
__

*Corresponding author: Email: mesbah_ul_awal@yahoo.com;

Physical Review & Research International
4(1): 231-245, 2014

SCIENCEDOMAIN international
www.sciencedomain.org

Component Criticality Analysis: An Efficient
Approach towards Minimizing the Risks of

System Software Failure

Md. Mesbah-Ul-Awal1*, Muhammad Sheikh Sadi1 and Saikat Das1

1Department of Computer Science and Engineering, Khulna University of Engineering and
Technology, Bangladesh.

Authors’ contributions

This study was carried out in collaboration with all the authors. Author MSS is the honorable
man who guided and supervised the work and designed the study materials and an author of

this work. Author M-U-A has managed all literatures, studied existing works, analyzed
through the systems and wrote the manuscript. Moreover, author SD contributed the study

by implementing simulation platforms and performing different analytical operations. The
final manuscript is read and approved by all authors.

Received 31st March 2013
Accepted 24th August 2013

Published 16th October 2013

ABSTRACT

Component based approach mitigating the risk of system failure has been proposed by
detecting of the most critical components which’s malfunction leads the software system
towards failure and refactoring them. Individual components have their own chances of
occurring fault and these occurrences are silent most often as well as risky; the probability
of failure also becomes high in such phenomena resulting large amount of wretchedness.
Protection of components from being faulty can be ensured at the early phase of any
structure design or modeling, if the criticality is measured previously. A remarkable number
of risk minimization approaches have overlooked criticality consideration in component
level which is pursued in this study. Criticality is determined in a significant way by
measuring each component’s complexity and considering meaningful ranking of
components based on random error injection and analyzing failure modes as well as
corresponding effects. Design Mode Fan in-Fan Out, Inter Component Variable Passing
Rate (ICVPR) and Average of Variable Exchange (AVE) calculation have been
incorporated for finding complexity. Component criticality measurement has been carried
out and compared among components within the system. Redressing system software

Research Article

Physical Review & Research International, 4(1): 231-245, 2014

232

failure only by complexity or severity measurement couldn’t bring out satisfactory
consequences in real time reactive scenario. However, maneuver of refactoring critical
segments could be a way of deployment.

Keywords: Component criticality analysis; complexity analysis; severity ranking; fan in-fan
out; ICVPR; risk minimization; system failure; FMECA.

1. INTRODUCTION

Any critical infrastructure needs to be designed not only for safety and efficiency but also for
the risk minimization capability by measuring criticality so that it may maximize the
survivability of the system during extreme events such as system failure, or any malicious
events [1]. This paper explores component criticality analysis which is validated by
automated system: Traffic Control System. Two modes of the system are analyzed here
such as – design mode and execution mode. The criticality based approach facilitates the
system designers by providing a simple means of estimating the sensitivity of different
components according to the probability of being affected by errors. Some approaches may
have error minimizing capability but it is much important and substantial to be aware of
system failure during system design level and act so by partitioning the system structure into
components, defining their risk measurement rules and thus ranking the critical components.
This ranking approach allows the designers to prioritize components according to their
criticality which will help to identify and mitigate the threats by ensuring improved system
reliability. For any software application this would be a generalized approach having
methodology consists of designing the system architecture and components such a way that
they are capable of measuring complexity and determining severity to find criticality. The rate
of complexity determines the inter-component and intra-component dependency and
severity measurement classifies the components according to their impact on the system.
Therefore, this modern methodology towards risk minimization has been demonstrated by a
practical benchmark among critical components analyzing their various system impacts
applied in both design and execution mode, discussed in this paper.

2. RELATED WORKS

There are so many researches regarding risk minimization of system failure. Most of these
researches assume that system component fails independently nevertheless components
failure not only affect other components but also vary according to their criticality level [2].
For the both back and front-end engineering it would an improved approach to minimize the
risk of system failure if the component criticality evaluation is ensured during software
system design phase. In the field of military tactics the importance of critical components
identification is well established [3]. There are other approaches to the development of
safety-critical systems that may including compliance to DOD-178B for good development
practices, use of commercial off-the-shelf software components for front end engineering
and different forms of software testing to detect threats. But criticality consideration by
measuring complexity and severity can be a convenient deployment towards minimizing the
risk of failure.

