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1 Introduction

Let H (U) be the class of analytic functions in the open unit disc U={z ∈ C : |z| < 1} and let H [a, p]
be the subclass of H (U) consisting of functions of the form:

f(z) = a+ apz
p + ap+1z

p+1 + ... (a ∈ C; p ∈ N = {1, 2, ...}) .

Also, let A(p) be the subclass of the functions f ∈ H (U) of the form:

f(z) = zp +

∞∑
n=p+1

anz
n (p ∈ N), (1.1)

and set A = A(1) the class of univalent functions. Let K denotes the class of all convex functions in
A which are satisfy the condition

K =

{
f ∈ A : <

{
1 +

zf
′′

(z)

f ′(z)

}
> 0 (z ∈ U)

}
.
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For f, g ∈ H(U), we say that f is subordinate to g, or g is superordinate to f, written as f ≺ g or f(z) ≺
g(z), if there exists a Schwarz function ω (z), which ( by definition ) is analytic in U with ω (0) = 0 and
|ω (z)| < 1 (z ∈U) such that f(z) = g(ω(z)) (z ∈U). Furthermore, if the function g is univalent in
U , then we have the following equivalence:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

For m ∈ Z, ` > −p, λ ≥ 0, Prajapat [1] introduced the operator
Jmp (λ, `) : A(p) −→ A(p), where

Jmp (λ, `) = zp +

∞∑
n=p+1

(
p+ `+ λ(n− p)

p+ `

)m
anz

n.

Also, let for A > 0, a, c ∈ C be such that <(c − a) > 0 and <(a) > −Ap, modified an Erdelyi-Kober
type [2] integral operator, we define the linear operator
Ia,cp,A : A(p) −→ A(p) by

Ia,cp,Af(z) =
Γ(c+Ap)

Γ(a+Ap)Γ(c− a)

∫ 1

0

(1− t)c−a−1 ta−1f(ztA)dt

=
Γ(c+Ap)

Γ(a+Ap)Γ(c− a)

∫ 1

0

[(1− t)c−a−1 ta+Ap−1zp

+

∞∑
n=p+1

(1− t)c−a−1 ta+An−1zn]dt

= zp +
Γ(c+Ap)

Γ(a+Ap)

∞∑
n=p+1

Γ(a+ nA)

Γ(c+ nA)
anz

n (1.2)

and
Ia,ap,Af(z) = f(z).

Let for m ∈ Z = {...,−2,−1, 0, 1, 2, ...} and A > 0, λ ≥ 0, ` > −p, a, c ∈ C be such that <(c− a) > 0

and <(a) > −Ap, we define the linear operator Jm,pλ,` (a, c, A) : A(p) −→ A(p) by

Jm,pλ,` (a, c, A)f(z) = (Jmp (λ, `) (Ia,cp,Af(z)) = Ia,cp,A(Jmp (λ, `) f(z))

Jm,pλ,` (a, c, A)f(z) = zp +
Γ(c+Ap)

Γ(a+Ap)

∞∑
n=p+1

(
p+ `+ λ(n− p)

p+ `

)m
Γ(a+ nA)

Γ(c+ nA)
anz

n. (1.3)

It is readily verified from (1.3) that

Jm,pλ,` (a+ 1, c, A)f(z) =
a

a+Ap
Jm,pλ,` (a, c, A)f(z) +

A

a+Ap
z
(
Jm,pλ,` (a, c, A)f(z)

)′ (1.4)
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and

Jm+1,p
λ,` (a, c, A)f(z) = (1− pλ

p+ `
)Jm,pλ,` (a, c, A)f(z) +

λ

p+ `
z
(
Jm,p
λ,`

(a, c, A)f(z)
)′
. (1.5)

Putting c = a in (1.3) and by specializing the parameters λ, ` and p, we obtain the following
operators studied by various authors:
(i) Jm,pλ,` (a, a,A)f(z) = Imp (λ, `)f(z) (` ≥ 0, λ ≥ 0, p ∈ N and m ∈ N0 = N ∪ {0}) (see [3]).
(ii) Jm,p1,` (a, a,A)f(z) = Ip(m, `)f(z) (` ≥ 0, p ∈ N and m ∈ N0) (see [4,5]).
(iii) Jm,pλ,0 (a, a,A) = Dm

