
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: 0883-9514 (Print) 1087-6545 (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Handling Sequence-dependent Setup Time
Flexible Job Shop Problem with Learning and
Deterioration Considerations using Evolutionary
Bi-level Optimization

Ameni Azzouz, Abir Chaabani, Meriem Ennigrou & Lamjed Ben Said

To cite this article: Ameni Azzouz, Abir Chaabani, Meriem Ennigrou & Lamjed Ben Said (2020)
Handling Sequence-dependent Setup Time Flexible Job Shop Problem with Learning and
Deterioration Considerations using Evolutionary Bi-level Optimization, Applied Artificial
Intelligence, 34:6, 433-455, DOI: 10.1080/08839514.2020.1723871

To link to this article: https://doi.org/10.1080/08839514.2020.1723871

Published online: 14 Feb 2020.

Submit your article to this journal

Article views: 534

View related articles

View Crossmark data

Citing articles: 4 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2020.1723871
https://doi.org/10.1080/08839514.2020.1723871
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2020.1723871
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2020.1723871
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1723871&domain=pdf&date_stamp=2020-02-14
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1723871&domain=pdf&date_stamp=2020-02-14
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2020.1723871#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2020.1723871#tabModule

Handling Sequence-dependent Setup Time Flexible Job
Shop Problem with Learning and Deterioration
Considerations using Evolutionary Bi-level Optimization
Ameni Azzouz, Abir Chaabani, Meriem Ennigrou, and Lamjed Ben Said

Institut Supérieur De Gestion, SMART Lab, Université De Tunis, Tunis, Tunisia

ABSTRACT
Bi-level optimization is a challenging research area that has
received significant attention from researchers tomodel enormous
NP-hard optimization problems and real-life applications. In this
paper, we propose a new evolutionary bi-level algorithm for
Flexible Job Shop Problem with Sequence-Dependent Setup
Time (SDST-FJSP) and learning/deterioration effects. There are
twomainmotivations behind this work. On the one hand, learning
and deterioration effects might occur simultaneously in real-life
production systems. However, there are still ill posed in the sche-
duling area.On theother hand, bi-level optimizationwaspresented
as an interesting resolution schemeeasily applied tomore complex
problems without additional modifications. Motivated by these
issues, we attempt in this work to solve the FJSP variant using the
bi-level programming framework. We suggest firstly a new bi-level
mathematical formulation for the considered FJSP; then we pro-
pose a bi-level evolutionary algorithm to solve the problem. The
experimental study on well-established benchmarks assesses and
validates the advantage of using a bi-level scheme over the com-
pared approaches in this research area to solve such NP-hard
problem.

Introduction

Job shop scheduling problem (JSSP) is considered as the most active research field
with the area of combinatorial optimization problems (Garey, Johnson, and
Stockmeyer 1976). This problem holds a set of n jobs that should be processed
on m specified machines. Each job consists of a specific set of operations, which
must be processed according to a given order. Introduced by Nuijten and Aarts
(1996), the FJSP is a generalization of the above-described definition, where each
operation could be processed by a set of resources with a processing time that
depends on the used resource. However, most classical FJSPs studied in the
literature consider the known job processing times as a constant over time,
which is not appropriate for many realistic situations, where the actual processing
time of a jobmight increase or decrease regarding its normal processing time if it is

CONTACT Ameni Azzouz ameni.azzouz@isg.rnu.tn SMART Lab, Institut Supérieur de Gestion de Tunis,
université de Tunis, Tunis, Tunisie

APPLIED ARTIFICIAL INTELLIGENCE
2020, VOL. 34, NO. 6, 433–455
https://doi.org/10.1080/08839514.2020.1723871

© 2020 Taylor & Francis

http://orcid.org/0000-0001-9225-884X
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1723871&domain=pdf&date_stamp=2020-02-29

scheduled later. This dynamic nature of job processing time may be the result of
two situations: (1) The first one iswhere employees andmachines execute the same
job several times. They learn how to perform such operation more efficiently. In
other words, the productivity is getting continuously better by performing similar
tasks repeatedly. Accordingly, the processing time of a given job will be smaller if it
is scheduled later in the sequence. In the literature, this phenomenon is known as
learning effects (Wright 1936). Empirical studies in several industries have demon-
strated that the learning effects have a significant impact on manufacturing
systems. This phenomenon takes place mainly when the workers are able to
perform setup, deal with both machine operations and software, such as read
data or handle rawmaterials. The learning theory confirmed that the time needed
to produce a single unit is in decreasing at a uniform rate. This latter is restrainedly
related to themanufacturing process being observed. In this context, several works
were suggested, for instance, the work of Wang and Cheng (2007), and Hosseini
and Tavakkoli-Moghaddam (2013), etc. For more details, we refer the readers to
the recent survey on scheduling problemswith learning effects (Azzouz, Ennigrou,
and Ben Said 2018). (2) The dynamic nature of the processing time is the result of a
second situation in which it is called deterioration effects. It occurs whenmachines
lose their performance during their execution times. In this case, the job that is
processed later consumes more time than another one processed earlier.
Scheduling in such environments is known as scheduling with deteriorating
jobs, and it is first introduced by Gupta and Gupta (1988). The authors assumed
that the processing time of all jobs is a function of their starting time. Since then,
deterioration effects have widely studied in connection with scheduling problem.

Besides, bi-level programming problems are a special class of optimization
problems with two levels of optimization tasks. These problems have been
widely studied in the literature (Colson, Marcotte, and Savard 2007); and
often appear in many practical problem solving tasks (Bard 2013). In prac-
tice, a bi-level scenario commonly occurs when a set of decision variables in
an (upper level) optimization task is considered physically or functionally
acceptable, only when it is a stable point or a point in equilibrium or a point
satisfying certain conservation principles, etc. The satisfaction of one or more
of these conditions is usually posed as another optimization task (lower
level). Consequently, the bi-level scheme was presented as a new paradigm
able to successfully solve a number of hierarchically NP-hard problems.

The particular structure of these optimization problems facilitates the formula-
tion of several practical problems that involve a nested decision-making process.
Motivated by this issue, we present in this paper, a new bi-level approach able to
minimize the makespan criteria of the SDST-FJSP with learning/deterioration
considerations. So far, we knew no other research was reported till date, where
any variant of FJSP was addressed with bi-level optimization algorithm. Most of
the researchers solved the problem as a single level optimization task.However, the
nature of the problem fits quite well with the bi-level framework. To this end, we

434 A. AZZOUZ ET AL.

present in this work, a hierarchical structure of the problem such as a leader
decision focuses on the assignment of jobs to machines, while a follower level is
interested by the sequencement of operations. In other words, the leader assigns
the jobs tomachines and the follower sequences the jobs assigned to eachmachine.
The main contributions of this paper are summarized as follows:

(1) Proposing, a new bi-level evolutionary algorithm that we call (Bi-GTS)
to solve SDST-FJSP with learning/deterioration effects.

