

SCIENCEDOMAIN international www.sciencedomain.org



# Subordination Properties of p-valent Functions Defined by Linear Operators

**R. M. EL-Ashwah**<sup>1\*</sup> and **M. E. Drbuk**<sup>1</sup>

<sup>1</sup>Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt.

Original Research Article

> Received: 18 June 2014 Accepted: 08 July 2014 Published: 10 August 2014

## Abstract

In this paper we study different applications of the theory of differential subordination defined on the space of p-valent functions which are defined by linear operators. Also, some examples are given.

Keywords: Analytic functions, convex functions, linear operators, differential subordination and subordination.

2010 Mathematics Subject Classification: 30C45.

# 1 Introduction

Let  $\mathcal{H}(U)$  be the class of analytic functions in the open unit disc  $U=\{z \in \mathbb{C} : |z| < 1\}$  and let  $\mathcal{H}[a, p]$  be the subclass of  $\mathcal{H}(\mathbb{U})$  consisting of functions of the form:

$$f(z) = a + a_p z^p + a_{p+1} z^{p+1} + \dots \qquad (a \in \mathbb{C}; \ p \in \mathbb{N} = \{1, 2, \dots\}).$$

Also, let  $\mathcal{A}(p)$  be the subclass of the functions  $f \in \mathcal{H}(\mathbb{U})$  of the form:

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \quad (p \in \mathbb{N}),$$
(1.1)

and set A = A(1) the class of univalent functions. Let K denotes the class of all convex functions in A which are satisfy the condition

$$\mathcal{K} = \left\{ f \in \mathcal{A} : \Re \left\{ 1 + \frac{z f^{''}(z)}{f'(z)} \right\} > 0 \ (z \in \mathbb{U}) \right\}.$$

\*Corresponding author: E-mail: r\_elashwah@yahoo.com

For  $f, g \in \mathcal{H}(U)$ , we say that f is subordinate to g, or g is superordinate to f, written as  $f \prec g$  or  $f(z) \prec g(z)$ , if there exists a Schwarz function  $\omega(z)$ , which ( by definition ) is analytic in U with  $\omega(0) = 0$  and  $|\omega(z)| < 1 \quad (z \in U)$  such that  $f(z) = g(\omega(z)) \quad (z \in U)$ . Furthermore, if the function g is univalent in U, then we have the following equivalence:

$$f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

For  $m \in \mathbb{Z}, \ell > -p, \lambda \ge 0$ , Prajapat [1] introduced the operator  $J_p^m(\lambda, \ell) : \mathcal{A}(p) \longrightarrow \mathcal{A}(p)$ , where

$$J_p^m(\lambda,\ell) = z^p + \sum_{n=p+1}^{\infty} \left(\frac{p+\ell+\lambda(n-p)}{p+\ell}\right)^m a_n z^n.$$

Also, let for  $A > 0, a, c \in \mathbb{C}$  be such that  $\Re(c-a) > 0$  and  $\Re(a) > -Ap$ , modified an Erdelyi-Kober type [2] integral operator, we define the linear operator  $\mathcal{I}_{p,A}^{a,c} : \mathcal{A}(p) \longrightarrow \mathcal{A}(p)$  by

$$\mathcal{I}_{p,A}^{a,c}f(z) = \frac{\Gamma(c+Ap)}{\Gamma(a+Ap)\Gamma(c-a)} \int_0^1 (1-t)^{c-a-1} t^{a-1} f(zt^A) dt$$

$$= \frac{\Gamma(c+Ap)}{\Gamma(a+Ap)\Gamma(c-a)} \int_0^1 [(1-t)^{c-a-1} t^{a+Ap-1} z^p + \sum_{n=p+1}^\infty (1-t)^{c-a-1} t^{a+An-1} z^n] dt$$

$$= z^{p} + \frac{\Gamma(c+Ap)}{\Gamma(a+Ap)} \sum_{n=p+1}^{\infty} \frac{\Gamma(a+nA)}{\Gamma(c+nA)} a_{n} z^{n}$$
(1.2)

and

$$\mathcal{I}_{p,A}^{a,a}f(z) = f(z).$$

Let for  $m \in \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$  and  $A > 0, \lambda \ge 0, \ell > -p, a, c \in \mathbb{C}$  be such that  $\Re(c - a) > 0$  and  $\Re(a) > -Ap$ , we define the linear operator  $\mathcal{J}_{\lambda,\ell}^{m,p}(a, c, A) : \mathcal{A}(p) \longrightarrow \mathcal{A}(p)$  by

$$\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z) = \left(J_p^m\left(\lambda,\ell\right)\left(\mathcal{I}_{p,A}^{a,c}f(z)\right) = \mathcal{I}_{p,A}^{a,c}\left(J_p^m\left(\lambda,\ell\right)f(z)\right)$$

$$\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z) = z^p + \frac{\Gamma(c+Ap)}{\Gamma(a+Ap)} \sum_{n=p+1}^{\infty} \left(\frac{p+\ell+\lambda(n-p)}{p+\ell}\right)^m \frac{\Gamma(a+nA)}{\Gamma(c+nA)} a_n z^n.$$
(1.3)

It is readily verified from (1.3) that

$$\mathcal{J}^{m,p}_{\lambda,\ell}(a+1,c,A)f(z) = \frac{a}{a+Ap}\mathcal{J}^{m,p}_{\lambda,\ell}(a,c,A)f(z) + \frac{A}{a+Ap}z\left(\mathcal{J}^{m,p}_{\lambda,\ell}(a,c,A)f(z)\right)'$$
(1.4)

and

$$\mathcal{J}_{\lambda,\ell}^{m+1,p}(a,c,A)f(z) = (1 - \frac{p\lambda}{p+\ell})\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z) + \frac{\lambda}{p+\ell}z\left(\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z)\right)'.$$
(1.5)

