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ABSTRACT 
 

This study investigates the relationship between above-ground biomass (AGB) and various 
vegetation indices in the tea plantations of Alipurduar District, West Bengal, India. The research 
was conducted in three major tea estates: Kumargram, Sankos and Newlands, using stratified 
random sampling across 36 plots. Field measurements of trees, shrubs and herbs were taken and 
AGB was estimated using allometric equations. Sentinel-2 satellite data was utilized to derive 
vegetation indices such as NDVI, GNDVI, SAVI, MSAVI, EVI-1, EVI-2, NDVIRE, RDVI, DVI, OSAVI 
and ARVI. The study found significant variation in AGB, ranging from 31.40 Mg ha-1 to 68.84 Mg ha-

1, with an average of 47.22 Mg ha-1. Strong positive correlations were observed between AGB and 
indices like GNDVI (r=0.96) and EVI-2 (r=0.96), indicating their effectiveness in biomass prediction. 
The integration of remote sensing technologies enhances the scalability and precision of biomass 
estimation, providing valuable insights into the carbon storage potential and ecological health of tea 
plantations. These findings have implications for sustainable management and climate change 
mitigation in agroforestry systems. 
 

 
Keywords: Above-ground biomass; sentinal-2; vegetation indices; tea garden. 
 

1. INTRODUCTION  
 
Tea, scientifically known as Camellia sinensis 
(L.) O. Kuntze, is a perennial evergreen plant 
typically cultivated in shrub form to encourage 
the growth of young shoots. It ranks among the 
most widely consumed beverages worldwide, 
with a particularly strong presence in Asia, Africa 
and the Near East [1]. The increasing demand 
for tea makes it a vital part of the global 
beverage market, though its cultivation is 
confined to areas with specific climates and soil 
conditions. Tea is a significant source of national 
pride for India, contributing substantially to the 
country’s foreign exchange earnings and Gross 
National Product (GNP). India is a global leader 
in tea production, consumption and export, 
accounting for 25% of the world’s total 
production. The primary tea-producing regions in 
India include Assam, West Bengal, Himachal 
Pradesh, Kerala, Karnataka and Tamil Nadu. 
These plantations cover more than 5,640 km2 of 
agricultural land and produce over 1.209 Tg of 
tea annually [2,3]. Tea plantations are a 
significant component of the agricultural 
landscape in many parts of the world, particularly 
in regions like the Alipurduar District in West 
Bengal, India [4]. The region is home to several 
notable tea estates, such as the Aryaman Tea 
Estate and the Kumargram and Sankos Tea 
Estates. The tea industry not only contributes 
substantially to the local economy but also plays 
a crucial role in the socio-cultural fabric of the 
region. The management and sustainability of 
these plantations are of paramount importance, 
necessitating accurate and efficient methods for 
monitoring various agronomic parameters, 
including above-ground biomass (AGB) [5]. The 

sustainability and management of these tea 
plantations are crucial, especially in terms of 
monitoring agronomic parameters like AGB [6]. 
Accurate estimation of AGB is essential for 
assessing the health and productivity of the 
plantations, which in turn impacts the overall 
sustainability of the tea industry [7]. 
 
Estimating AGB is essential to the long-term 
sustainability of tea plantation management. It 
offers insightful information about the 
productivity, health and capacity of tea plants to 
sequester carbon [8]. Conventional techniques, 
such as destructive sampling, are labour and 
time-intensive, making them unsuitable for large-
scale applications. As a result, there is increased 
interest in non-destructive techniques, especially 
those that make use of allometric equations. 
Tree diameter at breast height (DBH), height and 
wood density are easily observable factors that 
can be used to estimate AGB using allometric 
equations [9]. These equations can be used over 
wide areas without the requirement for 
destructive sampling because they are derived 
from statistical correlations acquired from field 
data [10]. The efficiency and precision of AGB 
estimation are improved when allometric 
equations are used in conjunction with remote 
sensing technology, such as satellite images. 
Allometric models paired with spatially extended 
data from remote sensing can yield detailed 
maps of biomass [11]. This strategy is especially 
helpful for tea plantations, since traditional 
approaches are difficult due to the consistent 
planting patterns and deep canopy. Plantation 
managers may more effectively monitor the 
growth dynamics and production potential of tea 
plants by employing non-destructive approaches. 
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This allows for timely interventions and improved 
resource management. Furthermore, by 
measuring the amount of carbon stored in tea 
plantations, precise AGB estimation supports 
efforts to mitigate climate change and account for 
carbon emissions [12]. 
 