(2) Proposing a new mathematical bi-level formulation of the SDST-FJSP
with learning/ deterioration effects, which will be evaluated using the
bi-level proposed scheme.

(3) Demonstrating the out-performance of our Bi-GTS over some of the most
representative approaches with this research area which are VNS, TS, GA,
and GTS on different commonly used benchmark problems from the
literature.

FJSP Related Works

In recent years, FJSP has been highly studied by researchers. The problem could be
decomposed into two sub-tasks: a routing sub-problem, which consists of assign-
ing each operation to the available machine, and a scheduling sub-task, which
consists in sequencing the assigned operations on all selectedmachines in order to
optimize such considered objective function. Two kinds of approaches have been
used to solve the problem: the hierarchical approach and the integrated one.
Considering the first category, the routing sub-problem and the scheduling sub-
problem are treated separately. The basic idea of this approach is to decomposing
the original problem in order to reduce its complexity. Brandimarte (1993) used,
for the first time, this approach for solving FJSP. He treated the routing sub-
problem using several dispatching rules and then he solved the scheduling sub-
problemusing a tabu search algorithm.According to Brandimarte, the hierarchical
scheme can be further expressed by information flow among the two sub-pro-
blems: in a one-way scheme, a routing problem is firstly solved, and then a
sequencing problem is solved; alternatively, there is an iteration between the two
steps, but the two tasks are evolved separately using then a correction stage.
Following this architecture, Zribi, Kacem, and El Kamel (2004) solve the assign-
ment problem using an heuristic algorithm and they apply a Genetic Algorithm
(GA) to deal with the sequencing task. Another work in this field was reported by
Saidi-Mehrabad and Fattahi (2007). Alternatively, the integrated architecture were
used by considering assignment and scheduling at the same time. During the last
few years, successful results have been achievedwithin integrated architecture such
as the work of Ziaee (2014) and Azzouz, Ennigrou, and Ben Said (2017), etc.

The majority of researchers on scheduling assume that the setup time is
negligible or is a part of the processing time. However, machine setup time is an

APPLIED ARTIFICIAL INTELLIGENCE 435

important factor for production scheduling in several manufacturing systems; it
may consume more than 20% of available machine time (Pinedo 1995). In this
way, there are two types of setup time: sequence-independent and sequence-
dependent. In the first case, the setup time depends only on the job itself.
However, in the second one, the setup time is not only dependent on the job but
also on the previous job that ran on the samemachine. Despite the relevance of the
flexible job shop in real manufacturing systems, there is not many papers that
consider both sequence-dependent setup-times and flexible job shop environ-
ments. We cite just the work of Saidi-Mehrabad and Fattahi (2007) which pre-
sented a TS for solving the SDST-FJSP to minimize the makespan. Moreover,
Bagheri and Zandieh (2011) proposed a variable neighborhood search based on
integrated approach to minimize an aggregate objective function (AOF) where
AOF ¼ αF1þ ð1� αÞF2 and α denote the weight given, respectively, to make-
span ðF1Þ and mean tardiness ðF2Þ. The most recent comprehensive survey of
scheduling problem with setup times is given by Allahverdi (2015).

Bi-level Optimization: Basic Definition

Aswementioned previously, bi-level optimization is an important research area of
mathematical programming (Dempe 2002). This type of problem has emerged as
an important area for progress in handling many real-life problems in different
domains, e.g.,, optimal control, process optimization, game-playing strategy devel-
opment, transportation problems (Chaabani, Bechikh, and Said 2015b). The first
formulation of bi-level programming was proposed in 1973 by Bracken and
McGill (1973). After that, Candler and Norton (1977) are the first authors who
use the designation of bi-level and multi-level programming with optimization
problem. The decision variables of a bi-level optimization problem (BOP) are split
into two groups that are controlled by two decision makers called leader (on the
upper level) and follower (on the lower level). Both decision makers have an
objective function of their own and a set of constraints on their variables.
Furthermore, there are coupling constraints that connect the decision variables
of leader and follower. The nested structure of the overall problem requires that a
solution to the upper level problemmay be feasible only if it is an optimal or near-
optimal solution to the lower level problem.

Using this description, we present in the following the bi-level SDST-FJSP
with learning and deterioration consideration formulation. Then, we describe
the bi-level evolutionary algorithm to solve the problem.

A New Bi-level Mathematical Model for SDST-FJSP with Learning and
Deterioration Considerations

The SDST-FJSP with learning and deterioration effects consists on performing n
jobs onmmachines. The set of machines is notedM ðM ¼ M1; ::MkÞ. Each job i

436 A. AZZOUZ ET AL.

consists on a sequence ofni operations (routing). Each routing has to be performed
to complete a job. The execution of each operation j of a job i noted (Oij), requires
one machine out of a set of a given machinesMi;j (i.e.,Mi;j is the set of machines
available to executeOij). The problem is to define a sequence of operations together
with the assignment of start times and machines for each operation. It is note-
worthy that the following assumptions are considered in this paper:

• Jobs are independent of each other;
• Machines are independent of each other;
• One machine can process at most one operation at a time;
• No preemption is allowed;
• All jobs are available at time zero;
• The applied time deterioration rate is as follows:

P
0
ijk ¼ Pijkð1þ βtÞ (1)

where P
0
ijk is the actual processing time for Oij on kth machine and Pijk is a

normal processing time, t is the starting time of the operation and β is a non-
negative deterioration index.

• Setup times are dependent on the sequence of jobs. When one of the
operations of a job t is processed before one of those of job i ðt�iÞ on
machine Mk, the sequence depend setup time is St;i;k > 0.

• The applied position based learning effect is defined as follows:

S0t;i;k;r ¼ St;i;kr
a (2)

where S0i;k;r corresponds to the actual SDST for ith jobs on Kth machine and
Si;k is the normal SDST. We should mention here that the standard FJSP can
be classified into two main categories: (1) the Total-FJSP (T-FJSP), and (2)
the Partial-FJSP (P-FJSP) (Kacem, Hammadi, and Borne 2002). In T-FJSP,
each operation can be processed by all machines. However, in P-FJSP, at least
one operation may not be processed on all machines. Several researches
pointed out that the P-FJSP is more general and complex as compared to
T-FJSP on the same scale. In this paper, we consider the P-FJSP.