Putting c = a in (1.3) and by specializing the parameters  $\lambda$ ,  $\ell$  and p, we obtain the following operators studied by various authors:

(i)  $\mathcal{J}_{\lambda,\ell}^{m,p}(a, a, A)f(z) = I_p^m(\lambda,\ell)f(z) \ (\ell \ge 0, \ \lambda \ge 0, \ p \in \mathbb{N} \ \text{and} \ m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\})$  (see [3]). (ii)  $\mathcal{J}_{1,\ell}^{m,p}(a, a, A)f(z) = I_p(m,\ell)f(z) \ (\ell \ge 0, \ p \in \mathbb{N} \ \text{and} \ m \in \mathbb{N}_0)$  (see [4,5]). (iii)  $\mathcal{J}_{\lambda,0}^{m,p}(a, a, A) = D_{\lambda,p}^m f(z) \ (\lambda \ge 0, \ p \in \mathbb{N} \ \text{and} \ m \in \mathbb{N}_0)$  (see [6]). (iv)  $\mathcal{J}_{1,0}^{m,p}(a, a, A) = D_p^m f(z) \ (p \in \mathbb{N} \ \text{and} \ m \in \mathbb{N}_0)$  (see [7,8]). (v)  $\mathcal{J}_{\lambda,\ell}^{-m,p}(a, a, A) = J_p^m(\lambda,\ell)f(z) \ (\ell \ge 0, \ \lambda \ge 0, \ p \in \mathbb{N} \ \text{and} \ m \in \mathbb{N}_0)$  (see [9,10,11]). (vi)  $\mathcal{J}_{1,1}^{-m,p}(a, a, A) = J_p^m f(z) \ (m \in \mathbb{Z})$  (see [12]). (vii)  $\mathcal{J}_{1,0}^{m,1}(a, a, A) = I_\ell^m f(z) \ (\ell \ge 0 \ \text{and} \ m \in \mathbb{N}_0)$  (see [13,14]). (viii)  $\mathcal{J}_{\lambda,0}^{m,1}(a, a, A) = D_\lambda^m f(z) \ (\lambda \ge 0 \ \text{and} \ m \in \mathbb{N}_0)$  (see [15]). (ix)  $\mathcal{J}_{1,0}^{-m,1}(a, a, A) = D_\lambda^m f(z) \ (m \in \mathbb{N}_0)$  (see [16]). (x)  $\mathcal{J}_{\lambda,1}^{-m,1}(a, a, A) = I_\lambda^m f(z) \ (\lambda \ge 0 \ \text{and} \ m \in \mathbb{N}_0)$  (see [17,18]). (xi)  $\mathcal{J}_{1,1}^{-m,1}(a, a, A) = I^m f(z) \ (m \in \mathbb{N}_0)$  (see [19]).

Following definitions are due to Miller and Mocanu.

**Definition 1.1** (20, Definition 2.2b, p. 21). Denote by Q the class of functions f that are analytic and injective on  $\overline{U} \setminus E(f)$ ,

$$E(f) = \left\{ \zeta \in \partial U : \lim_{z \to \zeta} f(z) = \infty \right\},\$$

and are such that  $f'(\zeta) \neq 0$  for  $\zeta \in \partial U \setminus E(f)$ .

**Definition 1.2** (20, p. 16). Let  $\psi : \mathbb{C}^2 \longrightarrow \mathbb{C}$  and let *h* be univalent in *U*. If p(z) is analytic in *U* and satisfies the following first order differential subordination

$$\psi\left(p(z), zp'(z)\right) \prec h(z),\tag{1.6}$$

then p(z) is called a solution of the differential subordination (1.6). A univalent function q(z) is called a dominant of the solution of the differential subordination (1.6) or more simply, a dominant if  $p(z) \prec q(z)$  for all p(z) satisfying (1.6). A dominant  $\tilde{q}(z)$  that satisfies  $\tilde{q}(z) \prec q(z)$  for all dominants q(z) of (1.6) is said to be the best dominant of (1.6).

A function  $L(z,t): U \times [0,\infty) \longrightarrow \mathbb{C}$  is called a Löwner (subordination) chain if L(.,t) is analytic and univalent in U for all  $t \ge 0$ , and  $L(z,s) \prec L(z,t)$ ,  $0 \le s \le t$ .

Recently, based on certain linear operators, some subordination preserving results have been obtained in [21], [22], [23], [24], [25], [26], [27] and [28]. In this paper, we obtain some subordination preserving properties associated with the new class of operators  $\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)$  involving complex parameters.

#### 2 The Main Results

**Lemma 2.1** (29, Theorem 1, p. 300). Let  $\beta, \gamma \in \mathbb{C}$  with  $\beta \neq 0$ , and let  $h \in \mathcal{H}(U)$  with h(0) = c. If  $\Re(\beta h(z) + \gamma) > 0$  for  $z \in U$ , then the differential equation

$$q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} = h(z), q(0) = c,$$

has an analytic solution in U, that satisfy  $\Re (\beta q(z) + \gamma) > 0, z \in U$ .

**Lemma 2.2** [20, Theorem 2.3i, p. 35]. Suppose that the function  $H : \mathbb{C}^2 \longrightarrow \mathbb{C}$  satisfies the condition

$$\Re\left(H(is,t)\right) \le 0,$$

for all  $s, t \in \mathbb{R}$  with  $t \leq -n(1+s^2)/2, n \in \mathbb{N}$ . If the function  $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \dots$  is analytic in U and

$$\Re \{ H(p(z), zp'(z)) \} > 0 \ (\mathbf{z} \in U),$$

then  $\Re(p(z)) > 0, z \in U$ . Lemma 2.3 (20, Lemma 2.2d, p. 24). Let  $q \in Q$  with q(0) = a, and let  $p(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots$  be analytic in U with  $p(z) \neq a, n \in \mathbb{N}$ . If p is not subordinate to q, then there exist the points  $z_0 = r_0 e^{i\theta} \in U$  and  $\zeta_0 \in \partial U \setminus E(f)$  such that  $p(U_{r_0}) \subset q(U), p(z_0) = q(\zeta_0)$  and  $z_0 p'(z_0) = m\zeta_0 q'(\zeta_0), m \ge n$ , where  $U_{r_0} = \{z \in \mathbb{C} : |z| < r_0\}$ .

