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Abstract 
 

Let  be an involution over some ring. In this note  skew polynomial rings over commutative rings are 
studied along with  rigidity and  Armendariz property. Some interesting applications are 
demonstrated for uniserial rings. 

 

Keywords:  symmetry;  rigidity;  skew Armendariz property;   skew polynomial rings; 
uniserial rings. 

 
Mathematics subject classification: 16W10, 16U80. 
 

1 Introduction 
 
In the associative ring theory, symmetric rings were generalized and extended in various directions by 
several authors. In these generalizations and extensions rigidity and Armendariz property of rings play 
crucial roles. The aim of this note is to demonstrate some applications of  rigidity and   Armendariz 
property for    symmetric rings and  skew polynomial rings, where  is an involution on the ring. 
 

Lambek in [1] defined that a ring R  with 1  is symmetric if for any elements ,,, Rcba 

00  acbabc . For rings with  ,1   if  00  acbabc   (or ,0bac ) then it also implies that 

all other remaining permutational products of these three elements are zero. Cohn in [2] defined that a ring  

R  is reversible if for  ,, Rba  .00  baab Extending these definitions to rings with involutions,   

it is defined that a ring R  with involution   is  symmetric if for any elements ,,, Rcba 
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,00  acbabc  and that R  is   reversible if for ,, Rba  00  baab (see [3,4]). As 

in the case of   reversibility [4], there is no ambiguity between left and right    reversible rings, same 
is the case for left and right  symmetric rings. Quick calculations reveals that if for any elements

,,, Rcba  ,00  acbabc  then .0acb Every   symmetric ring with 1 is symmetric, but 

the converse in general need not be true. For example [3; Example 1], for any prime ,p  consider the ring 

),,(  pp ZZ with component-wise addition and multiplication. Clearly pp ZZ   is symmetric and 

reversible but with the exchange involution ,  it is neither   symmetric nor   reversible. 

 
Note that these studies are not applicable for all classes of rings, as there are several classes of rings which 

do not adhere to an involution. For instance, the class of non-commutative generalized Klein- 4 rings n2
K   

as studied in [5] and the class of the upper triangular matrix rings of the type 








2

22

0 Z

ZZ k

as discussed in 

([6]; Example 1.5). In the case of commutative rings, every anti-automorphism is an automorphism, and an 
automorphism of degree 2 is an involution, so that identity map for commutative rings is always an 
involution. 
 

In the study of rings with involutions rigidity plays important roles: A ring R  with the involution  is called 

 rigid, if for any ,Ra ,0aa  then .0a Clearly, all domains, commutative or non-commutative, 

are    rigid, while pp ZZ   with the exchange involution is not   rigid. 

 
In this paper our aim is to investigate properties of   skew polynomial rings along with   Armendariz 
property. These terms are defined in Section 2. Note that our definition of   skew polynomial rings forced 

the ring R  to be commutative. So in Section 2 we have assumed that R is commutative. In Section 3 we 
picked a classic case of a factor polynomial ring of a   skew polynomial ring, say in the form,  

,/];[ nxxR   which in (upper triangular) matrix form is termed as Barnett matrix ring [7]. We showed 

that  ];[ xR   and its factor ring  
nxxR /];[   are very opposite in nature (see Theorem 3.3). The uniserial 

property for an automorphism on R  is also recalled. 
 

Important note on notation: Note that if R  is a ring that admits an involution  , then in the following the 
induced involution on a polynomial ring or a matrix ring will also be denoted by . Thus the induced 

involution on the polynomial 
i

i
i

xa
0



)( Rai  in the polynomial ring ][xR  is defined by 
i

i
i

xa




0



).( Rai   Indeed, this is an involution on ].[xR  Same are the cases for matrix rings and factor rings.  

 
For definitions and terms from general ring theory [8] is a standard source. For related extensions and 
properties of symmetric and reversible rings we refer to [9-11] and the references therein. For terms related 
to  reversible and   symmetric rings [3,4] may be referred. 
 
The following results are proved in [3] 
 

Lemma 1.1.  For a ring R with involution  the following hold: 
 

)(i
   

If R  is reduced and  symmetric, then R  is   reversible. 
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)(ii
  
If R  is  -reversible, then R  is symmetric if and only if R is   -symmetric. 