Playing with multi-level systems, ranking components over utilization, performance,
importance to the entire system performance and capability etc have always been a great
outcome. Depending on the objective of the ranking, one or more criteria could optionally be

Physical Review & Research International, 4(1): 231-245, 2014

233

selected to rank additional components. Different components may have different
performance indices also, different utilizations and different impacts on the system
performance when these elements are removed from service [4], [5]. However, complexity
measurement was not integrated though, but meaningful credential of reliability assessment
has been explored.

Component based analysis and development must be augmented with methods to restrain
complexities that arises inherently or due to resource constrains. So component detection
and verification is the basic challenging part of any component based criticality analysis.
System structure should have a simplified design so that components understandability is
maximized and the criteria can be defined for component validation [6]. It would enhance the
design mode of any system to track events or any error tracking if occurred. If the code
structure has the facility to insert or delete traced code then it is advantageous for the
system to minimize the risk of failure by detecting the erroneous component and deleting or
replacing that code. To enhance system reliability assessment, component ranking is
achieved by component testability model in criticality based analysis [7]. The FMECA
method of analysis covers the evaluation of failure modes, system-level effects, weighting
criticality and likelihood of occurrence with impact’s diagnosis of system failure. For ordering
the risks coherent with component functionality, FMECA++ could also be pursued [8]. The
weight of components, based on perceived criticality and likelihood of failure with the
average detection feasibility score is suggested but practical erroneous simulation is also
expected. It would be more efficient approach if the components can be ranked by studying
the practical erroneous phenomena as the vulnerability significantly increasing the failure
rate for advanced application components. There may be error in the code or data of the
system structure referred by [9] which can lead the system to fail if the corresponding
component cannot be identified. If identified then risk minimization operation can be applied
and it would be the feasible consideration.

A scenario based approach for reliability analysis of software-based component [10] feels
the importance of complexity in enhancing the criticality measurement of any system. Again,
complexity measurement as a risk assessment methodology is agreed in few cases [11],
[12] but not for dynamic environments and assuming a static value for complexity. One way
of dealing with the problems of increased complexity in the design is component-based
system development which promotes compositional development and component reuse [11].
However, the use of commercial-off-the-shelf components (COTS) in safety-critical system is
highly unexplored. There are no obvious methods to incorporate knowledge about functions
and resilience of COTS in safety assessments. By measuring complexity inter-component
dependency and how much a component can have chance to be affected by errors is
determined which results an improved measurement towards finding criticality. When
approaches based on the system design model augmented with formal failure models, it is
one sided in context of increased complexity because it does not deals with the matter of
how a component behaves in its execution environment. However, in real time reactive
scenarios, only structural complexity is not sufficient to represent several possible failures in
components, computational dimension is also a key factor. In a nutshell, a risk minimization
model is proposed based on the meaningful consideration of component criticality
achievable by measuring complexity and severity.

Physical Review & Research International, 4(1): 231-245, 2014

234

3. A METHODOLOGY TO MINIMIZE THE RISKS OF SYSTEM SOFTWARE
FAILURE

The factors contributing to the complexity of such embedded systems are resource
constraints, safety-criticality, concurrency, and the time-dependent functionality required of
the artifacts they control. The complexity of system requirements permeates into several
stages of development, that type of complexity is suggested to be resolved at early stages.
Complexity of real-time reactive system can be viewed in five dimensions: representational,
architectural, internal, functional, and computational. In software systems, the complexity is
generally calculated by the measurement of time and space and may arise from resource
limitations. But here, we regarded complexity as a probability of being affected by error or
any unwanted malfunction [13]. The components may be functions that posses certain
properties or behavior to have control over the system. Complexity does not measure the
impact of systems component failure in system functionality but it may show the rank of
components according to their impact if any component experiences error. The
measurement of impact over the system due to any component failure is termed as severity.
It is the measurement of finding how much a system is affected when individual component
has errors and results system failure. In this system methodology of measuring complexity
and severity for any single component is proposed along with the risk minimization formula.
The combination of these two measurements gives criticality of that single component from
an angle. If a system takes longer time to process any problem and giving solution then it
can be said that the system is more complex. Also a system may have two types of
complexity-Structural and Behavioral which are studied as well. Behavioral complexity is
viewed in terms of how the software components interact through message passing and the
complexity analysis does not measure the impact of components in system functionality; it
accelerates defining the ranking criteria of erroneous component. If the erroneous behavior
is increased then the complexity will also be increased. So, to minimize risk it is needed to
identify the components that are suffering from error before the execution of the system.