λ,pf(z) (λ ≥ 0, p ∈ N and m ∈ N0) (see [6]).
(iv) Jm,p1,0 (a, a,A) = Dm

p f(z) (p ∈ N and m ∈ N0) (see [7,8]).
(v) J−m,pλ,` (a, a,A) = Jmp (λ, `)f(z) (` ≥ 0, λ ≥ 0, p ∈ N and m ∈ N0) (see [9,10,11]).
(vi) J−m,p1,1 (a, a,A) = Dmf(z) (m ∈ Z) (see [12]).
(vii) Jm,11,` (a, a,A) = Im` f(z) (` ≥ 0 and m ∈ N0) (see [13,14]).
(viii) Jm,1λ,0 (a, a,A) = Dm

λ f(z) (λ ≥ 0 and m ∈ N0) (see [15]).
(ix) Jm,11,0 (a, a,A) = Dmf(z) (m ∈ N0) (see [16]).
(x) J−m,1λ,1 (a, a,A) = I−mλ f(z) (λ ≥ 0 and m ∈ N0) (see [17,18]).
(xi) J−m,11,1 (a, a,A) = Imf(z) (m ∈ N0) (see [19]).

Following definitions are due to Miller and Mocanu.

Definition 1.1 (20, Definition 2.2b, p. 21). . Denote by Q the class of functions f that are
analytic and injective on U\E(f),

E(f) =

{
ζ ∈ ∂U : lim

z→ζ
f(z) =∞

}
,

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U\E(f).

Definition 1.2 (20, p. 16). Let ψ : C2 −→ C and let h be univalent in U. If p(z) is analytic in U
and satisfies the following first order differential subordination

ψ
(
p(z), zp′(z)

)
≺ h(z), (1.6)

then p(z) is called a solution of the differential subordination (1.6). A univalent function q(z) is called a
dominant of the solution of the differential subordination (1.6) or more simply, a dominant if p(z) ≺ q(z)
for all p(z) satisfying (1.6). A dominant q̃(z) that satisfies q̃(z) ≺ q(z) for all dominants q(z) of (1.6) is
said to be the best dominant of (1.6).

A function L(z, t) : U × [0,∞) −→ C is called a Löwner (subordination) chain if L(., t) is analytic and
univalent in U for all t ≥ 0, and L(z, s) ≺ L(z, t), 0≤ s ≤ t.

Recently, based on certain linear operators, some subordination preserving results have been
obtained in [21], [22], [23], [24], [25], [26], [27] and [28]. In this paper, we obtain some subordination
preserving properties associated with the new class of operators Jm,pλ,` (a, c, A) involving complex
parameters.
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2 The Main Results

Lemma 2.1 (29, Theorem 1, p. 300). Let β, γ ∈ C with β 6= 0, and let h ∈ H(U) with h(0) = c. If
<(βh(z) + γ) > 0 for z ∈ U , then the differential equation

q(z) +
zq′(z)

βq(z) + γ
= h(z), q(0) = c,

has an analytic solution in U, that satisfy < (βq(z) + γ) > 0, z ∈ U.

Lemma 2.2 [20, Theorem 2.3i, p. 35]. Suppose that the function H : C2 −→ C
satisfies the condition

< (H(is, t))) ≤ 0,

for all s, t ∈ R with t ≤ −n(1 + s2)/2, n ∈ N. If the function p(z) = 1 + pnz
n +

pn+1z
n+1 + ... is analytic in U and

<
{
H

(
p(z), zp′(z)

)}
> 0 (z ∈ U),

then <(p(z)) > 0, z ∈ U. Lemma 2.3 (20, Lemma 2.2d, p. 24). Let q ∈ Q with q(0) = a, and let
p(z) = a + anz

n + an+1z
n+1 + ... be analytic in U with p(z) 6= a, n ∈ N. If p is not subordinate to q,

then there exist the points z0 = r0e
iθ ∈ U and ζ0 ∈ ∂U\E(f) such that p(Ur0) ⊂ q(U), p(z0) = q(ζ0)

and z0p
′(z0) = mζ0q

′(ζ0),m ≥ n, where Ur0 = {z ∈ C : |z| < r0} .