**Lemma 2.4** (30, Theorem 7, p. 882). Let  $q \in \mathcal{H}(U)$  and let  $\phi : \mathbb{C}^2 \longrightarrow \mathbb{C}$ , and set  $\phi(q(z), zq'(z)) = h(z)$ . If  $L(z,t) = \phi(q(z), tzq'(z))$  is a subordination chain and  $p \in \mathcal{H}[a, 1] \cap Q$ , then

$$h(z) \prec \phi\left(p(z), zp'(z)\right)$$

implies that

$$q(z) \prec p(z).$$

Furthermore, if the differential equation  $\phi(q(z), tzq'(z)) = h(z)$  has a univalent solution  $q \in Q$ , then q is the best subordinant.

**Lemma 2.5** [31, p. 159] Let  $L(z,t) = a_1(t)z + a_2(t)z^2 + ...$ , with  $a_1(t) \neq 0$  for all  $t \geq 0$ and  $\lim_{t \to +\infty} |a_1(t)| = +\infty$ . Suppose that L(.,t) is analytic in U for all  $t \geq 0, L(.,t)$  is continuously differentiable on  $[0,\infty)$  for all  $z \in U$ . If L(z,t) satisfies

$$\Re\left(\frac{\partial L/\partial z}{\partial L/\partial t}\right) > 0 \qquad (t \ge 0; z \in U)$$

and

$$|L(z,t)| \le K_0 |a_1(t)|, |z| < r_0 < 1, t \ge 0$$

for some positive constant  $K_0$  and  $r_0$ , then L(z, t) is a subordination chain.

Employing the techniques used in [32], we can prove the following theorem:

**Theorem 2.1** Let for  $\lambda > 0, m \in \mathbb{Z}, \ell > -p, p \in \mathbb{N}, A > 0, a, c \in \mathbb{C}$  satisfying  $\Re(c-a) \ge 0$  and  $\Re(a) > -Ap$ , the operator  $\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)$  be defined by (1.3). Let for  $0 \le \beta \le 1$ ,

$$\delta = \frac{\left(\ell + p\right)\left(a + Ap\right)}{\left(1 - \beta\right)p\lambda\left(a + Ap\right) + \beta Ap\left(\ell + p\right)}$$
(2.1)

be such that  $\Re(\delta) \ge 1$  and for  $g \in \mathcal{A}(p)$ ,

$$\varphi(z) = \frac{(1-\beta) \mathcal{J}_{\lambda,\ell}^{m+1,p}(a,c,A)g(z) + \beta \mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)g(z)}{z^{p-1}},$$
(2.2)

satisfy

$$\Re\left(1 + \frac{z\varphi''(z)}{\varphi'(z)}\right) > -\rho \quad (z \in U),$$
(2.3)

where  $\rho = 0$  if  $\Re(\delta) = 1$  and for  $\Re(\delta) > 1$ ,

$$\rho \leq \begin{cases} \frac{\Re(\delta)-1}{2}, \Re(\delta) \leq 2, \\ \frac{1}{2(\Re(\delta)-1)}, & \Re(\delta) > 2, \end{cases}$$
(2.4)

and

$$\left(\Im(\delta)\right)^2 \le \left(\Re(\delta) - 1 - 2\rho\right) \left(\frac{1}{2\rho} - \Re(\delta) + 1\right),\tag{2.5}$$

the equality in (2.4) and (2.5) occur only when  $\Im(\delta) = 0$ . If  $f \in \mathcal{A}(p)$  satisfies

$$\frac{(1-\beta)\mathcal{J}_{\lambda,\ell}^{m+1,p}(a,c,A)f(z)}{z^{p-1}} + \frac{\beta\mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)f(z)}{z^{p-1}} \prec \varphi(z) \quad (z \in U),$$
(2.6)

then

$$\frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z)}{z^{p-1}} \prec \frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)g(z)}{z^{p-1}} \quad (z \in U).$$

$$(2.7)$$

Moreover, the function  $\frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)g(z)}{z^{p-1}}$  is the best dominant of (2.6).

Proof. Let

$$F(z) = \frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z)}{z^{p-1}} \text{ and } G(z) = \frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)g(z)}{z^{p-1}}.$$
 (2.8)

By hypothesis, we first show that the function G is convex (univalent). For let

$$q(z) = 1 + \frac{zG''(z)}{G'(z)} \quad (z \in U).$$
(2.9)

Using (1.4) and (1.5) for  $g \in \mathcal{A}(p)$ , we have

$$\varphi(z) = \left(1 - \frac{1}{\delta}\right)G(z) + \frac{zG'(z)}{\delta},$$
(2.10)

where  $\delta$  is given by (1.2). On differentiating (2.10) and using (2.9), we have

$$1 + \frac{z\varphi''(z)}{\varphi'(z)} = q(z) + \frac{zq'(z)}{q(z) + \delta - 1} =: h(z).$$
(2.11)