Severity is the measurement of how much the system is affected when it is experiencing any
error. In other words, when a component is affected by error then the measurement of the
impact on the system is referred to as severity measurement. This error propagation
observation is needed to determine the most critical components. Ideally, soft-error fault-
tolerance properties have taken into account already at design time, selecting high-level
source-code constructs, algorithms and data-type abstractions and representations as well
to ensure integrative design methods properly [14]. When severity measuring, fault tolerance
of a system is typically determined afterwards, through testing. Fault injection can be done
first as it is a testing approach similar to mutation testing. In this analysis error has been
injected randomly around the usage role of the targeted variable. It is claimed that, the
usage role is a good determiner for soft-error impact, thus enabling improvements in terms
of better test-case selection and prioritization. Different components comprising the system
need a tight methodology also to evaluate their relative importance on the basis of the
investigation of the critical components with improved dependability functionality. The
dependability may be found by injecting errors in the system randomly and observing the
impact on the system for this injection [15]. This random injection of error shows a fair result
of system failure and this approach helps to implement a fair risk minimization way. In a
summary, the methodology to analyze component criticality includes,

1) Measurement of complexity
2) Severity of failure
3) Minimizing the system failure

Physical Review & Research International, 4(1): 231-245, 2014

235

Fig. 1. Approach towards detecting critical components by measuring relative
criticality

The combined result of complexity measurement and severity of failure is then taken as a
measure of criticality. This complexity and severity determines how critical a system
component is. In Fig. 1 it is shown that how this approach minimizes risks of system failure
by calculating their criticality in an efficient way based on components.

3.1 Measuring Component Complexity

In component based analysis, representational and cognitive complexities can be met by
choosing a good notation to describe components by which the component is defined
exactly. Visual representations help to understand the non-linearity in component
interactions. Any component can have two different view points on the basis of frame and
architecture. The black-box defines the interface types and the particular grey box view is a
structured implemented version of frame [13]. Here only two modes of complexity
measurement are considered, though inclusion of other modes might be possible. However,
in the design mode fan-In and fan-Out of each component is calculated which refers the
entering and leaving variables among the components. On execution mode the number of
variables that are being exchanged among the components is calculated during a certain
period of time covering measurement of time-dependent functionalities. After that the
average frequency of each component is calculated and added it with design mode fan-In
fan-out of corresponding components.

Terminate

Complexity Analysis
Severity Analysis by

FMECA Method

Design mode Fan
in and Fan out

Run time analysis
during execution

Criticality of the
Component

Rank Criticalities among all
Components

Physical Review & Research International, 4(1): 231-245, 2014

236

3.1.1 Fan in and fan out

To measure the relationships between files and between components the design mode Fan-
in and Fan-out values are calculated. Here Fan-in and Fan-out used to measure their
complexity of the static structure of the code. It is treated graphically and visualizes
components as nodes and Fan-in is the number of links coming into a component and Fan-
out is the number of arrows going out of a node. So, for design mode,

Fan-in (component) = number of components that call it,
Fan-out (component) = number of components this component calls.

If the value of Fan-in is high then it indicates a heavily called component where low Fan-out
value indicates less dependency on other components. A high Fan-out indicates strongly
coupled code which means more complex to execute and test. The measurement of these
values gives decision of being a component to be complex.

3.1.2 Calculating inter component variable passing rate (ICVPR)

The quantities of variables that are being exchanged among the components are calculated
for a certain time interval and obtain the total variable passing amount of each component. If
COMP (i) and COMP (i+1) be any two states of a component such as,

COMP (i)
 COMP (i+1) (1)

Then the total amount of variable passed among each component is calculated for a certain
time interval. In each time interval variable passing amount may vary because of different
variable call in or out on that instant of time interval. If ICVPR is expressed in equation, it
becomes,

intervaltimenobservatio

1)(iCOMPiCOMPinexchangevariable
ICVPR

(2)

So this experiment is repeated for several time intervals and measured variable passing
rate.

3.1.3 Average of variable exchange (AVE)

Previously the variable passing rate among the components is calculated based on several
time intervals. Here’s one thing should be mentioned that inter component variable passing
is treated as the message in and out among the components. Average of Variable exchange
and share can be determined by Equation 3 given below,

n

n
i ICVPR

AVE
 1

(3)

So getting various variable passing rates, then average them with respect to the total no of
occurrence. Finally measuring the complexity of each component the fan in-fan out of design
mode and the average value of variable in-out on execution mode is simply added.

