (i) For every f ∈ SQ(R) we have the Plancherel formula∫
R
|f(x)|2 (Q(x))2 |x|2γ+1dx =

∫
R
|F(f)(λ)|2 dσ(λ).

(ii) The generalized Fourier transform F extends uniquely to an isometric isomorphism from
L2
Q(R) onto L2(R, σ).

The generalized Fourier transform of a distribution S ∈ S ′Q(R) is defined by

〈F(S), ψ〉 = 〈S,F−1(ψ)〉, ψ ∈ S(R).

6
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Theorem 2.3. The generalized Fourier transform F is one-to-one from S ′Q(R) onto S ′(R).

Notation 2.3. (i) If S ∈ S ′Q(R) define ΛS ∈ S ′Q(R) by

〈ΛS, ψ〉 = −〈S, Λ̃ψ〉, ψ ∈ SQ(R).

(ii) If S ∈ S ′1/Q(R) define Λ̃S ∈ S ′1/Q(R) by

〈Λ̃S, ψ〉 = −〈S,Λψ〉, ψ ∈ S1/Q(R).

(iii) If S ∈ S ′1/Q(R) define Q2S ∈ S ′Q(R) by

〈Q2S, ψ〉 = 〈S,Q2ψ〉, ψ ∈ SQ(R).

(iv) For k = 0, 1, ... and S ∈ S ′(R) let xkS ∈ S ′(R) be defined by

〈xkS, ψ〉 = 〈S, xkψ〉, ψ ∈ S(R).

(v) If f is a measurable function on R, we write Tf for the functional

〈Tf , ψ〉 =

∫
R
f(x)ψ(x)|x|2γ+1dx.

Remark 2.4. From (2.6) we deduce the identity

ΛQ2S = Q2Λ̃S, S ∈ S ′1/Q(R). (2.11)

Lemma 2.4. Let f ∈ L2
Q(R) and g(λ) = mγ F(f)(−λ). Then

(i) Tf ∈ S ′1/Q(R);

(ii) F
(
TQ2f

)
= Tg.

Proof. (i) Let ψ ∈ S1/Q(R) and m a positive integer such that m > γ + 1. By Schwarz inequality
we have

|〈Tf , ψ〉| =
∣∣∣∣∫

R
f(x)ψ(x)|x|2γ+1dx

∣∣∣∣ ≤ ‖f‖2,Q‖ψ‖2,1/Q.
But

‖ψ‖2,1/Q =

(∫
R
|ψ(x)/Q(x)|2|x|2γ+1dx

)1/2

≤ pm,0(ψ/Q)

(∫
R

|x|2γ+1

(1 + |x|)2m
dx

)1/2

≤ pm,0(ψ/Q)

(∫
R

dx

(1 + |x|)2m−2γ−1
dx

)1/2

=
pm,0(ψ/Q)√
m− γ − 1

=
Nm,0(ψ)√
m− γ − 1

,

which shows that Tf is bounded on S1/Q(R).

(ii) Let ψ ∈ S(R). It is easily checked that

F−1(ψ) = F−1(ψ̃ ),

7
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where ψ̃(λ) = ψ(−λ). So using Theorem 2.2 we get

〈F
(
TQ2f

)
, ψ〉 =

∫
R
f(x)F−1(ψ)(x)(Q(x))2|x|2γ+1dx

=

∫
R
f(x)F−1

(
ψ̃
)
(x) (Q(x))2|x|2γ+1dx

= mγ

∫
R
F(f)(λ)ψ(−λ)|λ|2γ+1dλ

= mγ

∫
R
F(f)(−λ)ψ(λ)|λ|2γ+1dλ

= 〈Tg, ψ〉,

which concludes the proof.

Lemma 2.5. Let f ∈ SQ(R) and S ∈ S ′Q(R). Then for k = 1, 2, ... we have

F
(
Λ̃kf

)
(λ) = (iλ)k F(f)(λ), (2.12)

F
(
ΛkS

)
= (−iλ)k F(S). (2.13)

Proof. By (2.1), (2.4), (2.7) and Remark 2.1(i) we have

F
(
Λ̃kf

)
(λ) =

∫
R
Q(x)eγ(−iλx) Λ̃kf(x) |x|2γ+1dx

= (−1)k
∫
R

Λk(Qeγ(−iλ·))(x) f(x) |x|2γ+1dx

= (−1)k
∫
R
Q(x)Dk

γ(eγ(−iλ·))(x) f(x) |x|2γ+1dx

= (iλ)k
∫
R
Q(x)eγ(−iλx)f(x) |x|2γ+1dx

= (iλ)k F(f)(λ).