 (iii) R is -rigid and  symmetric if and only if R is reduced and  -reversible. 

)(iv
 R is -rigid and semi-commutative if and only if R is semi prime and  -symmetric. 

)(v
 
If R  is a  -rigid ring, then the following are equivalent: 

 

)1( R is -symmetric. 

)2( Ris symmetric. 

)3( Ris  -reversible. 

)4( R is reversible. 

 

2  skew Polynomial Rings 
 
Throughout this section it is assumed that R is a commutative ring with the involution  and with 1 such 

that .11 
Let x  be an indeterminate which associate but do not commute with the elements of .R We 

define a   skew polynomial ring as follows: 
 

Definition 2.1. A  skew polynomial ring ];[ xR  of R  is the ring consisting of all left polynomials of the 

form 
i

i
i

xa
0



)( Rai  with the multiplication defined by using the commutation formula xaxa   for 

all Ra  . 
 

Remark: If we let R  to be any ring, and follow the above commutation formula, we observe that for any 

elements  ,, Rba 
 

 

).()()()()()()()( baxaxbaxbxabaxbxabxababx  

 
 

This implies that R must be commutative. 
 

The following example shows that there exists a   skew polynomial ring ];[ xR  over a commutative 

ring R which is neither commutative nor symmetric. 
 

Example 2.2. Consider the ring ),,,( 22 ZZ where + and   are defined component-wise. This ring 

always adhere to the exchange involution   defined via, ),,(),( abba  .),( 22 ZZ  ba  Then  

];[22  xZZ  is a  skew polynomial ring with the commutation: 

 

.),(,),(),(),( 22 ZZ   baxabxbabax  

 

Now we see that in  ],;[22  xZZ
 

 

),0,0()]0,1()1,0)][(1,0()1,1()0,1[( 2  xxx  
while 
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.0)1,0()1,1()1.0()]1,0()1,1()0,1)][(0,1()1,0[( 232  xxxxx  

 

So ];[22  xZZ  is not commutative. Clearly, it is not reversible and because it has ,1  it cannot be 

symmetric. Moreover, the  skew polynomial ring ];[22  xZZ  is neither  symmetric nor   

reversible ([4]; Proposition 5). 
 

Note also one interesting fact that 22 ZZ   is reduced but ];[22  xZZ  is not reduced, because  

.0])1,0[( 2 x   Further, every   rigid ring is reduced [8], this shows that  ];[22  xZZ  is not   

rigid as well. Hence we have a conclusion that if R  is reduced then the skew polynomial ring ];[ xR  may 

not be reduced, or Armendariz. 
 
In the following we show a deep link between     skew symmetric rings and     symmetric rings. 
 

Theorem 2.3. If ];[ xR is symmetric then R is   symmetric. The converse holds if R is reduced.  

 

Proof: Assume that  ,,, Rcba    such that  .0abc Then  .0abcx  If  ];[ xR   is symmetric then,  

 

.000)(

0)()()(0)(








acbcabcba

xcbaxcbacxabbcxaxabc
 

 

Hence R  is   symmetric. 
 

Conversely, let R be   symmetric and reduced. Consider the following triple product of polynomials in  

],;[ xR  and balance it to zero.  

 

.0
000































k
k

k

j
j

j

i
i

i
xcxbxa



                                                                                          

 (1) 

 

We need to prove that ];[ xR  is symmetric. This means we will prove that 

 

.0
000































j
j

j

k
k

k

i
i

i
xbxcxa



                                                                                            (2) 

 
By (1) the constant term is  
 

.00 000000  bcacba                                                                                                             (3) 

 
The coefficients of x yield: 
 

.0001010100   cbacbacba                                                                                                      (4) 

 

.00 00100100100   cbacbacbacb
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Because  R  is   symmetric, so the symmetry and reducibility of  R  yields  
 

.00 001001   bcacba
 

 
Then, 
 

.00

0000

100100

0100100100100010100



 

bcabac

cbacbacbacbaccbacba

 
 
Again 
  

.000 010100010100   bcacbacbacba
 

 
Hence  
 

.0001010100   bcabcabca                                                                                                        (5) 

 

Let us collect the coefficients of 
2x at one place: 

 

.0101011110002020200   cbacbacbacbacbacba                                                     (6) 

 
We need to get: 
 

.0101011110002020200   bcabcabcabcabcabca
                               

                     (7) 

 

This can be obtained by multiplying (6) by ,110 cba ,011 cba  and ,101 cba consecutively, and apply the rules 

of  symmetric rings and reducibility, we get  
 

,0101011110   bcabcabca
 

 
which leads to (7). The same processes will be continued until all terms are exhausted.  
 