Physical Review & Research International, 4(1): 231-245, 2014

237

3.2 Measuring Severity of the Components

A single soft error in a particular component could have a greater effect than multiple soft
errors in another or a set of components. For this reason, the effects of soft errors in the
whole system should be analyzed by injecting transient faults (which will create soft errors if
activated) into each component. These results are merged with the component’s
complexities to obtain a better measure of their impact on the software system if it is affected
by soft errors.

3.2.1 Injecting errors externally

To find the severity of a component, it is decided to inject external error to view the
performance of the system and thus can easily identify the component where a severe
system failure occurs and operations have been performed into component level. By
injecting error on different components separately, the system can easily overviewed
whether severe failure occur or not for that erroneous component. To inject error in the
simulator system code is translated into binary and injected malfunction exclusively. In
context with the binary mode error injection, static variables in the component structure
having real time values are also mistuned to observe the rapid effect in the system. Error
injection operation has been performed in both black box and grey box testing fashion and
the afterward impacts have been taken into measure to compute severity.

3.2.2 Failure modes and effects criticality analysis (FMECA)

Failure mode, effects, and criticality analysis (FMECA) is a bottom-up, inductive analytical
method which may be performed at either the functional or piece-part level. This proposed
model has been operated, analyzed and experimented into component level of the system
software. FMECA extends FMEA by including a criticality analysis, which is used to chart the
probability of failure modes against the severity of their consequences. The result highlights
failure modes with relatively high probability and severity of consequences, allowing
remedial effort to be directed where it will produce the greatest value. After that during the
system definition phase of analysis, system has been partitioned into several modules
fulfilling component criteria and they are defined such as Traffic module, Vehicle module,
Alarm module, Car crash control module.

Before detailed analysis takes place some assumptions are defined to categorize the result
of severity. According to the assumption the components are set weight. Failure Mode
Identification is an important issue to find out failure mode and failure mode ratio. Failure can
be identified by if there is any untimely operation occurs, loss of output, erroneous or invalid
output. FMECA usually involves very large data sets; a unique identifier is assigned to each
item and to each failure mode of each item. Now, based on the consequences of effect
components are assigned severity classification for each failure mode of each unique
component. Here is a small set of classification of severity similar to [16] in Table 1,

Physical Review & Research International, 4(1): 231-245, 2014

238

Table 1. Severity categories according to impact

SL no Severity level Rank Impact on the system
1 Catastrophic 10 Rapid car crash Occurs
2 Serious 9 Multiple car crash on same instances
3 Extreme 8 Single car crash on individual instances
4 Major 7 Predicting clash between two cars, one car does not stop
5 Significant 6 Traffic light delay is changed or no signal
6 Moderate 5 Traffic signal is not obeyed
7 Low 4 Frequently cars come not on random speed
8 Negligible 3 Speed breaker does not invoked
9 Very minor 2 Not reducing speed after getting alarm
10 No Effect 1 No alarm for high speed car

Eventually, a weighted value of each component is given with the help of prioritized
category, referred severity

3.2.3 Measuring criticality

Criticality is measured by taking the product of component complexity and severity which is
termed as modal criticality (Cm). After getting the complexity and severity of each component
from the analysis, criticality of corresponding component is calculated. Therefore,

Modal Criticality, Cm = (Complexity Severity) (4)

After completing the criticality measurement of each component in different severe
situations, qualitative probability level (Rank) and quantitative criticality is sorted thereby.
Now decision could be taken to identify critical components and likelihood failure rank of the
component for which the risk mitigation is desired.

3.2.4 Risk minimization of system failure

From criticality measurement system designers can make decision that whether there is any
error in the system or not where to change to fix the problem. Criticality helps in these cases
of predicting erroneous components. As much as the product of severity rank and complexity
will increase, the risk of system failure is increased. This helps the designers to predict the
malicious nodes of the system where criticality is to minimize as well as changing the
malicious affecting codes. This would be a structural approach which will redesign the
system architecture according to the components criticality level. As a result inter-component
dependency in other terms, Fan-in and Fan-out would be changed which will reduce
execution time variable exchange rate as well as reduce the total criticality. So, for the
improved redesigning paradigm Refactoring is a suitable approach. The proposed risk
minimization approach based on experimental analysis has been shown in Fig. 2.