According to this description, we present in the following a hierarchical
structure of the SDST-FJSP problem with learning/deterioration effects tak-
ing into account the presented assumptions and constraints. In fact, a leader
decision level focuses on the assignment of jobs to machines, while a follower
is interested by the sequencement of operations. In this regard, the leader’s
objective depends only on its’ variables. (cf. Figure 1). However, the feasi-
bility of a solution depends on the follower’s response as well. It is important
to note that the main motivation behind the design of SDST-FJSP as a bi-
level model is the possibility to well accelerate the diversity and the conver-
gence of the search by exploring more job assignments in the upper level

APPLIED ARTIFICIAL INTELLIGENCE 437

search space and then concentrates on one fixed assignment at each way, in
order to found the corresponding optimal job sequencement. We seek then
to enhance the search ability on the SDST-FJSP decision space in order to
improve the quality of solutions. We give in the following, the used para-
meters and the decision variables used in our formulation:

n the number of jobs,
m the number of machines,
i; i0 index for jobs where i 2 f1; 2; ::ng, i0 2 f0; 1:::; ng,
j; j0 index for operations of job i,
k index of machines where k 2 f1; 2; ::ng,
J the set of jobs,
M the set of machines,
Oi the set of operations of a job i,
Oij the jth operation of job i,
eijk takes value 1 if machine i is eligible for Oij and 0 otherwise,
Mij the set of alternative machines in which operation ij can be

processed, (Mij � M),
Mij \Mi0j0 the set of machines by which operations Oij and Oi0j0 can be

processed,
Sijk the normal sequence-dependent setup time (SDST) of opera-

tion Oij on machine k,
S0ijk the actual SDST of operation Oij on machine k,
Ci the completion time of a job i,
Cijk the completion time of an operation Oij on machine k,
Cmax maximum completion time over all jobs (makespan),

Figure 1. SDST-FJSP problem with learning effect formulated as bi-level optimization problem.

438 A. AZZOUZ ET AL.

r the position of operation in the sequence,
α learning index where α< 0,
pijk the normal processing time of operation Oij on machine k,
p0ijk the actual processing time of operation Oij on machine k,
β the deterioration rate
L; a large number.
The proposed mathematical model is defined as follows:

Decision variables

Xijk ¼ 1 if >machine > k > is > selected > for > operation >Oij;
0 otherwise

�

Yiji0j0k ¼
1 if > operation >Oij > precedes > operation >Oi0j0 >
on >machine > k;
0 otherwise

8<
:

The upper level constraints are defined as follows: constraint (1) describes
that each operation Oij should be assigned to only one machine. Secondly,
they specify that each operation is assigned to one of its eligible machines (on

APPLIED ARTIFICIAL INTELLIGENCE 439

constraint (2)). Regarding to the lower level part, we consider eight con-
straints related to the sequencement of jobs on the different machines.
Constraint (3) ensures that every operation could have at most one succeed-
ing operation. Constraint (4) ensures that the dummy operation is the first
one on machines. Constraint (5) assures that each operation has exactly one
preceding operation on the same machine. Constraints (6) and (7) define the
learning and deterioration formulas taken into consideration in this model.
Constraint (8) guarantees that one machine cannot process two different
operations simultaneously. In other words, the difference between the com-
pletion times of two consecutive operations on one machine should be
greater than the setup time plus the processing time of the operation pro-
cessed later. In fact, the constraint (9) ensures that the precedence relation-
ships between operation Oij and Oij0 of a job should be satisfied. Thus,
operation Oij cannot start before the operation Oij�1 terminates its proces-
sing. The constraint (10) defines the completion times of the jobs, and finally,
constraint (11) establishes the makespan parameter.

Bi-GTS Basic Scheme

As we have mentioned previously, the two main goals of this work are: (1)
modeling SDST-FJSP with learning/deterioration effects problem using the bi-
level optimization programming and, (2) designing a bi-level evolutionary
strategy able to improve the resolution efficiently of this problem. In this
work, we handle two types of meta-heuristics: a local optimization method
based on Tabu Search (TS) with a global optimization approach based on GA,
at both levels. The GA was applied in the upper level in order to better explore
the whole search space and then to direct the algorithm into the region repre-
senting the best assignment vector. Our choice of the GA relies on the fact that
this latter represents an evolutionary based algorithm, simple and powerful, able
to solve complex combinatorial problem such as scheduling problem. In fact, the
lower level problem was handling using the TS method, accentuating then the
convergence rate of the procedure in the lower level space. The TS determines
the optimal scheduling of the n jobs on theM machines according to the upper
decision variables (i.e., optimized assignment). To this end, the bi-level decision-
making process is performed as follows. First, the GA process makes his decision
and fixes the values of his upper variables (i.e., by applying selection, recombina-
tion, and mutation operators which are presented in the following subsections).
After that, the follower reacts by setting his variables according to the ones fixed
by the GA in the upper level. The leader has perfect knowledge of the follower’s
scenario (objective function and constraints) and also of the follower’s behavior.
The follower observes the leader’s action (the generated assignment), and then
optimizes his own objective function subject to the decisions made by the leader

440 A. AZZOUZ ET AL.

(and subject to the imposed constraints). As the leader’s objective function
depends on the follower’s decision, the leader must take the follower’s reaction
into account (cf. Figure 2). To more understand the bi-level process, we present
in the following the step-by-step procedure of our proposed algorithm.

Upper Level Optimization Procedure

Step 1 (Initialization Scheme): We generate an initial parent population of N
assignments randomly. Then, the lower level optimization procedure is
executed to identify the optimal sequencements according to such gener-
ated affectation. In fact, the upper level fitness is assigned based on both
upper level function value and constraints since the lower level problem
appears as a constraint to the upper level one. In this paper, the upper
solution is codedusing a binarymatrix proposedbyAzzouz, Ennigrou, and
Jlifi (2015) where the rows represent the job operations and the columns
correspond to the used machines as described in Figure 3.

Figure 2. Bi-GLS basic scheme.

APPLIED ARTIFICIAL INTELLIGENCE 441

Step 2 (Upper level parent selection): We choose ðN=2Þ members from
the parent population using tournament selection operator.

Step 3 (Variation at the upper level): We perform crossover and mutation
operators in order to create the upper offspring population. In this way,
we use the crossover operator order 1 (Davis 1985) which consists on
selecting randomly two positions XP1 and XP2 in the parent 1.
Subsequently, the middle part is copied to the first offspring. The rest
of this child is filled from the parent 2 starting with position XP2 þ 1,
and jumping elements that are already presented in the offspring 1. The
same steps are repeated for the second offspring by starting with the
parents 2. Figure 4 shows an example of this technique. Till now to the
mutation operator, we use themutation technique proposed by Pezzella,
Morganti, and Ciaschetti (2008) in which, we select one operation with
the maximum workload (i.e. the maximum amount of work that a
machine produces in a specified time period). Then we assign to the
machine the minimum workload it if possible.