From (2.3) and (2.4), we have

$$\Re (h(z) + \delta - 1) > 0 \quad (z \in U),$$

and by Lemma 2.1, we deduce that the differential equation (2.11) has a solution  $q \in \mathcal{H}(\mathbb{U})$ , with q(0) = h(0) = 1. Let

$$H(u,v) = u + \frac{v}{u+\delta-1} + \rho,$$
(2.12)

where  $\rho$  is given by (2.4). From (2.3), (2.11) and (2.12)

$$\Re \left\{ H\left(q(z), q'(z)\right) \right\} > 0 \ (z \in U).$$

For all  $s \in \mathbb{R}$  and  $t \leq -(1+s^2)/2$ , using (2.12), we have

$$\Re \{H(is,t)\} = \Re \left( is + \frac{t}{is + \delta - 1} + \rho \right)$$

$$= \frac{(\Re (\delta) - 1)t}{|is + \delta - 1|^2} + \rho.$$
(2.13)

If  $\Re(\delta) = 1, \rho = 0$ , we have  $\Re\{H(is, t)\} = 0$  and if  $\Re(\delta) > 1$ ,

$$\Re\left\{H\left(is,t\right)\right\} \le -\frac{\psi(s,\rho,\delta)}{2\left|is+\delta-1\right|^2},\tag{2.14}$$

where

$$\psi(s,\rho,\delta) = (\Re(\delta) - 1) \left(1 + s^2\right) - 2\rho |is + \delta - 1|^2$$

taking  $\Re\left(\delta\right)-1=u$  and  $\Im(\delta)=v,$  we write

$$\psi(s,\rho,\delta) = (u-2\rho)s^2 - 4\rho vs + u - 2\rho(u^2 + v^2).$$

If v = 0, from (2.4), we have

$$\psi(s, \rho, \delta) = (u - 2\rho)s^{2} + (1 - 2\rho u) u \ge 0.$$

If  $v \neq 0$ , we assume that  $u - 2\rho > 0$  for any u > 0, we obtain

$$\psi(s,\rho,\delta) = (u-2\rho)\left(s - \frac{2\rho v}{u-2\rho}\right)^2 - \frac{4\rho^2 v^2}{u-2\rho} + u - 2\rho(u^2 + v^2)$$
$$= (u-2\rho)\left(s - \frac{2\rho v}{u-2\rho}\right)^2 + u\left[1 - 2\rho\left(u + \frac{v^2}{u-2\rho}\right)\right] \ge 0,$$

from condition (2.5). Thus  $\psi(s, \rho, \delta) \ge 0$  for all  $s \in \mathbb{R}$ . Hence, from (2.14) and (2.13), we have  $\Re \{H(is,t)\} \le 0$  for all  $s \in \mathbb{R}$  and  $t \le -(1+s^2)/2$ . Thus, by using Lemma 2.2, we conclude that Re(q(z)) > 0 for all  $z \in U$ , which proves that the function *G* defined by (2.8) is convex (univalent) in *U*. We next prove that

$$F(z) \prec G(z) \quad (z \in U), \tag{2.15}$$

if the subordination condition (2.6) holds. Without loss generality, we can assume *G* is analytic and univalent in  $\overline{U}$  and  $G'(\zeta) \neq 0$  for  $|\zeta| = 1$ . Otherwise, we replace *F* and *G* by  $F_r(z) = F(rz)$  and  $G_r(z) = G(rz)$ , respectively, where  $r \quad (0 < r < 1)$ . These functions satisfy the conditions of the theorem on  $\overline{U}$ , and we need to prove that  $F_r(z) \prec G_r(z)$  for all  $r \quad (0 < r < 1)$ , which enables us to prove (2.15) by letting  $r \longrightarrow 1^-$ . Let us define a function L(z,t) by

$$L(z,t) = \left(1 - \frac{1}{\delta}\right)G(z) + \frac{(1+t)zG'(z)}{\delta} \quad (t \ge 0; z \in U).$$
(2.16)

Then,

$$\frac{\partial L(z,t)}{\partial z}\Big|_{z=0} = G'(0)\left(1+\frac{t}{\delta}\right) = 1+\frac{t}{\delta} \neq 0 (t \ge 0),$$
(2.17)

and this shows that the function  $L(z,t) = a_1(t)z + a_2(t)z^2 + \dots$ , with  $a_1(t) = 1 + \frac{t}{\delta} \neq 0$  for all  $t \ge 0$  and  $\lim_{t \to +\infty} |a_1(t)| = +\infty$ .

From (2.16) and using the assumption (2.1), for all  $t \ge 0$ , we have

$$\frac{|L(z,t)|}{|a_1(t)|} \le \frac{|\delta-1|}{|\delta+t|} |G(z)| + \frac{(1+t)}{|\delta+t|} |zG'(z)|$$

$$\leq |G(z)| + |zG'(z)|.$$
 (2.18)

Since the function G is convex and normalized in the unit disc, we have the following growth and distortion sharp bounds (see [33]).

$$\frac{r}{1+r} \le |G(z)| \le \frac{r}{1-r}, \quad |z| \le r < 1,$$
$$\frac{1}{(1+r)^2} \le |G'(z)| \le \frac{1}{(1-r)^2}, \quad |z| \le r < 1.$$

Using the upper bounds from these inequalities in (2.18), we have

$$\frac{|L(z,t)|}{|a_1(t)|} \le \frac{r}{1-r} + \frac{1}{(1-r)^2} \le \frac{1}{(1-r)^2}, \quad |z| \le r < 1, \ t \ge 0$$

and thus, the assumptions of Lemma 2.5 hold. Furthermore, from (2.17), we have

$$\Re\left(\frac{\partial L(z,t)/\partial z}{\partial L(z,t)/\partial t}\right) = \Re(\delta) - 1 + (1+t)\Re\left(1 + \frac{zG''(z)}{G'(z)}\right) > 0 \quad (t \ge 0; \ z \in U)$$

and according to Lemma 2.5, the function L(z,t) is a subordination chain. From the definition of subordination chain and definition of subordination, we obtain

 $L(\zeta, t) \notin L(U, 0) = \varphi(U)$  whenever  $\zeta \in \partial U, t \ge 0$ .