If ψ ∈ S(R) then

〈F
(
ΛkS

)
, ψ〉 = 〈ΛkS,F−1(ψ)〉 = (−1)k〈S, Λ̃kF−1(ψ)〉.

But by (2.12),

Λ̃kF−1(ψ) = F−1((iλ)kψ
)
.

So

〈F
(
ΛkS

)
, ψ〉 = (−1)k〈S,F−1((iλ)kψ

)
〉

= (−1)k〈F(S), (iλ)kψ〉
= (−1)k〈(iλ)kF(S), ψ〉,

which achieves the proof.

Notation 2.4. In all what follows assume m = 1, 2, ... . Let Wm
2,Q be the Sobolev type space

constructed by the differential-difference operator Λ̃, i.e.,

Wm
2,Q =

{
f ∈ L2

Q(R) : Λ̃jf ∈ L2
Q(R), j = 1, 2, ...,m

}
.

More explicitly, f ∈ Wm
2,Q if and only if for each j = 1, 2, ...,m, there is a function in L2

Q(R)

abusively denoted by Λ̃jf , such that Λ̃jTf = TΛ̃jf .

8
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Proposition 2.1. For f ∈ Wm
2,Q we have

F
(
Λ̃mf

)
(λ) = (iλ)mF(f)(λ). (2.14)

Proof. By the definition of Wm
2,Q we have

Λ̃mTf = TΛ̃mf .

It follows from (2.11), (2.13) and Lemma 2.4 that

F
(
Q2Λ̃mTf

)
= F

(
ΛmQ2Tf

)
= F

(
ΛmTQ2f

)
= (−iλ)m F

(
TQ2f

)
= Tg,

with g(λ) = mγ (−iλ)m F(f)(−λ). Again by Lemma 2.4,

F
(
Q2TΛ̃mf

)
= F

(
TQ2Λ̃mf

)
= Th,

with h(λ) = mγ F
(
Λ̃mf

)
(−λ). Identity (2.14) is now immediate.

Recall that the Dunkl translation operators τxγ , x ∈ R are defined by

τxγ f(y) =
1

2

∫ 1

−1

f
(√

x2 + y2 − 2xyt
)(

1 +
x− y√

x2 + y2 − 2xyt

)
Aγ(t)dt

+
1

2

∫ 1

−1

f
(
−
√
x2 + y2 − 2xyt

)(
1− x− y√

x2 + y2 − 2xyt

)
Aγ(t)dt,

where

Aγ(t) =
Γ(γ + 1)√
π Γ(γ + 1/2)

(1 + t)
(
1− t2

)γ−1/2
.

The generalized translation operators T x, x ∈ R, tied to Λ are defined by

T xf(y) = Q(x)Q(y) τxγ (f/Q)(y).

The generalized dual translation operators are given by

tT xf(y) =
Q(x)

Q(y)
τ−xγ (Qf)(y).

Proposition 2.2. (i) Let f ∈ L2
1/Q(R). Then for all x ∈ R, T xf ∈ L2

1/Q(R) and

‖T xf‖2,1/Q ≤ 2Q(x) ‖f‖2,1/Q.

(ii) Let f ∈ L2
Q(R). Then for all x ∈ R, tT xf ∈ L2

Q(R) and∥∥ tT xf∥∥
2,Q
≤ 2Q(x) ‖f‖2,Q. (2.15)

(iii) For f ∈ L2
Q(R) we have

F
( tT xf) (λ) = Q(x)eγ(−iλx)F(f)(λ). (2.16)

(iv) For f ∈ L2
1/Q(R) and g ∈ L2

Q(R) we have the duality relation∫
R
T xf(y)g(y)|y|2γ+1dy =

∫
R
f(y) tT xg(y)|y|2γ+1dy.

9
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3 Equivalence of K-Functionals and Modulus of Smoothness

Definition 3.1. Let f ∈ L2
Q(R) and r > 0. Then

(i) The generalized modulus of smoothness is defined by

ωm(f, r)2,Q = sup
0<h≤r

‖∆m
h f‖2,Q,

where
∆m
h f =

(
tT h −Q(h)I

)m
f,

I being the unit operator.

(ii) The generalized K-functional is defined by

Km(f, r)2,Q = inf
{
‖f − g‖2,Q + r

∥∥Λ̃mg
∥∥

2,Q
: g ∈ Wm

2,Q

}
.

We can now state the main result of this paper which establishes the equivalence between the
generalized modulus of smoothness and the generalized K-functional.