Physical Review & Research International, 4(1): 231-245, 2014

239

Fig. 2. Steps to minimize the risks of system failure by refactoring

4. EXPERIMENTAL ANALYSIS

To implement this thesis a simulator of an automated traffic system is designed. It is an
automated system where the analysis is accomplished. In accordance to this evaluation
various components also designed to fulfill the system based on relevant criteria, such as -
Traffic Module(TM), Alarm Module (AM), Vehicle Module (VM), Car Crash Control Module
(CCCM). It is a safety critical system where Traffic Module(TM) controls traffic lights to run
the vehicles in a systematic order. When each vehicle comes to the traffic point it checks
whether it is GREEN or RED or YELLOW signals. RED signal forces to be stopped at traffic
point for 25 seconds and the YELLOW allows all vehicles to get prepared to stop or start
within 15 seconds. If any vehicle acquires over speed closed to the traffic junction such that
the system may feel risk of any accident then the Alarm Module generates an alert for that
vehicle and the speed of that vehicle is lessen. Each vehicle generates random speed and
run by this speed. As this system referred as a safety critical system there is another
component here that always monitors each car with all other cars if there is any clash or not.
It always checks the minimum distance between cars to avoid car crash as well as system
failure. When the simulator is executed it has an interface looks like Fig. 3.

Yes

No

Yes

No

Yes

No

Requirement Specification for Traffic
Control system

Abstract Model of the System

Computed Criticalities for the Components
in the Model

Model RefactoringCritical
Components

Exist?

Constrains
Maintained

Criticality
Reduced

Terminate

Physical Review & Research International, 4(1): 231-245, 2014

240

Fig. 3. Interface of designed simulator

4.1 Complexity Analysis

An interface of a component is an instance of either notifies-interface type or receives-
interface type. The architecture is primitive if its structuring is to be provided in an underlying
implementation (outside the scope of component specification language). A non-primitive
architecture includes several subcomponents nested to several levels. The designed traffic
system is shown in Fig. 4.

Fig. 4. UML class diagram of developed traffic control system

Traffic Component

AutomaticSignalControl()

Signal_delay

Alarm Component

AlarmPlayer.Play()

WestZone_randSpeed
WestZone_check(toSlow)

EastZone_randSpeed
EastZone_check(toSlow)

NorthZone_randSpeed
NorthZone_check(toSlow)

SouthZone_randSpeed
SouthZone_check(toSlow)

CentralZone_randSpeed
CentralZone_check(toSlow)

Vehicles Component

WestZone_randspeed()
EastZone_randspeed()

NorthZone_randspeed()
SouthZone_randspeed()

CentralZone_randspeed()

WestZone_movement()
EastZone_movement()

NorthZone_movement ()
SouthZone_movement ()

CentralZone_movement ()

West_vol
East_vol

North_vol
South_vol

WestZone _location
EastZone _location

NorthZone _location
SouthZone _location

CentralZone _location

Car Cash Control
Component

WestZone_crashCheck

EastZone_crashCheck

NorthZone_crashCheck

SouthZone_crashCheck

CentralZone_crashCheck

Optimization Thread

Thread.Optimize()

Physical Review & Research International, 4(1): 231-245, 2014

241

Since the class diagram is the main building block in object oriented modeling, It is used for
both general conceptual modeling of the application and the model is then translated into
programming code. Traffic component is the main class which coordinates the other classes.
The Vehicle class describes the physical location of the objects having the highest level of
dependency on the other classes. It also shows the count of vehicle passed over during a
particular time. The other classes are Alarm and Crash Control where alarm class is
accountable for generating system alerts such as over-speed alert, Traffic Signal Break alert
etc. Accident control operation is performed by Car Crash Control class as well as it
calculates total number of objects is passing through the road. Execution mode evaluation is
performed considering Fan-in and Fan-out. But the efficient evaluation criterion is ensured
when variable passing rate is determined in execution mode with respect to the execution
time. These methodologies are applied in the Traffic Control System explained above. The
four individual components have four individual behaviors to control the traffic system
automatically. The dependency graph based on complexity of components is shown below in
Fig. 5.