Suppose that *F* is not subordinate to *G*, then by Lemma 2.3 there exists points  $z_0 \in U$  and  $\zeta_0 \in \partial U$ , and the number  $t \ge 0$ , such that

$$F(z_0) = G(\zeta_0)$$
 and  $z_0 F'(z_0) = (1+t)\zeta_0 G'(\zeta_0)$ .

From these two relations, and by virtue of the subordination condition (2.6), we deduce that

$$L(\zeta_0, t) = \left(1 - \frac{1}{\delta}\right) G(\zeta_0) + \frac{(1+t)\zeta_0 G'(\zeta_0)}{\delta}$$
  
=  $\left(1 - \frac{1}{\delta}\right) F(\zeta_0) + \frac{(1+t)\zeta_0 F'(\zeta_0)}{\delta}$   
=  $\frac{1}{z^{p-1}} \left[(1-\beta)\mathcal{J}_{\lambda,\ell}^{m+1,p}(a,c,A)f(z_0) + \beta\mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)f(z_0)\right] \in \varphi(U)$ 

which contradicts the above observation that  $L(\zeta, t) \notin \varphi(U)$ . Therefore, the subordination condition (2.6) must imply the subordination given by (2.15). Considering  $F(z) \prec G(z)$ , we see that function G is best dominant, which completes the proof of theorem.

**Corollary 2.1** Let  $\lambda > 0$ ,  $m \in \mathbb{Z}$ ,  $\ell > -p$ ,  $p \in \mathbb{N}$ ,  $0 \le \beta \le 1$ , A > 0,  $a, c \in \mathbb{C}$  satisfying  $\Re(c-a) \ge 0$  and  $\Re(a) > -Ap$ ,  $\Re(\delta)$  be given by (2.1). Let  $g \in \mathcal{A}(p)$ ,

$$\psi_{1}(z) = \frac{1}{z^{p-1}} \left[ 1 - \beta + \beta \frac{A(\ell+p)}{\lambda(a+Ap)} \right] \mathcal{J}_{\lambda,\ell}^{m+1,p}(a,c,A)g(z) + \frac{\beta}{z^{p-1}} \left[ 1 - \frac{A(\ell+p)}{\lambda(a+Ap)} \right] \mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)g(z)$$
(2.19)

satisfies

$$\Re\left(1+\frac{z\psi_1''(z)}{\psi_1'(z)}\right) > -\rho \quad (z \in U)\,,$$

where  $\rho = 0$  if  $\Re(\delta) = 1$  and for  $\Re(\delta) > 1$ ,  $\rho$  is given by (2.4) with (2.5). If  $f \in \mathcal{A}(p)$  and

$$\frac{1}{z^{p-1}} \left[ 1 - \beta + \beta \frac{A(\ell+p)}{\lambda(a+Ap)} \right] \mathcal{J}_{\lambda,\ell}^{m+1,p}(a,c,A) f(z)$$

$$+\frac{\beta}{z^{p-1}}\left[1-\frac{A(\ell+p)}{\lambda(a+Ap)}\right]\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z)\prec\psi_1(z), \ z\in U$$

$$\frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z)}{z^{p-1}}\prec\frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)g(z)}{z^{p-1}}, \ z\in U.$$
(2.20)

then

Moreover, the function 
$$\frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)g(z)}{z^{p-1}}$$
 is the best dominant of (2.20).

Corollary 2.2 Let  $\lambda > 0, m \in \mathbb{Z}, \ell > -p, p \in \mathbb{N}, 0 \le \beta \le 1, A > 0, a, c \in \mathbb{C}$  satisfying  $\Re(c-a) \ge 0$  and  $\Re(a) > -Ap, \Re(\delta)$  be given by (2.1). Let  $g \in \mathcal{A}(p)$ ,

$$\psi_{2}(z) = \frac{1-\beta}{z^{p-1}} \left[ 1 - \frac{\lambda(a+Ap)}{A(\ell+p)} \right] \mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)g(z) + \frac{1}{z^{p-1}} \left[ (1-\beta) \frac{\lambda(a+Ap)}{A(\ell+p)} + \beta \right] \mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)g(z)$$
(2.21)

satisfies

$$\Re\left(1+\frac{z\psi_2''(z)}{\psi_2'(z)}\right)>-\rho\quad (z\in U)\,,$$

where  $\rho = 0$  if  $\Re(\delta) = 1$  and for  $\Re(\delta) > 1$ ,  $\rho$  is given by (2.4) with (2.5). Let  $f \in \mathcal{A}(p)$  and

$$\frac{1-\beta}{z^{p-1}} \left[ 1 - \frac{\lambda(a+Ap)}{A(\ell+p)} \right] \mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z)$$
  
+ 
$$\frac{1}{z^{p-1}} \left[ (1-\beta) \frac{\lambda(a+Ap)}{A(\ell+p)} + \beta \right] \mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)f(z) \prec \psi_2(z), \quad z \in U$$
 (2.22)

then

$$\frac{\mathcal{J}^{m,p}_{\lambda,\ell}(a,c,A)f(z)}{z^{p-1}}\prec \frac{\mathcal{J}^{m,p}_{\lambda,\ell}(a,c,A)g(z)}{z^{p-1}}, \ z\in U.$$

Moreover, the function  $\frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)g(z)}{z^{p-1}}$  is the best dominant of (2.22). Putting  $\beta = 0$  and 1, respectively, in Corollary 2.1 and 2.2, we obtain the following corollaries.