Step 4 (Lower level optimization): We solve the lower level optimization
problem for each generated offspring using the tabu search algo-
rithm (cf. the following subsection).

Step 5 (Offspring evaluation): We combine both upper level parents (the
assignments in our case) and the upper level children into an Rt

population and we evaluate them based on the upper level objective
function and the constraints.

Step 6 (Environmental selection):We fill the new upper level population using
a replacement strategy. The new upper level population is formed with
theN best solutions of Rt set. If the stopping criterion is met then return
the best upper level solution; otherwise, return to Step 2.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 M2 M3
O11 0 0 1
O21 1 0 0
O22 0 1 0
O12 0 0 1
O13 1 0 0
O23 0 0 1
O31 0 1 0
O32 0 1 0
O33 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3. A sample chromosome encoding by our representation.

442 A. AZZOUZ ET AL.

Lower Level Optimization Procedure

The tabu search strategy is considered as an intensification procedure able to
guide the search in order to explore the solution space beyond local optim-
ality. It has achieved widespread success in solving practical optimization
problem. In this paper, we opt to use such algorithm in order to optimize the
sequencement of operation jobs according to the passed assignment upper
solution. The step-by-step procedure of the lower level TS algorithm is
described as follows:

Step 1 (Initial solution): We need to generate firstly an initial solution.
This latter is created based on the passed upper level solution
structure. In this way, we conserve the same upper solution repre-
sentation, while considering now the operation order in the matrix
as the scheduling of operation on the M machines.

Step 2 (Generate neighborhood): In this step, we determine the neigh-
borhood of the current solution. Then, we define two types of

Figure 4. Order 1 crossover operator with XP1 ¼ 3 and XP2 ¼ 7.

APPLIED ARTIFICIAL INTELLIGENCE 443

moves: (1) the swap of two critical operations, and (2) the reas-
signment of an operation. Denote that a critical path is the longest
path in the schedule composed of operations related either by
precedence or disjunctive constraints. We determine then, the
neighborhood of the current solution and we evaluate it to be
able to choose the best non-tabu neighbor satisfying the aspiration
criterion. It is important to note here that the best solution will be
stored in an elite list. Then, any solution belongs to the neighbor-
hood of the current one that obeys the following condition (if the
difference costs between the current and the best one is less than or
equal to ε such as ε> 0), will be stored in a secondary elite list.

Step 3 (Neighborhood evaluation): In a tabu search method, the best non-
tabu neighbor belonging to the current solution neighborhood will be
selected for the next iteration. Hence, all neighbors must be evaluated
in order to determine the best one. However, a global evaluation, i.e.
computation of all start times of all operations, of each neighbor will
need a considerable time. For this reason, we propose an estimation
method in which only a subset of operations will be taken into account
and to which start times will be recalculated. These operations are the
ones effectively concerned by the move executed. Once the current
neighbor was chosen, the move will be stored in the tabu list.
Thereafter, the corresponding selected move is applied to the offspring
solution that will be stored as elite solution. Subsequently, the lower
level fitness is assigned based on the lower level objective function and
constraints.

Step 4 (Diversification technique): In order to avoid that a large region of
the search space remains completely unexplored, it is important to
diversify the search during the optimization process. For this reason,
we use three diversification techniques as follows:

● Select randomly a solution among the elite solution list,
● Select randomly a solution from the secondary elite solution list, or
● Create a new solution by re-sequencing the operations of one job
selected randomly.

Each of them is executed when the number of iterations performed after the
last diversification phase or the last improving iteration exceeds a predefined
threshold (the diversification probability).

Step 6 (Stop criterion): If the stopping criterion is met then we send the
best found lower level solution to the upper level problem; other-
wise, return to Step 2.

444 A. AZZOUZ ET AL.

Experimental Study

The main motivation of this paper is to investigate the performance of the bi-
level scheme with both problems (1) the SDST-FJSP with the learning effects
and (2) the SDST-FJSP with learning/deterioration effects. Thus, two parts
are considered in this experimental study. In the first one, we will try to
evaluate the performance and the superiority of our Bi-GTS regarding four
different schemes within this research area that are:

(1) Variable Neighborhood Search (VNS) which explores distant neigh-
borhoods based on a variable neighborhood changes proposed by
Bagheri and Zandieh (2011);

(2) Tabu search (TS) algorithm which is a based-intensification technique
proposed by Ennigrou and Ghedira (2008);

(3) Genetic algorithm which is an evolutionary method proposed by
Azzouz, Ennigrou, and Said (2016);

(4) Hybrid genetic algorithm coupled with VNS algorithm (GTS) (Azzouz,
Ennigrou, and Ben Said 2017).

The second part of this experimental study focus on evaluating our Bi-GTS
on the SDST-FJSP with learning and deterioration effects. We should men-
tion here that only the work of Tayebi Araghi and Rabiee (2014) was
reported to solve this problem. For this reason, we will use the same experi-
mental framework presented in this latter to access the performance of our
proposal. To this end, the second part focus mainly on a comparative study
of the Bi-GTS algorithm to the following methods:

(1) GA version adapted to the SDST-FJSP with learning and deterioration
effects proposed by Pezzella, Morganti, and Ciaschetti (2008),

(2) VNS which version adapted to the SDST-FJSP with learning and
deterioration effects proposed by Amiri et al. (2010), and

(3) GVNSWAF which is an hybrid algorithm based on GA coupled with
VNS search strategy with affinity function proposed by Tayebi Araghi
and Rabiee (2014).

We note that all simulations are performed on the same machine (Intel Core
i5-3230 CPU 2.6 GHz and 6 GB RAM). The remaining of this section is
organized as follows: Subsection 5.1 presents the used benchmarks and
metrics used in this study. The second subsection devoted the parameter
tuning and settings. Then, we report the comparative results with (1) SDST-
FJSP with learning effects, and (2) SDST-FJSP with learning and deteriora-
tion effects.