A ring R is called Armendariz, if for any pair of polynomials, 










j
j

j

i
i

i

xbxaxgxf
00

,))(),((


in 

],[xR ,, Rba ji  where x is some commuting indeterminate, if ,0fg then each product  

.0jiba  

 

For a non-commutative indeterminate,  skew Armendariz rings were introduced in [9]. Following this 
concept, we introduce here  skew-Armendariz property for  skew symmetric rings. We need a 
modification in the original definition of the Armendariz property. 
 

Definition 2.4. A ring R is called  skew-Armendariz if for any pair of polynomials,  












j
j

j

i
i

i

xbxa
00

,


 in ],;[ xR ,, Rba ji  where x  is some indeterminate satisfying the commutation 



 
 
 

Fakieh and Nauman; BJMCS, 10(4): 1-12, 2015; Article no.BJMCS.18665 
 
 
 

6 
 
 

formula, ,xaxa  Ra   , whenever 

 

,0
00






















j
j

j

i
i

i
xbxa



 
 

then       ,,3,2,1,0 j
 

 

.
,5,3,1 if 0

,4,2,0 if 0












 



iba

iba

ji

ji
 

 
The following are outcomes of the Theorem 2.3 (see also [9,11]). 
 

Lemma 2.5: If R  is  rigid, then R  is reduced and  skew Armendariz. 
 

Proof: First notice that if  R  is  rigid, then R  becomes non-singular and hence reduced ([8]; Lemma 
7.9 & Corollary 7.12). 
 

Now let  










j
j

j

i
i

i

xbxaxgxf
00

,))(),((


  be a pair of polynomials in ],;[ xR ,, Rba ji   such 

that .0fg Then 

 

(1)  ,000 ba and 

(2)    00110 baba  

 

.0000 10010101001100   bababababbabba  

 

(3)      0021120 bababa  

 

00))(()(00)( 02
2

02
2

02020002112000   bababababbbabababb  

 

.0000 201111111120   babababababa  

 

(4)  .003122130   babababa  

 
Again we get,  
 

.00))(()(0 03
2

03
2

030300   bababababb  

 

.00))(()(00 12
2

12
2

121211122130   bababababbbababa  

Finally,  
 

.000))((0 302121212130   babababababa  
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We continue until we get all products in the form 0jiba  for even ,i  and 0jiba  for odd .i Which 

shows that R is  skew Armendariz.   
 
Theorem 2.6. The following are equivalent: 
 

(1) R is   rigid; 

(2) ];[ xR is reduced; 

(3) R is reduced and ];[ xR  is symmetric; 

(4) R is reduced and  symmetric. 
 

Proof: (1)       (2) First assume that  R  is   rigid. Let,  
i

i
i

xaxf
0

)(




  be a polynomial in  ];[ xR   

such that .0)( 2 xf Then because R is   Armendariz, for even subscripts we get 00 0
2  aai  , 

because R is reduced, and for odd subscripts, .00 
iii aaa  Hence .0)( xf

 
 

Conversely, if ];[ xR   is reduced, then being subring, R  is reduced. Now let, for any .0,  aaRa   

Then  .00)( 2  axax  Hence .0a
 

 

)3()2(  Clearly every reduced ring is symmetric. 

)4()3(  Holds from Theorem 2.3. 

)1()4(   Let for any  ,Ra .000  aaaaa    

 

Corollary 2.7. Let a ring R  be   rigid and ].;[)(,)(
00




xRxbxgxaxf j
j

j

i
i

i



Then  

0)()( xgxf  if and only if 0jiba  for all .0,0   ji
 

 

Proof: Let .0)()( xgxf Because R  is   rigid, by Lemma 2.5, R  is   skew Armendariz. So  

0jiba   if  i   is even and  0
jiba  if i  is odd. Because R  is also reduced, so it is reversible and by 

Lemma 1.1, it is   reversible. Hence  0jiba  for all .,,1 I
 
The converse is trivial.   