**Corollary 2.3** Let  $f, g \in \mathcal{A}(p), \ell > -p, p \in \mathbb{N}, A > 0, a, c \in \mathbb{C}, \lambda > 0$  be such that  $\frac{\ell + p}{p\lambda} \ge 1$ ,  $m \in \mathbb{Z}$ . Further, let

$$\Re\left(1+\frac{z\chi''(z)}{\chi'(z)}\right) > -\xi, \ z \in U, \ \chi(z) = \frac{\mathcal{J}_{\lambda,\ell}^{m+1,p}(a,c,A)g(z)}{z^{p-1}},$$

where  $\xi = 0$  if  $\frac{\ell + p}{p\lambda} = 1$  and for  $\frac{\ell + p}{p\lambda} > 1$ ,

$$\xi \leq \left\{ \begin{array}{c} \frac{\ell + p(1-\lambda)}{2p\lambda} < \frac{\ell + p}{p\lambda} \leq 2, \\ \frac{p\lambda}{2(\ell + p(1-\lambda))}, \quad \frac{\ell + p}{p\lambda} > 2. \end{array} \right.$$

 $\begin{array}{l} \text{Then } \frac{\mathcal{I}_{\lambda,\ell}^{m+1,p}(a,c,A)f(z)}{z^{p-1}} \prec \frac{\mathcal{I}_{\lambda,\ell}^{m+1,p}(a,c,A)g(z)}{z^{p-1}} \Rightarrow \frac{\mathcal{I}_{\lambda,\ell}^{m,p}(a,c,A)f(z)}{z^{p-1}} \prec \frac{\mathcal{I}_{\lambda,\ell}^{m,p}(a,c,A)g(z)}{z^{p-1}}, z \in U. \text{ Moreover, the function } \frac{\mathcal{I}_{\lambda,\ell}^{m,p}(a,c,A)g(z)}{z^{p-1}} \text{ is the best dominant.} \end{array}$ 

**Corollary 2.4** Let  $f, g \in \mathcal{A}(p), \lambda > 0, m \in \mathbb{Z}, \ell > -p, p \in \mathbb{N}, A > 0, a, c \in \mathbb{C}$  satisfying  $\Re(c-a) \ge 0$  and  $\Re(a) \ge 0$ .Further, let

$$\Re\left(1+\frac{z\kappa''(z)}{\kappa'(z)}\right) > -\sigma, \ z \in U, \ \kappa(z) = \frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)g(z)}{z^{p-1}}$$

where  $\sigma = 0$  if  $\Re(a) = 0$  and for  $\Re(a) > 0$ ,

$$\sigma \leq \begin{cases} \frac{\Re(a)}{2Ap}, & \Re(a) \le Ap, \\ \frac{Ap}{2\Re(a)}, & \Re(a) > Ap, \end{cases}$$
(2.23)

$$\left(\Im(a)\right)^2 \le \left(\Re(a) - 2\sigma Ap\right) \left(\frac{Ap}{2\sigma} - \Re(a)\right)$$

$$\pi^{m,p}(z+1,z,A)f(z) = \pi^{m,p}(z+1,z,A)f(z)$$
(2.24)

equality in (2.23) and (2.24) occur only if  $\Im(a) = 0$ . Then  $\frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)f(z)}{z^{p-1}} \prec \frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a+1,c,A)g(z)}{z^{p-1}}$   $\Rightarrow \frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)f(z)}{z^{p-1}} \prec \frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)g(z)}{z^{p-1}}, z \in U$ . Moreover, the function  $\frac{\mathcal{J}_{\lambda,\ell}^{m,p}(a,c,A)g(z)}{z^{p-1}}$  is the best

dominant.

Remark 2.1. Putting p = 1 in the our main results, we obtain the results obtained by Raina and Sharma [32].

#### **Applications**

We will give an interesting special case of our main results, obtained for an appropriate choice of the function g and the corresponding parameters.

Thus, for  $\lambda > 0$ , A > 0,  $a, c \in \mathbb{C}$  satisfying  $\Re(c-a) \ge 0$ ,  $\Re(a) > -A$ , and  $\beta < 1$ , let consider the function  $g \in \mathcal{A}$  defined by

$$g(z) = z + \sum_{n=1}^{\infty} a_{n+1} z^{n+1} \quad (z \in U),$$

with

$$a_{n+1} = \frac{1}{n+1} \left(\frac{\ell+1}{1+\ell+\lambda n}\right)^m \frac{\Gamma(a+A)}{\Gamma(a+A)} \frac{\Gamma(c+(n+1)A)}{\Gamma(a+(n+1)A)} \\ \cdot \left(1+n\left[(1-\beta)\frac{\lambda}{1+\ell}+\beta\frac{A}{a+A}\right]\right)^{-1} \binom{-2(\rho+1)}{n} \quad (n \ge 1),$$
(2.25)

where  $\rho$  is given by (2.4)

$$\begin{pmatrix} \theta \\ n \end{pmatrix} = \frac{\theta(\theta - 1)...(\theta - n + 1)}{n!}, \ \theta \in \mathbb{C}, \ n \in \mathbb{N}.$$
(2.26)

If the function  $\varphi$  is given by (2.2), with p = 1, then

$$\varphi(z) = \frac{1 - (1 + z)^{-(2\rho + 1)}}{2\rho + 1} \quad (z \in U)$$

where the power is principal one, i.e.

$$(1+z)^{-(2\rho+1)}\Big|_{z=0} = 1.$$

We can see that

$$\Re\left(1+\frac{z\varphi''(z)}{\varphi'(z)}\right) = \Re\frac{1-(2\rho+1)\,z}{1+z} > -\rho \quad (z\in U)\,,$$

and from Theorem 2.1, we can obtain:

**Example 2.1** Let  $0 \le \beta \le 1$ ,  $\lambda > 0$ , A > 0, a,  $c \in \mathbb{C}$  satisfying  $\Re(c-a) \ge 0$ ,  $\Re(a) > -A$  and let  $\rho$  is given by (2.4).