Theorem 3.1. There are two positive constants c1 = c1(m, γ) and c2 = c2(m, γ) such that for all
f ∈ L2

Q(R) and r > 0:

c1 (Q(r))mKm(f, rm)2,Q ≤ ωm(f, r)2,Q ≤ c2 (M(r))mKm(f, rm)2,Q , (3.1)

where M(r) = sup
0<h≤r

Q(h).

Remark 3.1. If Q is increasing on [0,∞[, then (3.1) may be written as

c1 ωm(f, r)2,Q ≤ (Q(r))mKm(f, rm)2,Q ≤ c2 ωm(f, r)2,Q.

To simplify the proof of Theorem 3.1 we have to demonstrate first some preliminary results.

Lemma 3.1. Let f ∈ L2
Q(R) and h > 0. Then

‖∆m
h f‖2,Q ≤ 3m(Q(h))m‖f‖2,Q (3.2)

and
F(∆m

h f)(λ) = (Q(h))m (eγ(−iλh)− 1)m F(f)(λ). (3.3)

Proof. The result follows readily by using (2.15), (2.16) and an induction on m.

Lemma 3.2. For all f ∈ Wm
2,Q and h > 0 we have

‖∆m
h f‖2,Q ≤ hm(Q(h))m

∥∥Λ̃mf
∥∥

2,Q
. (3.4)

Proof. By (2.14), (3.3), Lemma 2.1(v) and Theorem 2.2 we have

‖∆m
h f‖22,Q =

∫
R
|F(∆m

h f)(λ)|2 dσ(λ)

= (Q(h))2m

∫
R
|1− eγ(−iλh)|2m |F(f)(λ)|2 dσ(λ)

≤ h2m(Q(h))2m

∫
R
|λ|2m |F(f)(λ)|2 dσ(λ)

= h2m(Q(h))2m

∫
R

∣∣F(Λ̃mf)(λ)
∣∣2 dσ(λ)

= h2m(Q(h))2m
∥∥Λ̃mf

∥∥2

2,Q
,

which is the desired result.
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Notation 3.1. For f ∈ L2
Q(R) and ν > 0 define the function

Pν(f)(x) =
1

Q(x)

∫ ν

−ν
F(f)(λ) eγ(iλx)dσ(λ).

Proposition 3.1. Let f ∈ L2
Q(R) and ν > 0. Then

(i) Pν(f) ∈ C∞(R) and

Λ̃kPν(f)(x) =
1

Q(x)

∫ ν

−ν
F(f)(λ) (iλ)k eγ(iλx)dσ(λ) (3.5)

for all k = 0, 1, ... .

(ii) For all k = 0, 1, ..., Λ̃kPν(f) ∈ L2
Q(R) and

F
(
Λ̃kPν(f)

)
(λ) = (iλ)k F(f)(λ)χν(λ), (3.6)

where

χν(λ) =

{
1 if |λ| ≤ ν,
0 if |λ| > ν.

Proof. The fact that Pν(f)∈ C∞(R) follows from the derivation theorem under the integral sign.
Identity (3.5) follows easily from (2.1) and (2.5). Assertion (ii) is a consequence of (3.5) and
Theorem 2.2.

Lemma 3.3. There is a positive constant c = c(γ) such that

‖f − Pν(f)‖2,Q ≤ c−m (Q(1/ν))−m ‖∆m
1/νf‖2,Q

for any f ∈ L2
Q(R) and ν > 0.

Proof. By (3.6) and Theorem 2.2 we have

‖f − Pν(f)‖22,Q =

∫
R
|1− χν(λ)|2 |F(f)(λ)|2 dσ(λ)

=

∫
|λ|≥ν

|F(f)(λ)|2 dσ(λ).

By Lemma 2.1(iii) there is a constant c > 0 which depends only on γ such that

|1− eγ(−iλ/ν)| ≥ c

for all λ ∈ R with |λ| ≥ ν. From this, (3.3) and Theorem 2.2 we get

‖f − Pν(f)‖22,Q ≤ c−2m

∫
|λ|≥ν

|1− eγ(−iλ/ν)|2m |F(f)(λ)|2 dσ(λ)

= c−2m (Q(1/ν))−2m

∫
|λ|≥ν

|F(∆m
1/νf)(λ)|2 dσ(λ)

≤ c−2m (Q(1/ν))−2m

∫
R
|F(∆m

1/νf)(λ)|2 dσ(λ)

= c−2m (Q(1/ν))−2m‖∆m
1/νf‖22,Q,

which ends the proof.
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Corollary 3.1. For all f ∈ L2
Q(R) and ν > 0 we have

‖f − Pν(f)‖2,Q ≤ c−m (Q(1/ν))−m ωm(f, 1/ν)2,Q,

where c is as in Lemma 3.3.