APPLIED ARTIFICIAL INTELLIGENCE 445

Used Benchmarks and Metrics

In this subsection, we describe the different benchmark problems used in our
experimental study. In fact, we choose commonly used test problems within the
community that allow assessing the performance of any used algorithm with
respect to different kinds of difficulties. Thus, two kinds of benchmarks are
adopted: The first one is adopted to evaluate the SDST-FJSP with learning effects
which is denoted SDST � HUdata (González, Rodriguez Vela, and Varela 2013).
It contains 20 instances derived from the first 20 instances of the FJSP benchmarks
proposed by Hurink, Jurisch, and Thole (1994). Each instance was created by
adding to the original instance one setup time matrix St;k for each machine k. The
same setup time matrix was considered for all benchmark instances. Each matrix
has a size of n� n, and the St;i;k value indicates the setup time needed to
reconfigure the machine k when it switched from job t to job i. These setup
times are sequence dependent and they fulfill the inequality triangle. The second
set of benchmarks consists on 18 instances proposed by Tayebi Araghi and Rabiee
(2014). For each job, three combinations of maximum operation (OpMax) and
machines are considered. Table 1 summarizes the characteristics of the used
benchmarks. To evaluate now the generated results and to compare the perfor-
mance of the used algorithms, we use two kinds of metrics: (1) the first one is the
makespan parameter which denotes the completion time of the last operation and
(2) the second performance measure is the relative percentage deviation (RPD)
which is calculated as follows:

RPD ¼ solalgo � solmin

solmin
� 100 (3)

where Solalgo is the makespan of each algorithm and solmin is the best
solutions obtained for each instance after ten iterations.

Parameter Tuning and Settings

It is well known that the performance of an algorithm is heavily dependent on the
setting of control parameters. Most research use fixed parameter values after some

Table 1. Description of Tayebi Araghi et al., instances (Tayebi Araghi and Rabiee
2014).
Factors Values

Number of Jobs (N) small: 5, 10, 15, 20, 25
large: 40

Combination of number of maximum
operation per job and number of machines

small: 5� 2; 10� 315� 4

large: 20� 6; 30� 840� 10
Processing time (Pijk) U(1, 50)
Setup times(Sijk) U(1, 25)

446 A. AZZOUZ ET AL.

preliminary experiment or with reference to values of the previous similar litera-
ture. In this context, the most popular-used approach is the full factorial experi-
ment (Ruiz,Maroto, andAlcaraz 2006). This later is usually usedwhen the number
of factors and their levels are small. Consequently, the major inconvenient of this
method exists when the number of factors and their level are large. In such
situation, it’s well difficult to calculate all possible combinations. Thus, the
Taguchi's design of experiment (TDOE) approach was represented as an interest-
ing alternative able to reduce the number of required tests. TDOE suggests the use
of orthogonal arrays to organize the parameters affecting the process and the levels
at which they should be varying. Orthogonal arrays can be used to accomplish
optimal experimental designs by considering a number of experimental situations
(Roy 2001). Moreover, the Taguchi method uses the signal-to-noise ratio (SNR),
instead of the average value to interpret the data (experimental results). SNR can
reflect both the average and the variation of the quality characteristic. In this way,
the Taguchi’s method classifies the objective functions into three groups: (1) the
smaller-the-better type, (2) the larger-the-better type and (3) the nominal-is-the
best type. Since almost all objective functions in scheduling are categorized in the
smaller the-better type, its corresponding SNR is expressed as follows:

SNR ¼ � log10ð
1
n

Xn
i¼10

ðobjective functionÞ2i Þ (4)

Before the calibration of the Bi-GTS, the algorithm is subjected to some prelimin-
ary tests to obtain the proper parameter levels to be tested in the fine-tuning
process. In order to achieve more accurate and stable results for our proposed
algorithm, we considered five parameters for tuning. These parameters are Pcross,
Pmut, popsize,MaxItGA andMaxItTS. These parameters with their levels are shown
in Table 2. The corresponding orthogonal arraywith five factors and three levels in
Taguchi method is L27. By analyzing all of experimental results using Taguchi

Table 2. Parameters and their levels.
A

Pcross
B

Pmut
C

popsize
D

MaxItGA
E

MaxItTS
High(1) 0.8 0.8 150 120 200
Medium (2) 0.5 0.5 80 80 150
Low(3) 0.2 0.2 60 50 100

Table 3. SNR table for experiments.
level A B C D E

1 −56,16 −56,15 −56,15 −56,15 −56,16
2 −56,14 −56,16 −56,16 −56,16 −56,15
3 −56,16 −56,15 −56,15 −56,15 −56,15
Delta 0,03 0,01 0,01 0,01 0,01
Rank 1 3,5 3,5 3,5 3,5

APPLIED ARTIFICIAL INTELLIGENCE 447

method, the average SNR and average maximum completion time were obtained
for the considered experiments. Figure 5 displays the obtained results. In this way,
the optimal levels are A(2), B(3), C(3), D(3) and E(2) (cf.Figure 5). Furthermore,
results computed in terms of mean makespan in Taguchi experimental analysis
confirmed the optimal levels obtained using SNR values (see Figure 6). Table 3
exhibits the effectiveness rank of parameters in minimizing makespan.

Adopted Statistical Methodology

In order to compare between the algorithms, we choose to use the
Wilcoxon rank sum test in a pairwise fashion (Derrac, García, Molina,

Figure 5. The SNR plot for experiments in Taguchi methodology.

Figure 6. The plot of means of makespan for experiments in Taguchi methodology.

448 A. AZZOUZ ET AL.

Ta
bl
e
4.

M
ak
es
pa
n
va
lu
es

of
Bi
-G
TS
,V
N
S,
TS
,G

A
an
d
G
TS

on
SD

ST
-H
U
da
ta

be
nc
hm

ar
ks
.T
he

sy
m
bo

l”
+
”
m
ea
ns

th
at

H
0
is
re
je
ct
ed

w
hi
le
th
e
sy
m
bo

l”
–
”
m
ea
ns

th
e
op

po
si
te
.T
he

be
st

va
lu
es

ar
e
hi
gh

lig
ht
ed

in
bo

ld
.

In
st
an
ce

Pr
ob

le
m

Si
ze
ðn

�
m
Þ

fle
xi
bi
lit
y

Bi
-G
TS

G
TS

G
A

TS
VN

S

La
1

10
�
5

1:
15

64
1
(+
+
+
+
)

64
1
(+
+
+
+
)

72
1
(+
+
+
+
)

81
4
(+
+
+
-)

72
1
(+
+
+
-)

La
2

73
4
(+
+
+
+
)

78
0
(+
+
+
+
)

87
1
(+
+
+
-)

85
4
(+
+
+
+
)

90
8
(+
+
-+
)

La
3

60
6
(+
+
+
+
)

64
3
(+
+
+
+
)

76
8
(+
+
+
+
)

68
6
(+
+
+
+
)

81
8
(+
+
+
+
)

La
4

62
0
(+
+
+
+
)

69
4
(+
+
+
+
)

79
4
(+
+
+
-)

73
2
(+
+
+
+
)

77
4
(+
+
–
+
)

La
5

54
0
(+
+
+
+
)

56
0
(+
+
+
+
)

61
3
(+
+
–
+
)

62
3
(+
+
–
+
)

72
6
(+
+
+
+
)