If  $f \in \mathcal{A}$  such that

$$(1-\beta) \mathcal{J}_{\lambda,\ell}^{m+1,1}(a,c,A)f(z) + \beta \mathcal{J}_{\lambda,\ell}^{m,1}(a+1,c,A)f(z) \prec \frac{1-(1+z)^{-(2\rho+1)}}{2\rho+1},$$

then

$$\mathcal{J}_{\lambda,\ell}^{m,1}(a,c,A)f(z) \prec z + \sum_{n=1}^{\infty} \frac{1}{n+1} \left( 1 + n \left[ (1-\beta) \frac{\lambda}{1+\ell} + \beta \frac{A}{a+A} \right] \right)^{-1} {\binom{-2(\rho+1)}{n}} z^{n+1},$$

and the right-hand side function is the best subordinant.

Also, let consider the function  $g \in \mathcal{A}$  defined by

$$g(z) = z + \sum_{n=1}^{\infty} a_{n+1} z^{n+1} \quad (z \in U),$$

with  $a_{n+1}$  is given by (2.25),  $\rho$  is given by (2.4) and  $\binom{\theta}{n}$  is given by (2.26). If the function  $\psi_1$  is given by (2.19), with p = 1, then

$$\psi_1(z) = \frac{1 - (1 + z)^{-(2\rho + 1)}}{2\rho + 1} \quad (z \in U),$$

where the power is principal one, i.e.

$$(1+z)^{-(2\rho+1)}\Big|_{z=0} = 1.$$

We can see that

$$\Re\left(1+\frac{z\psi_1''(z)}{\psi_1'(z)}\right) = \Re\frac{1-(2\rho+1)\,z}{1+z} > -\rho \quad (z\in U)\,,$$

and from Corollary 2.1, we can obtain:

**Example 2.2** Let  $\lambda > 0$ ,  $m \in \mathbb{Z}$ ,  $\ell > -1$ ,  $0 \le \beta \le 1$ , A > 0, a,  $c \in \mathbb{C}$  satisfying  $\Re(c-a) \ge 0$  and  $\Re(a) > -A$ ,  $\Re(\delta)$  be given (2.1). If  $f \in \mathcal{A}$  such that

$$\begin{bmatrix} 1 - \beta + \beta \frac{A(\ell+1)}{\lambda(a+A)} \end{bmatrix} \mathcal{J}_{\lambda,\ell}^{m+1,1}(a,c,A)f(z) + \beta \begin{bmatrix} 1 - \frac{A(\ell+1)}{\lambda(a+A)} \end{bmatrix} \mathcal{J}_{\lambda,\ell}^{m,1}(a,c,A)f(z)$$
$$\prec \quad \frac{1 - (1+z)^{-(2\rho+1)}}{2\rho+1},$$

then

$$\mathcal{J}_{\lambda,\ell}^{m,1}(a,c,A)f(z) \prec z + \sum_{n=1}^{\infty} \frac{1}{n+1} \left( 1 + n \left[ (1-\beta) \frac{\lambda}{1+\ell} + \beta \frac{A}{a+A} \right] \right)^{-1} {\binom{-2(\rho_1+1)}{n}} z^{n+1},$$

and the right-hand side function is the best dominant.

Finally, let consider the function  $g \in \mathcal{A}$  defined by

$$g(z) = z + \sum_{n=1}^{\infty} a_{n+1} z^{n+1} \quad (z \in U),$$

with  $a_{n+1}$  is given by (2.25),  $\rho$  is given by (2.4) and  $\binom{\theta}{n}$  is given by (2.26).

If the function  $\psi_2(z)$  is given by (2.21), with p = 1, then

$$\psi_2(z) = \frac{1 - (1+z)^{-(2\rho+1)}}{2\rho + 1} \qquad (z \in U),$$

where the power is principal one, i.e.

$$(1+z)^{-(2\rho+1)}\Big|_{z=0} = 1.$$

We can see that

$$\Re\left(1+\frac{z\psi_2''(z)}{\psi_2'(z)}\right) = \Re\frac{1-(2\rho+1)\,z}{1+z} > -\rho \quad (z \in U)\,,$$

and from Corollary 2.2, we can obtain:

**Example 2.3** Let  $\lambda > 0$ ,  $m \in \mathbb{Z}$ ,  $\ell > -1$ ,  $0 \le \beta \le 1$ , A > 0,  $a, c \in \mathbb{C}$  satisfying  $\Re(c-a) \ge 0$  and  $\Re(a) > -A$ ,  $\Re(\delta)$  be given (2.1). If  $f \in A$  such that

$$(1-\beta)\left[1-\frac{\lambda(a+A)}{A(\ell+1)}\right]\mathcal{J}_{\lambda,\ell}^{m,1}(a,c,A)f(z) + \left[(1-\beta)\frac{\lambda(a+A)}{A(\ell+1)}+\beta\right]\mathcal{J}_{\lambda,\ell}^{m,1}(a+1,c,A)f(z)$$
  
$$\prec \quad \frac{1-(1+z)^{-(2\rho+1)}}{2\rho+1},$$

then

$$\mathcal{J}_{\lambda,\ell}^{m,1}(a,c,A)f(z) \prec z + \sum_{n=1}^{\infty} \frac{1}{n+1} \left( 1 + n \left[ (1-\beta)\frac{\lambda}{1+\ell} + \beta \frac{A}{a+A} \right] \right)^{-1} {\binom{-2(\rho_1+1)}{n}} z^{n+1},$$

and the right-hand side function is the best dominant.