Lemma 2.4 (30, Theorem 7, p. 882). Let q ∈ H(U) and let φ : C2 −→ C, and set φ (q(z), zq′(z)) =
h(z). If L(z, t) = φ (q(z), tzq′(z)) is a subordination chain and p ∈ H[a, 1]∩Q, then

h(z) ≺ φ
(
p(z), zp′(z)

)
implies that

q(z) ≺ p(z).
Furthermore, if the differential equation φ (q(z), tzq′(z)) = h(z) has a univalent solution q ∈ Q, then
q is the best subordinant.

Lemma 2.5 [31, p. 159] Let L(z, t) = a1(t)z + a2(t)z2 + ..., with a1(t) 6= 0 for all t ≥ 0
and lim

t→+∞
|a1(t)| = +∞. Suppose that L(., t) is analytic in U for all t ≥ 0, L(., t) is continuously

differentiable on [0,∞) for all z ∈ U. If L(z, t) satisfies

<
(
∂L/∂z

∂L/∂t

)
> 0 (t ≥ 0; z ∈ U)

and
|L(z, t)| ≤ K0 |a1(t)| , |z| < r0 < 1, t ≥ 0

for some positive constant K0 and r0, then L(z, t) is a subordination chain.

Employing the techniques used in [32], we can prove the following theorem:

Theorem 2.1 Let for λ > 0,m ∈ Z, ` > −p, p ∈ N, A > 0, a, c ∈ C satisfying <(c − a) ≥ 0 and
<(a) > −Ap, the operator Jm,pλ,` (a, c, A) be defined by (1.3). Let for 0≤ β ≤ 1,

δ =
(`+ p) (a+Ap)

(1− β) pλ (a+Ap) + βAp (`+ p)
(2.1)
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be such that <(δ) ≥ 1 and for g ∈ A(p),

ϕ(z) =
(1− β)Jm+1,p

λ,` (a, c, A)g(z) + βJm,pλ,` (a+ 1, c, A)g(z)

zp−1
, (2.2)

satisfy

<
(

1 +
zϕ′′(z)

ϕ′(z)

)
> −ρ (z ∈ U) , (2.3)

where ρ = 0 if <(δ) = 1 and for <(δ) > 1,

ρ ≤

{
<(δ)−1

2
,<(δ) ≤ 2,

1
2(<(δ)−1)

, <(δ) > 2,
(2.4)

and

(=(δ))2 ≤ (<(δ)− 1− 2ρ)

(
1

2ρ
−<(δ) + 1

)
, (2.5)

the equality in (2.4) and (2.5) occur only when =(δ) = 0. If f ∈ A(p) satisfies

(1− β)Jm+1,p
λ,` (a, c, A)f(z)

zp−1
+
βJm,pλ,` (a+ 1, c, A)f(z)

zp−1
≺ ϕ(z) (z ∈ U), (2.6)

then
Jm,pλ,` (a, c, A)f(z)

zp−1
≺
Jm,pλ,` (a, c, A)g(z)

zp−1
(z ∈ U). (2.7)

Moreover, the function
Jm,p
λ,`

(a,c,A)g(z)

zp−1 is the best dominant of (2.6).

Proof. Let

F (z) =
Jm,pλ,` (a, c, A)f(z)

zp−1
and G(z) =

Jm,pλ,` (a, c, A)g(z)

zp−1
. (2.8)

By hypothesis, we first show that the function G is convex (univalent). For let

q(z) = 1 +
zG′′(z)

G′(z)
(z ∈ U). (2.9)

Using (1.4) and (1.5) for g ∈ A(p), we have

ϕ(z) =

(
1− 1

δ

)
G(z) +

zG′(z)

δ
, (2.10)

where δ is given by (1.2). On differentiating (2.10) and using (2.9), we have

1 +
zϕ′′(z)

ϕ′(z)
= q(z) +

zq′(z)

q(z) + δ − 1
=: h(z). (2.11)

From (2.3) and (2.4), we have
< (h (z) + δ − 1) > 0 (z ∈ U),

and by Lemma 2.1, we deduce that the differential equation (2.11) has a solution q ∈ H (U) , with
q(0) = h(0) = 1.
Let

H (u, v) = u+
v

u+ δ − 1
+ ρ, (2.12)

where ρ is given by (2.4).
From (2.3), (2.11) and (2.12)

<
{
H
(
q(z), q′(z)

)}
> 0 (z ∈ U).
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For all s ∈ R and t ≤ −
(
1 + s2

)
/2, using (2.12), we have

<{H (is, t)} = <
(
is+

t

is+ δ − 1
+ ρ

)
(2.13)

=
(< (δ)− 1)t

|is+ δ − 1|2
+ ρ.