La
6

15
�
5

1:
15

88
5
(-
+
+
+
)

92
7
(-
+
–
+
)

10
55

(+
+
+
+
)

93
4
(+
+
–
+
)

10
69

(+
+
+
+
)

La
7

81
5
(+
+
+
+
)

85
5
(+
+
+
+
)

10
34

(+
+
+
+
)

89
1
(+
+
+
+
)

10
80

(+
+
+
+
)

La
8

87
0
(+
+
+
+
)

96
9
(+
+
–
+
)

11
32

(+
+
+
+
)

98
8
(+

–
+
+
)

11
02

(+
+
+
+
)

La
9

93
2
(-
+
+
+
)

93
2
(-
+
+
+
)

10
53

(+
+
+
+
)

10
15

(+
+
+
+
)

11
06

(+
+
+
+
)

La
10

89
1
(-
+
+
+
)

90
7
(-
+
+
+
)

10
52

(+
+
+
+
)

94
7
(+
+
+
+
)

10
77

(+
+
+
+
)

La
11

20
�
5

1:
15

11
57

(+
+
+
+
)

11
59

(+
+
+
+
)

13
88

(+
+
+
+
)

12
41

(+
+
+
+
)

14
46

(+
+
+
+
)

La
12

10
06

(+
+
+
+
)

10
24

(+
+
+
+
)

12
67

(+
+
+
+
)

10
89

(+
+
+
+
)

14
09

(+
+
+
+
)

La
13

10
83

(+
+
+
+
)

10
92

(+
+
+
+
)

13
00

(+
+
+
+
)

11
18

(+
+
+
+
)

13
54

(+
+
+
+
)

La
14

11
67

(-
+
+
+
)

11
83

(-
+
+
+
)

13
40

(+
+
+
+
)

12
45

(+
+
+
+
)

14
02

(+
+
+
+
)

La
15

12
83

(-
+
+
+
)

12
86

(-
+
+
+
)

16
26

(+
+
+
-)

14
01

(+
+
+
+
)

16
29

(+
+
–
+
)

La
16

10
�
10

1:
15

10
18

(+
+
+
+
)

10
51

(+
+
+
+
)

12
82

(+
+
+
+
)

10
99

(+
+
+
+
)

13
10

(+
+
+
+
)

La
17

80
2
(+
+
+
+
)

84
3
(+
+
–
+
)

99
9
(+
+
+
+
)

84
6
(+

–
+
+
)

10
46

(+
+
+
+
)

La
18

91
3
(+
+
+
+
)

94
9
(+
+
+
+
)

11
92

(+
+
+
+
)

10
00

(+
+
+
+
)

11
60

(+
+
+
+
)

La
19

92
8
(+
+
+
+
)

10
04

(+
+
+
+
)

11
74

(+
+
+
+
)

10
89

(+
+
+
+
)

12
24

(+
+
+
+
)

La
20

92
6
(+
+
+
+
)

10
06

(+
+
+
+
)

11
90

(+
+
+
+
)

10
74

(+
+
+
+
)

12
24

(+
+
+
+
)

APPLIED ARTIFICIAL INTELLIGENCE 449

and Herrera 2011). It allows to verify whether the results are statistically
different or not between samples. Thus, we perform 30 runs for each
couple (algorithm, problem) with different random seeds (i.e., 30 differ-
ent randomly generated populations). Once the results are obtained, we
use the MATLAB ranksum function in order to compute the p-value of
the following hypothesis: (1) H0: median (Algorithm1) = median
(Algorithm2) and (2) H1: median (Algorithm 1) � median (Algorithm
2) for a confidence level of 95%, if the p-value is found to be less or
equal than 0:05, we reject H0 and we accept H1. In this way, we can say
that the medians of the two algorithms are different from each other and
that one algorithm outperforms the other viewpoint the used metric.
However, if the p-value is found to be greater than 0:05, then we accept
H0 and we cannot say that one algorithm is better than the other nor the
opposite.

Comparative Results of the SDST-FJSP with Learning Effects

In order to validate the advantage of the bi-level scheme in solving the SDST-
FJSP with learning effects, we compared our model regarding four mono-
level different schemes. The simulation results are summarized in Table 5.
The instance names are listed in the first column, the second column shows
the size ðn�mÞ of each instance. The remaining columns report the
obtained results of the used algorithms. We observe from Table 5 that Bi-
GTS presents the best performance on the majority of test problems. It

Table 5. RPD values of Bi-GTS, VNS, TS, GA and GTS on SDST-HUdata benchmarks.
Instance Problem BI-GTS GTS GA TS VNS

La01 0 0.02 1.55 7.36 2.11
La02 0.15 0.61 0.96 8.53 1.98
La03 0.39 1.06 1.64 5.33 2.31
La04 0.41 4.43 0.85 3.66 3.25
La05 0.75 0.11 1.89 3.58 2.11
La06 0.55 2 0.51 2.79 3.46
La07 0.40 1.63 0.62 2.99 2.01
La08 0 0.46 0.57 2.41 1.91
La09 0 2.26 1.41 3.21 3.48
La10 0 5.15 1.68 4.02 0.93
La11 0.26 2.92 1.01 2.08 1.80
La12 0.11 2.73 0.82 2.71 3.12
La13 0 2.18 0.93 3.14 3.08
La14 1.37 1.93 2.10 1.76 3.81
La15 1.08 7.23 1.41 1.18 1.88
La16 0.14 0.73 0.54 4.04 1.83
La17 1.02 1.94 3.31 2.39 1.89
La18 0.2 1.56 0.99 5.81 2.95
La19 0.1 1.4 2.94 6.67 1.47
La20 0.2 3.5 0.75 9.36 1.88
Average 0.35 2.19 1.32 4.15 2.36

450 A. AZZOUZ ET AL.

outperforms GTS, GA, TS, and VNS on 19 benchmark problems. This fact
can be explained by the driving force of Bi-GTS in manipulating both
diversity and convergence under the search space. In this way, the bi-level
scheme was able at first to explore more possible assignments in the upper
level search space. Then, the algorithm accentuates the search in the lower
level regarding all possible generated assignments in the other level to be able
to generate good bi-level solution qualities.

In addition to the empirical simulation presented to access the perfor-
mance of the different approaches, we use Relative Percentage Deviation
(RPD) as a common performance metric to measure the algorithm stability.
Table 6 reports the generated results of the algorithms. In fact, we deduce
that the proposed Bi-GTS outperforms the other algorithms in 18 instances
with an average RPD value of 0:35. The worst performance is then observed
with the TS algorithm which presents an average RPD value of 4:15: To
further evaluate the performance of our algorithm, we study the interaction
between the performance of the algorithm regarding the problem dimension.
Figure 7 presents a plot describing the average RPD trace of the used
approaches regarding to the number of jobs and machines, respectively.
According to this Figure, we remark that Bi-GTS seems competitive regard-
ing to other approaches. In fact, it generates the better RPD values on small,
average, and large-scale problems. As well, we observe from these figures that
the other approaches are sensitive to the number of machines. They repre-
sent a bad RPD values regarding to a variation on the machine numbers.
Thus, we can deduce that the Bi-GTS keeps its robust performance in
different problem sizes and especially with large-scale problem instances.