Fig. 5. Component dependency based on variable passing

ICVPR of each component has been calculated according to Equation 2. Here the
experiment has been accomplished considering observation time interval is 5 minutes and
reported accordingly. Similarly variable exchange among the components for 15 minutes
also calculated. If the ICVPR measurement repeated for consecutive n times for the same
time interval k and after that the average is calculated, it contributes a meaningful
measurement of finding complexity of execution mode for each component achievable by
using Equation 3. For each k=5 minutes and repeated n=4 times, here is the analysis result
that is shown in the Table 2.

Here,
TM= Traffic Component
AM= Alarm Component
VM= Vehicles component
CCM= Car Crash Control Component

Physical Review & Research International, 4(1): 231-245, 2014

242

Table 2. Table of component complexity for k=5 and n=4

Components ICVPR for
1st 5
minutes

ICVPR
for 2nd 5
minutes

ICVPR
for 3rd 5
minutes

ICVPR
for 4th 5
minutes

AVE Complexity

Traffic
Module(TM)

80 80 88 80 82 0.00027

Alarm
Module(AM)

371810 400886 240093 258644 317858.25 1.0595

Vehicle
Module(VM)

30040 23247 23782 25120 25547.25 0.0851

Car Crash
Control
Module(CCM)

908 690 838 782 804.5 0.00268

Expressing the analyzed data in a graph the comparison can be visualized of each
component during certain execution period of time k. The graph representation in Fig. 6
helps prioritize components according to their reliability quality. Comparison of variable
passing rate of all modules with respect to different time period,

Fig. 6. Comparison of Complexity from different viewpoints

Therefore, it is a simple way of deciding and detecting the most critical component.

4.2 Severity Analysis

For the measurement of severity the Failure Mode and Effect Criticality Analysis (FMECA)
method is used here. The measurement of severity determines that how much the system is
affected when any error is occurred. A single soft error in a particular component can have
the effect larger than the effect caused by multiple soft errors in any component. Here errors
have been injected to each component to observe the impact due to error. After that these
results are merged with complexities. This results a better measurement of their impact on
the system. Here, those impacts are ignored which caused permanent damage to the
system and the impacts by which the system experiences chaos are counted. Some errors

1

100

10000

1000000

1st 5
min

2nd 5
min

3rd 5
min

4th 5
min

IC
VP

R

Time

Time based Component
Interaction

TM

AM

VM

CCM

Physical Review & Research International, 4(1): 231-245, 2014

243

do not let the system to be executed as a result the system becomes unusable. So that such
types of error are ignored. Based on the impact on the system components are weighted
according to their severity. Weight of the components according to their severity after error
injection is shown in the Table 3.

4.3 Criticality Analysis

In this analysis the modal component criticality is determined by measuring the product of
complexity and severity as shown in Equation 4 and also system criticality is not taken into
concern. For any increase in complexity there is a high probability that not only the severity
will be increased but also total risks of system failure will be increased in proportionate to
time. Hence, component criticality is taken as the product of overall complexity and severity.
The experimental result is shown in Table 3 with practical benchmarks,

Table 3. Components Benchmarked Weight and Criticality

Components Weight or rank Criticality
Traffic Module(TM) 5 0.00135
Alarm Module(AM) 8 8.476
Vehicle Module(VM) 7 0.5957
Car Crash Control Module(CCM) 10 0.0268

5. CONCLUSIONS

This research is motivated by the fact of measuring individual component criticality of a
system and establishing a general methodology that has ability to minimize the risks of a
system failure. Several relevant cases have been studied for gathering knowledge to
accomplish this research. This analysis covers significant sorts of risks minimization tasks
that prevents software system components from occurring failure. Though error injection is a
tough task, but it is handled here logically without breaking system consistency and
appreciable advancement has been achieved. How much severe damage may consequent if
any system software fails due to critical components have already discussed and given an
improved way to get rid of disaster of system failure. Thus the criticality analysis represented
in this paper will have great benefit towards minimizing risks of system failure. There is an
open scope to extend this research by considering propagation of failure in computing
criticality and merging the consequences with existing measurements. Though this part
remains uncalculated here, a logical prediction of failure propagation is covered based on
severity which leaded this research to decide most critical components successfully. The
research could be extended to get increased level of dimensions in calculating complexity
and minimum threshold level of the criticality could be maintained to achieve efficient
refactoring.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

Physical Review & Research International, 4(1): 231-245, 2014

244

REFERENCES

1. Abdel-Rahim P. Oman, Johnson BK, Sadiq RA. Assessing surface transportation
network component criticality: A multi-layer graph-based approach. IEEE Xplore. DOI:
10.1109/ITSC.2007.4357801. Accessed 3/10/2010.
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4357801.