The evaluation of AGB in tea plantations 
necessitates the application of vegetation indices 
(VIs), which offer detailed insights into plant 
health, productivity and biomass accumulation 
[13]. The Normalized Difference Vegetation 
Index (NDVI) is favoured for its ease of use and 
reliability in measuring green biomass through 
the differential reflectance of red and near-
infrared light. The Enhanced Vegetation Index 
(EVI) is particularly beneficial for dense tea 
plantations as it minimizes atmospheric effects 
and enhances sensitivity in areas with high 
biomass [14]. Meanwhile, the Optimized Soil 
Adjusted Vegetation Index (OSAVI) increases 
accuracy in areas with varying soil conditions by 
compensating for soil brightness. Moreover, the 
Green Normalized Difference Vegetation Index 
(GNDVI) is attuned to chlorophyll levels, 
simplifying the monitoring of health and yield in 
tea plantations. Indices derived from satellite 
imagery enable precise AGB estimation, leading 
to better resource management, timely 
interventions and carbon sequestration efforts, all 
contributing to climate change mitigation. By 
incorporating these Vegetation Indices (VIs) with 
remote sensing data, plantation managers can 
promote sustainable practices, monitor growth 
patterns and optimize resource allocation in tea 
plantations [15]. Vegetation indices (VIs) are 
employed to mitigate variations in spectral 
reflectance measurements that arise from factors 
such as soil background, sun-view angles and 
atmospheric conditions when assessing 
biophysical properties. Numerous studies have 
demonstrated a significantly positive relationship 
between biomass and vegetation indices 
[4,16,17]. This study aims to investigate the 
relationship between biomass and vegetation 
indices (VIs) in the tea plantations of Alipurduar 
District, a crucial part of West Bengal’s tea 
industry. Given the region’s sensitivity to climate 
change and human activities, the study seeks to 
identify the VIs or band ratios that best correlate 
with biomass. 
 

2. MATERIALS AND METHODS  
 

2.1 Study Area 
 

This study focuses on the tea-growing areas of 
the Alipurduar District (Fig. 1), which lies 

between latitudes 26°40’20.10" N and 
26°38’42.95" N and longitudes 89°47’28.23" E 
and 89°52’06.82" E. We conducted our research 
in three major tea estates: Kumargram, Sankos 
and Newlands. These estates are in the 
Kumargram Community Development Block of 
Alipurduar District, West Bengal. Kumargram is 
situated in the eastern part of the district and is 
part of the Sub-Himalayan range.  The northern 
fringe of the Dooars Region is ideal for tea 
cultivation due to its favorable climate and 
topography, providing large-scale employment 
opportunities [18]. The region experiences three 
primary seasons: summer, monsoon and post-
monsoon (winter). Generally, temperatures range 
from a maximum of 33°C to a minimum of 10°C. 
The majority of the annual rainfall, averaging 
around 3411 mm, occurs between May and 
September [4]. The Sanaka River runs along the 
eastern boundary of Kumargram. The area is 
bordered by the Chukha District in Bhutan to the 
north, the Gossaigaon Revenue Circle in 
Kokrajhar District (Assam) to the east, the 
Tufanganj II CD Block in Cooch Behar District to 
the south and the Alipurduar II and Kalchini CD 
Blocks to the west. 
 

2.2 Field Assessment of Above-ground 
Biomass 

 
In the present study, stratified random sampling 
was used for biomass estimation, with 36 plots 
laid out in different homogeneous strata based 
on the accessibility of the locations. Trees, 
shrubs and herbs were sampled using a stratified 
random nested method. The main quadrat was 
20 m x 20 m, with two 5 m x 5 m quadrats 
marked at diagonal corners for shrubs. For 
herbs, five 1 m x 1 m plots were marked at all 
corners and one at the center of the main 
quadrat. The stem diameter at DBH of all the 
trees in the quadrate will be measured 
separately. For shade trees in the tea gardens, a 
logarithmic equation by Brown et al. (1997) was 
adopted [19]. 
 

𝑌 = 21.297 − 6.953𝐷 + 0.740𝐷2 

 
where Y is the AGB of the tree and D is the 
diameter of the tree at breast height. The 
coefficient of determination (R2) value for the 
original equations is 0.87.  The AGB of tea will be 
estimated using the allometric equation 
suggested by Kalita et al. (2016).  
 