Table 6. Makespan values of Bi-GTS, GTS, GAVNS, GA and VNS on Tayebi benchmarks. The best
values are highlighted in bold.
Instance problem Bi-GTS GTS GVNSWAF GA VNS

5-5-2 213 236 262 281 331
5-10-3 247 264 279 339 350
5-15-4 316 377 323 524 696
10-5-2 371 409 472 491 576
10-10-3 570 649 681 843 1031
10-15-4 633 691 365 781 689
15-5-2 727 740 749 812 916
15-10-3 784 851 859 1203 1273
15-15-4 941 1110 661 1140 1151
20-5-2 1243 1294 1281 1439 1604
20-10-3 1453 1572 1464 2014 2157
20-15-4 1502 1790 1611 2063 2329
25-5-2 1185 1310 1288 1547 1533
25-10-3 2022 2306 1922 2515 2500
25-15-4 2253 2501 1813 2694 2576
40-20-6 3675 3712 3802 4304 4736
40-30-8 4172 4246 4781 5466 5765
40-40-10 5330 5535 6408 7688 8126

APPLIED ARTIFICIAL INTELLIGENCE 451

Comparative Results of SDST-FJSP with Learning and Deterioration Effects

In this second part, we are interesting to compare our bi-level algorithm
mainly to the GVNSWAF work since it is the only one that is proposed to
handle the same problem interest. Table 4 shows the obtained results in
terms of makespan values. In particular, we indicate that the instance pro-
blem names follow the ðn� OpMax�mÞ formula in which n represents job
number, OpMax is the maximum operation number considered for each jobs

Figure 7. The average RPD vaues of the used algorithms regarding to (a) the number of jobs and
(b) the number of machines respectively.

452 A. AZZOUZ ET AL.

and the m value defines the number of machines detained by the problem.
We observe from this Table that our Bi-GTS outperforms also the other
algorithms on fourteen/eighteen instances. The second best value is observed
by the GVNSWAF and GTS which they outperform the other algorithms
(GA and VNS) in nine instances. Thus, we can properly say that the
hierarchical scheme allows to generate good solutions which confirms that
this scheme is more adapted to solve the SDST-FJSP with learning and
deterioration considerations than the other compared approaches.

Conclusion and Future Works

In this paper, we consider two realistic assumptions with the flexible job shop
problem (FJSP), namely, the sequence-dependent setup times (SDST) and the
learning/deterioration effects. We have suggested, for the first time, a bi-level
evolutionary algorithm to solve this problem. The experimental results
revealed that Bi-GLS is very competitive with respect to the considered
algorithms. As part of our future work, we plan firstly to improve the
proposed bi-level scheme by testing other meta-heuristic approaches.
Secondly, the obtained results are promising, thus it would be a challenging
perspective to investigate the dynamic SDST-FJSP with learning/deteriora-
tion effects, in order to reflect as closely as possible the reality of the actual
flexible manufacturing systems.

ORCID

Lamjed Ben Said http://orcid.org/0000-0001-9225-884X

References

Allahverdi, A. 2015. The third comprehensive survey on scheduling problems with setup
times/costs. European Journal of Operational Research 246:345–78. doi:10.1016/j.
ejor.2015.04.004.

Amiri, M., M. Zandieh, M. Yazdani, and A. Bagheri. 2010. A variable neighbourhood search
algorithm for the flexible job-shop scheduling problem. International Journal of Production
Research 48 (19):5671–89. doi:10.1080/00207540903055743.

Azzouz, A., M. Ennigrou, and L. Ben Said. 2017. A hybrid algorithm for flexible job-shop
scheduling problem with setup times. International Journal of Production Management and
Engineering 5 (1):23–30. doi:10.4995/ijpme.2017.6618.

Azzouz, A., M. Ennigrou, and L. Ben Said. 2018. Scheduling problems under learning effects:
Classification and cartography. International Journal of Production Research 56 (4):1642–
61. doi:10.1080/00207543.2017.1355576.

Azzouz, A., M. Ennigrou, and B. Jlifi. 2015. Diversifying ts using ga in multi-agent system for
solving flexible job shop problem. Proceedings of the 12th International Conference on
Informatics in Control, Automation and Robotics (ICINCO), France, vol. 1, 94–101.

APPLIED ARTIFICIAL INTELLIGENCE 453

http://dx.doi.org/10.1016/j.ejor.2015.04.004
http://dx.doi.org/10.1016/j.ejor.2015.04.004
http://dx.doi.org/10.1080/00207540903055743
http://dx.doi.org/10.4995/ijpme.2017.6618
http://dx.doi.org/10.1080/00207543.2017.1355576

Azzouz, A., M. Ennigrou, and L. B. Said. 2016. Flexible job-shop scheduling problem with
sequence-dependent setup times using genetic algorithm. 18th International Conference
on Enterprise Information Systems (ICEIS), Italy, vol. 2, 47–53.

Bagheri, A., and M. Zandieh. 2011. Bi-criteria flexible job-shop scheduling with sequence-
dependent setup times—variable neighborhood search approach. Journal of Manufacturing
Systems 30 (1):8–15. doi:10.1016/j.jmsy.2011.02.004.

Bard, J. F. 2013. Practical bilevel optimization: Algorithms and applications, vol. 30. Springer
Science & Business Media.

Bracken, J., and J. T. McGill. 1973. Mathematical programs with optimization problems in the
constraints. Operations Research 21 (1):37–44. doi:10.1287/opre.21.1.37.

Brandimarte, P. 1993. Routing and scheduling in a flexible job shop by tabu search. Annals of
Operations Research 41 (3):157–83. doi:10.1007/BF02023073.

Candler, W., and R. Norton. 1977. Multilevel programming. Technical Report 20, World
Bank Development Research, Washington, D. C.

Chaabani, A., S. Bechikh, and L. B. Said. 2015b. A co-evolutionary decomposition-based
algorithm for bi-level combinatorial optimization. 2015 IEEE Congress on Evolutionary
Computation (CEC), IEEE, Japan, 1659–66.

Colson, B., P. Marcotte, and G. Savard. 2007. An overview of bilevel optimization. Annals of
Operations Research 153 (1):235–56. doi:10.1007/s10479-007-0176-2.