If < (δ) = 1, ρ = 0, we have <{H (is, t)} = 0 and if < (δ) > 1,

<{H (is, t)} ≤ − ψ(s, ρ, δ)

2 |is+ δ − 1|2
, (2.14)

where
ψ(s, ρ, δ) = (< (δ)− 1)

(
1 + s2)− 2ρ |is+ δ − 1|2

taking < (δ)− 1 = u and =(δ) = v, we write

ψ(s, ρ, δ) = (u− 2ρ)s2 − 4ρvs+ u− 2ρ(u2 + v2).

If v = 0, from (2.4), we have

ψ(s, ρ, δ) = (u− 2ρ)s2 + (1− 2ρu)u ≥ 0.

If v 6= 0, we assume that u− 2ρ > 0 for any u > 0, we obtain

ψ(s, ρ, δ) = (u− 2ρ)

(
s− 2ρv

u− 2ρ

)2

− 4ρ2v2

u− 2ρ
+ u− 2ρ(u2 + v2)

= (u− 2ρ)

(
s− 2ρv

u− 2ρ

)2

+ u

[
1− 2ρ

(
u+

v2

u− 2ρ

)]
≥ 0,

from condition (2.5). Thus ψ(s, ρ, δ) ≥ 0 for all s ∈ R. Hence, from (2.14) and (2.13), we have
<{H (is, t)} ≤ 0 for all s ∈ R and t ≤ −

(
1 + s2

)
/2. Thus, by using Lemma 2.2, we conclude that

Re(q(z)) > 0 for all z∈ U, which proves that the function G defined by (2.8) is convex (univalent) in U.
We next prove that

F (z) ≺ G(z) (z ∈ U) , (2.15)

if the subordination condition (2.6) holds. Without loss generality, we can assume G is analytic and
univalent in Uand G′(ζ) 6= 0 for |ζ| = 1. Otherwise, we replace F and G by Fr(z) = F (rz) and
Gr(z) = G(rz), respectively, where r (0 < r < 1). These functions satisfy the conditions of the
theorem on U, and we need to prove that Fr(z) ≺ Gr(z) for all r (0 < r < 1), which enables us to
prove (2.15) by letting r −→ 1−.
Let us define a function L(z, t) by

L(z, t) =

(
1− 1

δ

)
G(z) +

(1 + t) zG′(z)

δ
(t ≥ 0; z ∈ U). (2.16)

Then,
∂L(z, t)

∂z

∣∣∣∣
z=0

= G′(0)

(
1 +

t

δ

)
= 1 +

t

δ
6= 0(t ≥ 0), (2.17)

and this shows that the function L(z, t) = a1(t)z + a2(t)z2 + ..., with a1(t) = 1 + t
δ
6= 0 for all t ≥ 0

and lim
t→+∞

|a1(t)| = +∞.

From (2.16) and using the assumption (2.1), for all t ≥ 0, we have

|L(z, t)|
|a1(t)| ≤

|δ − 1|
|δ + t| |G(z)|+ (1 + t)

|δ + t|
∣∣zG′(z)∣∣
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≤ |G(z)|+
∣∣zG′(z)∣∣ . (2.18)

Since the function G is convex and normalized in the unit disc, we have the following growth and
distortion sharp bounds (see [33]).

r

1 + r
≤ |G(z)| ≤ r

1− r , |z| ≤ r < 1,

1

(1 + r)2 ≤
∣∣G′(z)∣∣ ≤ 1

(1− r)2 , |z| ≤ r < 1.

Using the upper bounds from these inequalities in (2.18), we have

|L(z, t)|
|a1(t)| ≤

r

1− r +
1

(1− r)2 ≤
1

(1− r)2 , |z| ≤ r < 1, t ≥ 0

and thus, the assumptions of Lemma 2.5 hold. Furthermore, from (2.17), we have

<
(
∂L(z, t)/∂z

∂L(z, t)/∂t

)
= <(δ)− 1 + (1 + t)<

(
1 +

zG′′(z)

G′(z)

)
> 0 (t ≥ 0; z ∈ U)

and according to Lemma 2.5, the function L(z, t) is a subordination chain. From the definition of
subordination chain and definition of subordination, we obtain

L(ζ, t) /∈ L(U, 0) = ϕ(U) whenever ζ ∈ ∂U, t ≥ 0.