𝑌 = 𝑎𝑋𝑏
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Fig. 1. Geographical Map of the study area in West Bengal, India 
 

Table 1. List of Vegetation indices derived from Sentinal-2 imagery 
 

Vegetation indices Definition 

NDVI 
(Normalized Difference Vegetation Index) 

(𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4)

(𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4)
 

SAVI 
(Soil Adjusted Vegetation Index) 

(𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4)

(𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4 + 0.5)
× 1.5 

MSAVI 
(Modified Soil Adjusted Vegetation Index) 2𝐵𝑎𝑛𝑑8 +

1 − √(2𝐵𝑎𝑛𝑑8 + 1)2 − 8(𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4)

2
 

NDVIRE 
(Normalized Difference Vegetation Index 
with bands 4 and 5) 

(𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑4)

(𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4)
 

GNDVI 
(Green normalized difference vegetation 
index) 

(𝐵𝑎𝑛𝑑7 − 𝐵𝑎𝑛𝑑3)

(𝐵𝑎𝑛𝑑7 + 𝐵𝑎𝑛𝑑3)
 

EVI-1 
(Enhanced Vegetation Index 1) 

2.5 ×
(𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4)

(𝐵𝑎𝑛𝑑8 + 6 × 𝐵𝑎𝑛𝑑4 − 7.5 × 𝐵𝑎𝑛𝑑2 + 1)
 

EVI-2 
(Enhanced Vegetation Index 2) 

2.5 ×
(𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4)

(𝐵𝑎𝑛𝑑8 + 2.4 × 𝐵𝑎𝑛𝑑4 + 1)
 

OSAVI 
(Optimized Soil Adjusted Vegetation Index) 

(𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4)

(𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4 + 0.16)
 

ARVI (Atmospherically Resistant 
Vegetation Index) 

(𝐵𝑎𝑛𝑑8 − (𝐵𝑎𝑛𝑑4 − ϒ × (𝐵𝑎𝑛𝑑4 − 𝐵𝑎𝑛𝑑2)))

(𝐵𝑎𝑛𝑑8 + (𝐵𝑎𝑛𝑑4 − ϒ × (𝐵𝑎𝑛𝑑4 − 𝐵𝑎𝑛𝑑2)))
 

DVI (Difference Vegetation Index) 𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4 

RDVI (Renormalized Difference Vegetation 
Index) 

(𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4)

√𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4
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where Y is the biomass component kg per stem, 
X represents stem diameter (cm) at 5 cm height 
and a and b stand for coefficient and the 
allometric constant respectively. For AGB, the 
values of a and b will be 0.047 and 1.878 
respectively [20]. 
 
The study utilized Sentinel-2 Level 2A satellite 
data from November 2023. Since the data was 
atmospherically corrected surface reflectance, no 
pre-processing was necessary. The LULC map 
was created using the maximum likelihood 
classifier in ArcGIS software (version 10.8.1) 
[21]. A point shapefile of the sampling sites was 
generated and overlaid on the corrected image to 
verify the alignment of plot positions with the 
ground. 
 

2.3 Vegetation Indices 
 
In the estimation of AGB in tea gardens, various 
vegetation indices offer unique advantages and 
insights, making them essential tools for accurate 
assessment. These indices, derived from 
Sentinel-2 Level 2A satellite data, provide critical 
insights into vegetation health and biomass 
estimation. The indices used include NDVI, 
GNDVI, SAVI, MSAVI, EVI-1, EVI-2, NDVIRE, 
RDVI, DVI, OSAVI and ARVI (Table 1). Each 
index has its unique history and significance, 
contributing to a comprehensive understanding 
of vegetation dynamics.  
 
The Normalized Difference Vegetation Index 
(NDVI), a widely used index, measures the 
difference between near-infrared and red light, 
providing a basic yet effective measure of plant 
health [22]. Green Normalized Difference 
Vegetation Index (GNDVI), a variation using 
green light, is particularly useful for detecting 
chlorophyll content and assessing plant vigour 
[23]. Soil-Adjusted Vegetation Index (SAVI) and 
its improved version, Modified SAVI (MSAVI), 
minimize soil brightness effects, making them 
ideal for areas with sparse vegetation [24]. 
Enhanced Vegetation Index (EVI-1) and its 
simplified counterpart, EVI-2, optimize vegetation 
signals with improved sensitivity in high biomass 
regions and better atmospheric correction, 
enhancing canopy structural analysis [25,26]. 
The Red-Edge NDVI (NDVIRE), utilizing the red-
edge band, is sensitive to chlorophyll changes 
and plant stress, crucial for early stress 