Lemma 3.4. There is a positive constant C = C(γ) such that∥∥Λ̃mPν(f)
∥∥

2,Q
≤ (Cν)m(Q(1/ν))−m ‖∆m

1/νf‖2,Q

for every f ∈ L2
Q(R) and ν > 0.

Proof. By (3.6) and Theorem 2.2 we have

∥∥Λ̃mPν(f)
∥∥2

2,Q
=

∫ ν

−ν
λ2m |F(f)(λ)|2 dσ(λ)

=

∫ ν

−ν

λ2m

|1− eγ(−iλ/ν)|2m |1− eγ(−iλ/ν)|2m |F(f)(λ)|2 dσ(λ).

Put

C = sup
|t|≤1

|t|
|1− eγ(−it)| .

By L’Hôpital’s rule,

lim
t→0

|t|
|1− eγ(−it)| = 2 (γ + 1).

This when combined with Lemma 2.1(iv) entails 0 < C <∞. Moreover,

sup
|λ|≤ν

λ2m

|1− eγ(−iλ/ν)|2m = ν2m sup
|λ|≤ν

(λ/ν)2m

|1− eγ(−iλ/ν)|2m

= ν2m sup
|t|≤1

t2m

|1− eγ(−it)|2m

= (C ν)2m.

Therefore ∥∥Λ̃mPν(f)
∥∥2

2,Q
≤ (C ν)2m

∫ ν

−ν
|1− eγ(−iλ/ν)|2m |F(f)(λ)|2 dσ(λ)

= (C ν)2m(Q(1/ν))−2m

∫ ν

−ν
|F(∆m

1/νf)(λ)|2 dσ(λ)

≤ (C ν)2m(Q(1/ν))−2m

∫
R
|F(∆m

1/νf)(λ)|2 dσ(λ)

= (C ν)2m(Q(1/ν))−2m ‖∆m
1/υf‖22,Q,

by virtue of (3.3) and Theorem 2.2.

Corollary 3.2. For any f ∈ L2
Q(R) and ν > 0 we have∥∥Λ̃mPν(f)
∥∥

2,Q
≤ (Cν)m(Q(1/ν))−m ωm(f, 1/ν)2,Q,

where C is as in Lemma 3.4.
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Proof of Theorem 3.1. (i) Let h ∈ ]0, r] and g ∈ Wm
2,Q. By (3.2) and (3.4) we have

‖∆m
h f‖2,Q ≤ ‖∆m

h (f − g)‖2,Q + ‖∆m
h g‖2,Q

≤ 3m(Q(h))m‖f − g‖2,Q + hm(Q(h))m‖Λ̃mg‖2,Q
≤ 3m(M(r))m‖f − g‖2,Q + rm(M(r))m‖Λ̃mg‖2,Q

≤ 3m(M(r))m
(
‖f − g‖2,Q + rm‖Λ̃mg‖2,Q

)
.

Calculating the supremum with respect to h ∈ ]0, r] and the infimum with respect to all possible
functions g ∈ Wm

2,Q we obtain

ωm(f, r)2,Q ≤ c2 (M(r))mKm (f, rm)2,Q ,

with c2 = 3m.
(ii) Let ν be a positive real number. As Pν(f) ∈ Wm

2,Q it follows from the definition of the
K-functional and Corollaries 3.1 and 3.2 that

Km (f, rm)2,Q ≤ ‖f − Pν(f)‖2,Q + rm‖Λ̃mPν(f)‖2,Q
≤ c−m (Q(1/ν))−m ωm(f, 1/ν)2,Q + Cmrmνm(Q(1/ν))−mωm(f, 1/ν)2,Q

= (Q(1/ν))−m
(
c−m + Cm(νr)m

)
ωm(f, 1/ν)2,Q.

Since ν is arbitrary, by choosing ν = 1/r we get

c1 (Q(r))mKm(f, rm)2,Q ≤ ωm(f, r)2,Q,

with c1 = (c−m+Cm)−1. This completes the proof. �

4 Conclusion

We consider a singular differential-difference operator Λ on the real line which includes, as particular
case, the Dunkl operator associated with the reflection group Z2 on R. By using an harmonic analysis
corresponding to Λ, we construct generalized K-functionals and modulus of smoothness, which turn
out to be equivalent.
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