Suppose that F is not subordinate to G, then by Lemma 2.3 there exists points z0 ∈ U and ζ0 ∈ ∂U,
and the number t ≥ 0, such that

F (z0) = G(ζ0) and z0F
′(z0) = (1 + t)ζ0G

′(ζ0).

From these two relations, and by virtue of the subordination condition (2.6), we deduce that

L(ζ0, t) =

(
1− 1

δ

)
G(ζ0) +

(1 + t) ζ0G
′(ζ0)

δ

=

(
1− 1

δ

)
F (ζ0) +

(1 + t) ζ0F
′(ζ0)

δ

=
1

zp−1

[
(1− β)Jm+1,p

λ,` (a, c, A)f(z0) + βJm,pλ,` (a+ 1, c, A)f(z0)
]
∈ ϕ(U)

which contradicts the above observation that L(ζ, t) /∈ ϕ(U). Therefore, the subordination condition
(2.6) must imply the subordination given by (2.15). Considering F (z) ≺ G(z), we see that function G
is best dominant, which completes the proof of theorem.

Corollary 2.1 Let λ > 0, m ∈ Z, ` > −p, p ∈ N, 0 ≤ β ≤ 1, A > 0, a, c ∈ C satisfying
<(c− a) ≥ 0 and <(a) > −Ap, <(δ) be given by (2.1). Let g ∈ A(p),

ψ1(z) =
1

zp−1

[
1− β + β

A(`+ p)

λ(a+Ap)

]
Jm+1,p
λ,` (a, c, A)g(z)

+
β

zp−1

[
1− A(`+ p)

λ (a+Ap)

]
Jm,pλ,` (a, c, A)g(z) (2.19)

satisfies

<
(

1 +
zψ′′1 (z)

ψ′1(z)

)
> −ρ (z ∈ U) ,

where ρ = 0 if <(δ) = 1 and for <(δ) > 1, ρ is given by (2.4) with (2.5). If f ∈ A(p) and

1

zp−1

[
1− β + β

A(`+ p)

λ(a+Ap)

]
Jm+1,p
λ,` (a, c, A)f(z)
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+
β

zp−1

[
1− A(`+ p)

λ (a+Ap)

]
Jm,pλ,` (a, c, A)f(z) ≺ ψ1(z), z ∈ U (2.20)

then
Jm,pλ,` (a, c, A)f(z)

zp−1
≺
Jm,pλ,` (a, c, A)g(z)

zp−1
, z ∈ U.

Moreover, the function
Jm,p
λ,`

(a,c,A)g(z)

zp−1 is the best dominant of (2.20).

Corollary 2.2 Let λ > 0, m ∈ Z, ` > −p, p ∈ N, 0 ≤ β ≤ 1, A > 0, a, c ∈ C satisfying
<(c− a) ≥ 0 and <(a) > −Ap, <(δ) be given by (2.1). Let g ∈ A(p),

ψ2(z) =
1− β
zp−1

[
1− λ(a+Ap)

A(`+ p)

]
Jm,pλ,` (a, c, A)g(z)

+
1

zp−1

[
(1− β)

λ(a+Ap)

A(`+ p)
+ β

]
Jm,pλ,` (a+ 1, c, A)g(z) (2.21)

satisfies

<
(

1 +
zψ′′2 (z)

ψ′2(z)

)
> −ρ (z ∈ U) ,

where ρ = 0 if <(δ) = 1 and for <(δ) > 1, ρ is given by (2.4) with (2.5). Let f ∈ A(p) and

1− β
zp−1

[
1− λ(a+Ap)

A(`+ p)

]
Jm,pλ,` (a, c, A)f(z)

+
1

zp−1

[
(1− β)

λ(a+Ap)

A(`+ p)
+ β

]
Jm,pλ,` (a+ 1, c, A)f(z) ≺ ψ2(z), z ∈ U (2.22)

then
Jm,pλ,` (a, c, A)f(z)

zp−1
≺
Jm,pλ,` (a, c, A)g(z)

zp−1
, z ∈ U.