 

Corollary 2.8. If R  is reduced and  skew - Armendariz, then R is   symmetric. Hence ];[ xR is 

symmetric. 
 

Corollary 2.9. If R  is a  skew - Armendariz ring, then ];[ xR is symmetric if and only if R is                    

  symmetric. 
 

It is clear that R  is non-singular if and only if ][xR  is non-singular. We prove the following. 

 

Corollary 2.10. Let R be   -Armendariz. R is non-singular if and only if ];[ xR is non-singular .  
 

Proof: It is already known that R  is non-singular if and only if R  is reduced. Being reduced and    
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Armendariz, R becomes   symmetric. 
 

Now let ].;[)(
0




xRxaxf i
i

i



 
Assume that  

 

],;[)()()( ];[
0

 


xRxfxfrxbxg xR
i

i
i



 
 

where )(];[ xfr xR   is the right annihilator of the ideal )(xf  in ].;[ xR  Then 0)()( xgxf  and for 

some  ],;[)(
0




xRxcxh i
i

i



),()()( xhxfxg    which give   

 

.00 0000
2
0000  bcabbcab

 
 

.000)(0)( 11101110111

011110111101101101








bbbcabbcabb

cbabbcbacbabbcacab

 
 

.0)( 1122022121220
2
20211202   cabbcbacbacbabcacacab  

 

By a similar argument as above, we conclude that .02 b Continuing in this way, eventually, we will get 

that .0)( xg Hence the right annihilator ideal )(];[ xfr xR   is non-singular. We conclude that  ];[ xR   

is right non-singular. Analogously, one can prove that it is left non-singular, hence non-singular.  
 

Recall that an ideal I  of a ring R  is called   rigid, if for any ,Rr .IrIrr 
Also I is 

completely semiprime if and only if for any ., 2 IrIrRr   

 

Proposition 2.11. For a  ideal I of R the following statements are equivalent: 
 

 (i) I is a  rigid ideal. 

 (ii) I is completely semiprime, IR /  is  Armendariz, and ];)[/( xIR   is reduced 

 

Proof: )()( iii    Let I  be  - rigid. If for any   IrrrrIrRr ))((, 2

 
 

.IrIrr 
Now let for any .0))((,   IaIaRa Then IRIaIaa /

is  

  rigid. Hence by Lemma 2.5. IR / is reduced and  Armendariz. 

 

)()( iii   Assume that  Iaa 
for some .Ra Then 

 

.00)()(0))(( IaIaxIaxIaIaIa  
 

 
 
 skew Laurent polynomial rings can be defined analogously to that of  skew polynomial rings. Hence 
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we have: 
 

Proposition: 2.12. Let R be a commutative ring with an involution . Then ];[ xR  is  skew Armendariz 

if and only if the  skew Laurent polynomial ring ];,[ 1 xxR  is  skew Armendariz. 

 

Proof: Let 










j
j

tj

i
i

si

xbxaxgxf


,))(),((  be a pair of polynomials in ],;,[ 1 xxR ,, Rba ji    

such that .0fg Then ))(),(( ts xxgxfx is a pair of polynomials in ];[ xR  such that  

 

.0)()( ts xxgxfx  

 

Because ];[ xR  is  skew Armendariz which implies that either ,0
jiba  or ,0

ji ba or ,0jiba or

0
ji ba  for all  is  (with proper consideration of i  to be even or odd) and ,j  such that  

. jt  Hence ];,[ 1 xxR  is  skew Armendariz. Converse is trivial.   

 

3 Applications 
 
3.1. First we discuss a general situation. Let R  be a ring with 1, and not necessarily commutative. Let  

];[ xR  be the   skew polynomial ring, in literature also termed as a twisted polynomial ring, where  

  is an endomorphism on .R Then 
nxxR /];[   is a finite ring with a descending chain of principal 

ideals: 
 

.01   nn xxx 
 

 
This ring can also be written in the Barnett matrix form:  
 

 













 njijiaa

njijia
RaaRT

ijij

ij

ijijn ,,2,1,,

,,2,1,,0
::),(






                        

  (3(a)) 

 
Then,  
 

).;(/];[  RTxxR n
n 

   
 
The isomorphism can be achieved in a compatible way by making a natural modification in the matrix 

multiplication. So, let      ),,(, RTba nijij   with the rules of 3(a), and     ,ikjkij cba  where 

 

).(
1

jk
ik

ij

n

j
ik bac 


                                                                                                                   (3(b)) 

 
Naturally, in 3(b) rules of 3(a) apply. 
 