2. Atef Mohamed, Mohammad Zulkernine. Failure type-aware reliability assessment with
component failure dependency. IEEE Xplore. DOI: 10.1109/SSIRI.2010.12. Accessed
11/01/2011.
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5502850.

3. Hassan Reza, Steve Buettner, Varun Krishna. A method to test Component Off-The-
Shelf (COTS) used in safety critical systems. IEEE Xplore. DOI:
10.1109/ITNG.2008.217. Accessed 09/01/2011.
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4492477.

4. Hamoud GA. Assessment of transmission system component criticality in the de-
regulated electricity market. IEEE Xplore. Accessed 29/12/2010.
Available:http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4912650&que
ryText%3DAssessment+of+transmission+system+component+criticality+in+the+de-
regulated+electricity+market.

5. Ramirez-Marqurez JE, Coit. Composite importance measures for multi-state systems
with multi-state components. IEEE Transaction on Reliability. 2005;54(3):517-529.

6. Hamoud G, lee L, Tonegouzzo J, Watt G. Assessment of component criticality in
customer delivery systems. IEEE Xplore. ISBN: 0-9761319-1-9. Accessed 16/12/2010.
Available:http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1378793&que
ryText%3DAssessment+of+component+criticality+in+customer+delivery+systems.

7. Jerry Gao, Ming-Chih Shih. A component testability model for verification and
measurement. IEEE Xplore. DOI: 10.1109/COMPSAC.2005.17. Accessed 28/10/2010.
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1508112.

8. Baybutt M, Nanduri S, Kalgren PW, Bodden DS. Seeded fault testing and in-situ
analysis of critical electronic components in EMA power circuitry. IEEE Xplore. DOI:
10.1109/AERO.2008.4526606. Accessed 8/01/2011.
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4526606.

9. Adam Piotrowski, Dariusz Makowski, Grzegorz Jablo´nski, Andrzej Napieralski. The
automatic implementation of software implemented hardware fault tolerance
algorithms as a radiation-induced soft errors mitigation technique. IEEE Xplore. DOI:
10.1109/NSSMIC.2008.4774657. Accessed 25/02/2011.
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4774657.

10. Yacoub SM, Cukic B, Ammar HH. Scenario-based reliability analysis of component-
based software. IEEE Xplore. DOI: 10.1109/ISSRE.1999.809307. Accessed
4/02/2011.
Avaiable: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=809307.

11. Elmqvist J, Nadjm-Tehrani S. Tool support for incremental failure mode and effects
analysis of component-based systems. IEEE Xplore. DOI: 10.1109/DATE.
2008.4484792. Accessed 14/03/2011.
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4484792.

12. Ping Gao, Su Wu. Improved criticality analysis of railway locomotive components by
simulation. IEEE Xplore. DOI: 10.1109/RAMS.2007.328132. Accessed 25/01/2011.
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4126401.

Physical Review & Research International, 4(1): 231-245, 2014

245

13. Zheng M, Alagar VS. Complexity of Component-based Development of Embedded
System. World Academi of Science, Engineering and Technology. Accessed
12/02/2011.
Available: www.waset.org/journals/waset/v8/v8-138.pdf.

14. Cortellessa V, Grassi V. A modeling approach to analyze the impact of error
propagation on reliability of component-based systems. Component-Based Software
Engineering, Springer Berlin Heidelberg. 2007;4608:140-156. ISBN: 978-3-540-73550-
2. DOI: 10.1007/978-3-540-73551-9_10.

15. Abdelmoez W, Nassar DM, Shereshevsky M, Gradetsky N, Gunnalan R, Ammar HH,
et al. Error propagation in software architectures. IEEE Xplore. DOI: 10.1109/METRIC.
2004.1357923. Accessed 16/03/2011.
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1357923.

16. Seyed-Hosseini SM, Safaei N, Asgharpour MJ. Reprioritization of failures in a system
failure mode and effects analysis by decision making trial and evaluation laboratory
technique. Reliability Engineering & System Safety. 2006;91(8):872-81.

© 2014 Mesbah-Ul-Awal et al.; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history.php?iid=283&id=4&aid=2269