Davis, L. D. 1985. Applying adaptive algorithms to epistatic domains. In Proc. International
Joint Conference on Artificial Intelligence, USA. 162–64.

Dempe, S. 2002. Foundations of bilevel programming. Springer Science & Business Media.
Derrac, J., S. Garca, D. Molina, and F. Herrera. 2011. A practical tutorial on the use of

nonparametric statistical tests as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm and Evolutionary Computation 1 (1):3–18. doi:10.1016/j.
swevo.2011.02.002.

Ennigrou, M., and K. Ghedira. 2008. New local diversification techniques for flexible job shop
scheduling problem with a multi-agent approach. In Autonomous Agents and Multi-Agent
Systems 17 (2):270–87. doi:10.1007/s10458-008-9031-3.

Garey, M. R., D. S. Johnson, and L. Stockmeyer. 1976. Some simplified np-complete graph
problems. Theoretical Computer Science 1 (3):237–67. doi:10.1016/0304-3975(76)90059-1.

González, M. A., C. Rodriguez Vela, and R. Varela. 2013. An efficient memetic algorithm for
the flexible job shop with setup times. InTwenty-Third International Conference on Au-
tomated Planning and Scheduling, Italy. 91–99.

Gupta, J. N., and S. K. Gupta. 1988. Single facility scheduling with nonlinear processing times.
Computers & Industrial Engineering 14 (4):387–93. doi:10.1016/0360-8352(88)90041-1.

Hosseini, N., and R. Tavakkoli-Moghaddam. 2013. Two meta-heuristics for solving a new
two-machine flowshop scheduling problem with the learning effect and dynamic arrivals.
The International Journal of Advanced Manufacturing Technology 65:771–86. doi:10.1007/
s00170-012-4216-y.

Hurink, J., B. Jurisch, and M. Thole. 1994. Tabu search for the job shop scheduling problem
with multi-purpose machines. Operations-Research-Spektrum 15 (4):205–15. doi:10.1007/
BF01719451.

Kacem, S., I. Hammadi, and P. Borne. 2002. Approach by localization and multiobjective
evolutionary optimization for flexible job-shop scheduling problems. Syst IEEE Syst Man
Cybern 32 (1):1–13.

Nuijten, W. P., and E. H. Aarts. 1996. A computational study of constraint satisfaction for
multiple capacitated job shop scheduling. European Journal of Operational Research 90
(2):269–84. doi:10.1016/0377-2217(95)00354-1.

454 A. AZZOUZ ET AL.

http://dx.doi.org/10.1016/j.jmsy.2011.02.004
http://dx.doi.org/10.1287/opre.21.1.37
http://dx.doi.org/10.1007/BF02023073
http://dx.doi.org/10.1007/s10479-007-0176-2
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1007/s10458-008-9031-3
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1016/0360-8352(88)90041-1
http://dx.doi.org/10.1007/s00170-012-4216-y
http://dx.doi.org/10.1007/s00170-012-4216-y
http://dx.doi.org/10.1007/BF01719451
http://dx.doi.org/10.1007/BF01719451
http://dx.doi.org/10.1016/0377-2217(95)00354-1

Pezzella, F., G. Morganti, and G. Ciaschetti. 2008. A genetic algorithm for the flexible job-
shop scheduling problem. Computers & Operations Research 35 (10):3202–12. doi:10.1016/
j.cor.2007.02.014.

Pinedo, M. 1995. Scheduling theory, algorithms, and systems. New York: Springer-Verlag.
Roy, R. K. 2001. Design of experiments using the Taguchi approach: 16 steps to product and

process improvement. John Wiley & Sons.
Ruiz, R., C. Maroto, and J. Alcaraz. 2006. Two new robust genetic algorithms for the flowshop

scheduling problem. Omega 34 (5):461–76. doi:10.1016/j.omega.2004.12.006.
Saidi-Mehrabad, M., and P. Fattahi. 2007. Flexible job shop scheduling with tabu search

algorithms. The International Journal of Advanced Manufacturing Technology 32 (5–
6):563–70. doi:10.1007/s00170-005-0375-4.

Tayebi Araghi, M. F., . J., and M. Rabiee. 2014. Incorporating learning effect and deteriora-
tion for solving a sdst flexible job-shop scheduling problem with a hybrid meta-heuristic
approach. International Journal of Computer Integrated Manufacturing 27 (Iss):8.
doi:10.1080/0951192X.2013.834465.

Wang, X., and T. Cheng. 2007. Single-machine scheduing with deteriorating jobs and
learning effects to minimize the makespan. European Journal of Operational Research
178:57–70. doi:10.1016/j.ejor.2006.01.017.

Wright, T. P. 1936. Factors affecting the cost of airplanes. Journal of the Aeronautical Science
3 (2):122–28. doi:10.2514/8.155.

Ziaee, M. 2014. A heuristic algorithm for solving flexible job shop scheduling problem. The
International Journal of Advanced Manufacturing Technology 71:519. doi:10.1007/s00170-
013-5510-z.

Zribi, N., I. Kacem, and A. El Kamel. 2004. Hierarchical optimization for the flexible job shop
scheduling problem. IFAC Proceedings Volumes 37 (4):479–84. doi:10.1016/S1474-6670(17)
36160-8.

APPLIED ARTIFICIAL INTELLIGENCE 455

http://dx.doi.org/10.1016/j.cor.2007.02.014
http://dx.doi.org/10.1016/j.cor.2007.02.014
http://dx.doi.org/10.1016/j.omega.2004.12.006
http://dx.doi.org/10.1007/s00170-005-0375-4
http://dx.doi.org/10.1080/0951192X.2013.834465
http://dx.doi.org/10.1016/j.ejor.2006.01.017
http://dx.doi.org/10.2514/8.155
http://dx.doi.org/10.1007/s00170-013-5510-z
http://dx.doi.org/10.1007/s00170-013-5510-z
http://dx.doi.org/10.1016/S1474-6670(17)36160-8
http://dx.doi.org/10.1016/S1474-6670(17)36160-8

	Abstract
	Introduction
	FJSP Related Works
	Bi-level Optimization: Basic Definition
	A New Bi-level Mathematical Model for SDST-FJSP with Learning and Deterioration Considerations
	Bi-GTS Basic Scheme
	Upper Level Optimization Procedure
	Lower Level Optimization Procedure

	Experimental Study
	Used Benchmarks and Metrics
	Parameter Tuning and Settings
	Adopted Statistical Methodology
	Comparative Results of the SDST-FJSP with Learning Effects
	Comparative Results of SDST-FJSP with Learning and Deterioration Effects

	Conclusion and Future Works
	References