3.2. Let 1  and t  a commutative indeterminate. We write )(RTn  in stead of ).1,(RTn Thus, if R   
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is  symmetric, then so is ./][ nttR Hence for a commutative R with an involution *, the  skew 

polynomial rings ];[/][ xttR n
 and ];)[( xRTn  are symmetric. Several properties which are stated in 

Section 2, hold for R  and extended rings in the form of factor polynomial rings and also in the form of 
Barnett matrix rings  

 

 
 

Theorem 3.3: Let R be commutative and self-injective: 
 
(a) Then the following are equivalent: 
 

)1(
  

R is von Neumann regular;  

)2( R is semi-hereditary;  

)3(
  

R is Rickert;  

)4( R is Baer;  

)5( R is non-singular; 

)6( R is reduced. 

 

(b) If R  admits a rigid involution *, then the  skew polynomial ring ];[ xR  satisfies all properties from 

)1( to )6(  as listed in ).(a
 

 

(c) The factor polynomial ring 
nxxR /];[  or the matrix ring ),( RTn is not among any class of rings 

from (1) to (6) as listed in (a).  
 
Proof: (a) Follows from ([8]; (7.50, 7.52)). 
 

(b) If R is self-injective, then so is ];[ xR . If R  is  rigid, then by Theorem 2.6., ];[ xR  is reduced, 

and so non-singular. The rest follows from ([8]; (7.50, 7.52)). 
 

(c) Clearly, 
nxxR /];[   admits nilpotent elements so it is not reduced. The central elements of  

nxxR /];[    are of the form  ,,,, 4242 nnn xxxxxxx  etc., and because these are 

nilpotent elements, they become singular (see the details in ([8]; (7.11)). Hence 
nxxR /];[   is singular. 

Again by [8; (7.50)]  
nxxR /];[  is not among any class of rings from (1) to (6) as listed above.   

 

3.4. Let qF  be a finite field of characteristic ,p  where q  is some power of .p Let   be an endomorphism 

on ,qF  then one can always construct the  skew polynomial ring ].;[ xqF If ,1 then ];[ xqF   

is non-commutative. Then the factor polynomial ring factored by 
nx  is  
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),;(
];[




qnn

q T
x

x
F F

F


 
 

for all  Nn  . 
 

Clearly, qF  is   rigid for any involution  , it is non-singular, and hence ];[ xqF  is   rigid, reduced, 

non-singular,   symmetric,   reversible, etc., with  considered as an induced involution on 

polynomials. Moreover  ];[ xqF   satisfies all six equivalent conditions of Theorem 3.3 (a and  b). 

 

But by Theorem 3.3(c) F satisfies none of these six conditions of Theorem 3.3(a).  
 

On the other hand 
n

q xx /];[ F  or );( qnT F  has another interesting property as noticed in [12] and 

[13]: 
 

Recall that a ring with 1is right uniserial if it has a finite and unique composition series of right ideals. The 
ring is uniserial if it is both left and right uniserial.  
 

Proposition 3.5. );( qnT F is a finite uniserial ring. Moreover, if S is a finite uniserial ring with the 

Jacobson radical ,J then  
 

),;( qnTS F
 

 

for some automorphism on qF and ./ JSq 
 

 

Proof: The finite ring  );( qnT F   is clearly uniserial as 
n

q xx /];[ F  is uniserial because it has a 

unique chain of ideals  
 

.01   nn xxx 
 

 

The rest holds from [13; Corollary 6] (see also [14; Theorem]).   
 
Finally, Theorem 5.8 of [6] reveals that: 
 

Corollary 3.6. 
n

q xxF /];[ F
 
admits an anti-automorphism if and only if   is an involution on .qF  

Moreover, if  is an involution, then F  admits an involution. 
 

4 Conclusion 
 

This paper is in continuation of our investigations on ∗-reversible and ∗-symmetric rings published in [4] and 
[3], respectively. In this work we have studied ∗-skew polynomial rings and demonstrated some links with 
uniserial rings [13,14], and with the recent work of Wood on self-dual codes over non-commutative rings 
[6]. 
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