Moreover, the function
Jm,p
λ,`

(a,c,A)g(z)

zp−1 is the best dominant of (2.22).
Putting β = 0 and 1, respectively, in Corollary 2.1 and 2.2, we obtain the following corollaries.

Corollary 2.3 Let f, g ∈ A(p), ` > −p, p ∈ N, A > 0, a, c ∈ C, λ > 0 be such that `+p
pλ
≥ 1,

m ∈ Z. Further, let

<
(

1 +
zχ′′(z)

χ′(z)

)
> −ξ, z ∈ U, χ(z) =

Jm+1,p
λ,` (a, c, A)g(z)

zp−1
,

where ξ = 0 if `+p
pλ

= 1 and for `+p
pλ

> 1,

ξ ≤

{
`+p(1−λ)

2pλ
< `+p

pλ
≤ 2,

pλ
2(`+p(1−λ))

, `+p
pλ

> 2.

Then
Jm+1,p
λ,`

(a,c,A)f(z)

zp−1 ≺
Jm+1,p
λ,`

(a,c,A)g(z)

zp−1 ⇒
Jm,p
λ,`

(a,c,A)f(z)

zp−1 ≺
Jm,p
λ,`

(a,c,A)g(z)

zp−1 , z ∈ U. Moreover, the

function
Jm,p
λ,`

(a,c,A)g(z)

zp−1 is the best dominant.
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Corollary 2.4 Let f, g ∈ A(p), λ > 0, m ∈ Z, ` > −p, p ∈ N, A > 0, a, c ∈ C satisfying
<(c− a) ≥ 0 and <(a) ≥ 0.Further, let

<
(

1 +
zκ′′(z)

κ′(z)

)
> −σ, z ∈ U, κ(z) =

Jm,pλ,` (a+ 1, c, A)g(z)

zp−1

where σ = 0 if <(a) = 0 and for <(a) > 0,

σ ≤

{
<(a)
2Ap

, <(a) ≤ Ap,
Ap

2<(a)
, <(a) > Ap,

(2.23)

(=(a))2 ≤ (<(a)− 2σAp)

(
Ap

2σ
−<(a)

)
(2.24)

equality in (2.23) and (2.24) occur only if =(a) = 0. Then
Jm,p
λ,`

(a+1,c,A)f(z)

zp−1 ≺
Jm,p
λ,`

(a+1,c,A)g(z)

zp−1

⇒
Jm,p
λ,`

(a,c,A)f(z)

zp−1 ≺
Jm,p
λ,`

(a,c,A)g(z)

zp−1 , z ∈ U. Moreover, the function
Jm,p
λ,`

(a,c,A)g(z)

zp−1 is the best
dominant.

Remark 2.1. Putting p = 1 in the our main results, we obtain the results obtained by Raina and
Sharma [32].

Applications
We will give an interesting special case of our main results, obtained for an appropriate choice

of the function g and the corresponding parameters.
Thus, for λ > 0, A > 0 , a, c ∈ C satisfying <(c − a) ≥ 0, <(a) > −A, and β < 1, let consider the
function g ∈ A defined by

g(z) = z +

∞∑
n=1

an+1z
n+1 (z ∈ U),

with

an+1 = 1
n+1

(
`+1

1+`+λn

)m
Γ(a+A)
Γ(c+A)

Γ(c+(n+1)A)
Γ(a+(n+1)A)

.
(

1 + n
[
(1− β) λ

1+`
+ β A

a+A

])−1 (−2(ρ+1)
n

)
(n ≥ 1) , (2.25)

where ρ is given by (2.4) (
θ

n

)
=
θ(θ − 1)...(θ − n+ 1)

n!
, θ ∈ C, n ∈ N. (2.26)

If the function ϕ is given by (2.2), with p = 1, then

ϕ(z) =
1− (1 + z)−(2ρ+1)

2ρ+ 1
(z ∈ U),

where the power is principal one, i.e.

(1 + z)−(2ρ+1)
∣∣∣
z=0

= 1.

We can see that

<
(

1 +
zϕ′′(z)

ϕ′(z)

)
= <1− (2ρ+ 1) z

1 + z
> −ρ (z ∈ U) ,

and from Theorem 2.1, we can obtain:

3008



British Journal of Mathematics and Computer Science 4(21), 3000-3013, 2014

Example 2.1 Let 0≤ β ≤ 1, λ > 0, A > 0, a , c ∈ C satisfying <(c− a) ≥ 0, <(a) > −A and let ρ
is given by (2.4).