### 3 Conclusions

In this work, analytic p-valent functions defined on the unit disc, are studied with help of new transformation. This transformation is the modified an Erdelyi-Kober type [2] integral operator combining with Prajapat operator [1]. Using the new transformation and the techniques of differential subordination we obtained subordination theorems. Many interesting particular cases of main thm are emphasized in the form of corollaries and examples.

## Acknowledgment

The authors thank the referees for their valuable suggestions which led to improvement of this paper.

### **Competing Interests**

Authors have declared that no competing interests exist.

#### References

- Prajapat JK. Subordination and super ordination preserving properties for generalized multiplier transformation operator. Math. Comput. Modelling. 2012;55:1456-1465.
- [2] Kiryakova V. Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics Series, 301, John Willey & Sons, Inc. New York; 1994.
- [3] Catas A. On certain classes of p-valent functions defined by multiplier tranformations, in Proc. Book of the International Symposium on Geometric Functions Theory and Applications, Istanbul, Turkey. 2007:241-250.
- [4] Kumar SS, Taneja HC, Ravichandran V. Classes multivalent functions defined by Dziok-Srivastava linear operaor and multiplier transformations, Kyungpook Math. J. 2006;46:97-109.
- [5] Srivastava HM, Suchithra K, Adolf Stephen B, Sivasubramanian S. Inclusion and neighborhood properties of certian subclasses of multivalent functions of complex order. J. Ineq. Pure Appl. Math. 2006;7(5):191, 1-8.
- [6] Aouf MK, El-Ashwah RM, El-Deeb SM. Some inequalities for certain *p*-valent functions involving an extended multiplier transformations, Proc. Pakistan Acad. Sci. 2009;46(4):217-221.
- [7] Aouf MK, Mostafa AO. On a subclass of n-p-valent prestarlike functions, Comput. Math. Appl. 2008;55:851-861.
- [8] Kamali M, Orhan H. On a subclass of certian starlike functions with negative coefficients, Bull. Korean Math. Soc. 2004;41(1):53-71.
- [9] Aouf MK, Mostafa AO, El-Ashwah RM. Sandwich theorems for *p*-valent functions defined by a certain integral operator, Math. Comput. Modelling. 2011;53:1647-1653.
- [10] El-Ashwah RM, Aouf MK. Some properties of new integral Operator. Acta Univ. Apulensis. 2010;24:51-61.
- [11] Srivastava HM, Aouf MK, El-Ashwah RM. Some inclusion relationships associated with a certain class of integral operators, Asian European J. Math. 2010;3(4):667-684.
- [12] Patel J, Sahoo P. Certain subclasses of multivalent analytic Functions. Indian J. Pure Appl. Math. 2003;34:487-500.
- [13] Cho NE, Srivastava HM. Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Modelling. 2003;37(1-2):39-49.
- [14] Cho NE, Kim TH. Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 2003;40(3):399-410.

- [15] Al-Oboudi FM. On univalent functions defined by a generalized Salagean operator, Indian J. Math. Math. Sci. 2004;25-28: 1429-1436.
- [16] Salagean GS. Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag). 1983;1013:362-372.
- [17] Patel J. Inclusion relations and convolution properties of certain subclasses of analytic functions defined by generalized Salagean operator, Bull. Belg. Math. Soc. Simon Stevin. 2008;15:33-47.
- [18] Aouf MK, Seoudy TM. On differential sandwich theorems of analytic functions defined by generalized Salagean integral operator. Appl. Math. Letter. 2011;24:1364-1368.
- [19] Flett TM. The dual of an identity of Hardy and Little wood and some related inequalities. J. Math. Anal. Appl. 1972;38:746-765.
- [20] Miller SS, Mocanu PT. Differential Subordinations. Theory and Applications, Marcel Dekker, New York and Basel; 2000.
- [21] Ali RM, Ravichandran V, Seenivasagan N. Differential subordination and superordination of analytic functions defined by the multiplier transformation. Math. Inequal. Appl. 2009;12:123-139.
- [22] Ali RM, Ravichandran V, Seenivasagan N. Subordination and superordination on Schwarzian derivatives. J. Inequal. Appl. 2008; Art. ID 712328, 18.
- [23] Bulboaca T. Integral operators that preserve the subordination, Bull. Korean Math. Soc. 1997;34: 627-636.
- [24] Cho NE, Owa S. Double subordination-preserving properties for certain integral operators. J. Inequal. Appl. 2007; Art. ID 83073, 10 pp.
- [25] Cho NE, Srivastava HM. A class of nonlinear integral operators preserving subordination and superordination, Integral Transforms Spec. Funct. 2007;18(1-2):95-107.
- [26] Miller SS, Mocanu PT, Reade MO. Subordination-preserving integral operators, Trans. Amer. Math. Soc. 1984;283:605-615.
- [27] Shanmugam TN, Sivasubramanian S, Srivastava HM. Differential sandwich theorems for certain subclasses of analytic functions involving multiplier transformations, Integral Transforms Spec. Funct. 2006;17(12):889-899.
- [28] Wang ZG, Xiang RG, Darus M. A family of integral operators preserving subordination and superordination, Bull. Malays. Math. Sci. Soc. 2010;33(2):121-131.
- [29] Miller SS, Mocanu PT. Univalent solutions of Briot-Bouquet differential equations. J. Differential Eqns. 1985;56(3):297-309.
- [30] Miller SS, Mocanu PT. Subordinants of differential super ordinations, Complex Var. Theory Appl. 2003;48:815-826.
- [31] Pommerenke Ch. Univalent functions, Vanderhoeck and Ruprecht, Göttingen; 1975.

- [32] Raina RK. Sharma P. Subordination preserving properties associated with a class of operators, LXVIII. 2013;217-228.
- [33] Gronwall TH. Some remarks on conformal representation, Ann. Math. 1914;16/15:72-76.

©2014 EL-Ashwah & Drbuk; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=623&id=6&aid=5700