If f ∈ A such that

(1− β)Jm+1,1
λ,` (a, c, A)f(z) + βJm,1λ,` (a+ 1, c, A)f(z) ≺ 1−(1+z)−(2ρ+1)

2ρ+1
,

then

Jm,1λ,` (a, c, A)f(z) ≺ z +

∞∑
n=1

1
n+1

(
1 + n

[
(1− β) λ

1+`
+ β A

a+A

])−1 (−2(ρ+1)
n

)
zn+1,

and the right-hand side function is the best subordinant.

Also, let consider the function g ∈ A defined by

g(z) = z +

∞∑
n=1

an+1z
n+1 (z ∈ U),

with an+1 is given by (2.25), ρ is given by (2.4) and
(
θ
n

)
is given by (2.26).

If the function ψ1 is given by (2.19), with p = 1, then

ψ1(z) =
1− (1 + z)−(2ρ+1)

2ρ+ 1
(z ∈ U),

where the power is principal one, i.e.

(1 + z)−(2ρ+1)
∣∣∣
z=0

= 1.

We can see that

<
(

1 +
zψ′′1 (z)

ψ′1(z)

)
= <1− (2ρ+ 1) z

1 + z
> −ρ (z ∈ U) ,

and from Corollary 2.1, we can obtain:

Example 2.2 Let λ > 0, m ∈ Z, ` > −1, 0 ≤ β ≤ 1, A > 0, a , c ∈ C satisfying <(c− a) ≥ 0 and
<(a) > −A, <(δ) be given (2.1). If f ∈ A such that

[
1− β + β A(`+1)

λ(a+A)

]
Jm+1,1
λ,` (a, c, A)f(z) + β

[
1− A(`+ 1)

λ (a+A)

]
Jm,1λ,` (a, c, A)f(z)

≺ 1−(1+z)−(2ρ+1)

2ρ+1
,

then

Jm,1λ,` (a, c, A)f(z) ≺ z +

∞∑
n=1

1
n+1

(
1 + n

[
(1− β) λ

1+`
+ β A

a+A

])−1 (−2(ρ1+1)
n

)
zn+1,

and the right-hand side function is the best dominant.

Finally, let consider the function g ∈ A defined by

g(z) = z +

∞∑
n=1

an+1z
n+1 (z ∈ U),

with an+1 is given by (2.25), ρ is given by (2.4) and
(
θ
n

)
is given by (2.26).
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If the function ψ2(z) is given by (2.21), with p = 1, then

ψ2(z) =
1− (1 + z)−(2ρ+1)

2ρ+ 1
(z ∈ U),

where the power is principal one, i.e.

(1 + z)−(2ρ+1)
∣∣∣
z=0

= 1.

We can see that

<
(

1 +
zψ′′2 (z)

ψ′2(z)

)
= <1− (2ρ+ 1) z

1 + z
> −ρ (z ∈ U) ,

and from Corollary 2.2, we can obtain:

Example 2.3 Let λ > 0, m ∈ Z, ` > −1, 0 ≤ β ≤ 1, A > 0, a, c ∈ C satisfying <(c− a) ≥ 0 and
<(a) > −A, <(δ) be given (2.1). If f ∈ A such that

(1− β)
[
1− λ(a+A)

A(`+1)

]
Jm,1λ,` (a, c, A)f(z) +

[
(1− β) λ(a+A)

A(`+1)
+ β

]
Jm,1λ,` (a+ 1, c, A)f(z)

≺ 1−(1+z)−(2ρ+1)

2ρ+1
,

then

Jm,1λ,` (a, c, A)f(z) ≺ z +

∞∑
n=1

1
n+1

(
1 + n

[
(1− β) λ

1+`
+ β A

a+A

])−1 (−2(ρ1+1)
n

)
zn+1,

and the right-hand side function is the best dominant.

3 Conclusions
In this work, analytic p-valent functions defined on the unit disc, are studied with help of new transformation.
This transformation is the modified an Erdelyi-Kober type [2] integral operator combining with Prajapat
operator [1]. Using the new transformation and the techniques of differential subordination we obtained
subordination theorems. Many interesting particular cases of main thm are emphasized in the form
of corollaries and examples.
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