detection. The renormalized Difference 
Vegetation Index (RDVI) combines NDVI’s 
simplicity with the sensitivity of the Ratio 
Vegetation Index (RVI), enhancing vegetation 
signals for biomass estimation. Difference 
Vegetation Index (DVI) and RVI provide 
straightforward measures of vegetation health 
and density, respectively. Optimized SAVI 
(OSAVI) offers better performance in moderate 
vegetation cover areas by reducing soil noise. 
Lastly, the Atmospherically Resistant Vegetation 
Index (ARVI), with its blue band correction, 
ensures reliability under varying atmospheric 
conditions [27,28,29]. Each index contributes 
uniquely to the comprehensive estimation of 
AGB, with their combined use providing a robust 
methodology for monitoring and assessing 
biomass in tea gardens. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Estimation of Above Ground-biomass 
 
The assessment of above-ground biomass was 
meticulously carried out using field inventory 
data, leveraging allometric equations tailored for 
different plant types. Specifically, the equations 
developed by Brown et al. (1997) were utilized 
for shade trees, while those by Kalita et al. 
(2016) were applied to tea bushes. In each of the 
individual field plots, detailed measurements 
were taken for tea bushes of Camellia sinensis 
and various parameters of shade trees, including 
tree heights and DBH. There is a rich diversity of 
shade tree species within the plots, including 
Albizia lebbeck, Acacia auriculiformis, Albizia 
chinensis, Albizia odoratissima, Dalbergia sissoo, 
Erythrina indica, Albizia procera and 
Neolamarckia cadamba. These species 
contribute significantly to the overall biomass and 
ecological balance of the area [30]. 
 

From the field measurements conducted across 
36 sampling points, the estimated above-ground 
biomass varied significantly, ranging from 31.40 
Mg ha-1 to 68.84 Mg ha-1 .This variation reflects 
the heterogeneity in tree density and species 
composition across different plots. On average, 
the AGB was calculated to be approximately 
47.22 Mg ha-1 (Table 2), providing a                    
valuable benchmark for understanding the 
carbon storage potential and ecological health of 
the region.  

 



 
 
 
 

Ragini et al.; Int. J. Environ. Clim. Change, vol. 14, no. 9, pp. 149-158, 2024; Article no.IJECC.122607 
 
 

 
154 

 

Table 2. Descriptive statistics of observed above-ground biomass and derived vegetation indices 
 

Statistic AGB NDVI GNDVI SAVI MSAVI EVI-1 EVI-2 NDVIRE RDVI DVI OSAVI ARVI 

Mean 47.22 0.69 0.66 0.44 0.40 0.46 0.45 0.27 0.45 0.28 0.68 0.76 
Std 10.68 0.04 0.05 0.06 0.07 0.03 0.04 0.06 0.05 0.05 0.07 0.07 
Min 31.40 0.61 0.56 0.33 0.25 0.40 0.37 0.15 0.36 0.20 0.46 0.59 
First quartile 41.37 0.67 0.64 0.38 0.32 0.43 0.42 0.23 0.43 0.25 0.65 0.72 
Median 50.57 0.70 0.67 0.44 0.40 0.46 0.45 0.27 0.46 0.30 0.69 0.78 
Third 
Quartile 

56.57 0.74 0.69 0.50 0.45 0.49 0.47 0.33 0.51 0.32 0.72 0.83 

Max 68.84 0.79 0.76 0.57 0.49 0.63 0.57 0.37 0.55 0.38 0.76 0.86 

 
Table 3. Correlation between field-measured above-ground biomass and selected vegetation index  

 
  AGB NDVI GNDVI SAVI MSAVI EVI-1 EVI-2 NDVIRE RDVI DVI OSAVI ARVI 

AGB 1.00                       
NDVI 0.78** 1.00                     
GNDVI 0.96** 0.70 1.00                   
SAVI 0.58** 0.53 0.53 1.00                 
MSAVI 0.33 0.36 0.20 0.34 1.00               
EVI-1 0.76** 0.65 0.69 0.58 0.24 1.00             
EVI-2 0.96** 0.73 0.98 0.56 0.17 0.74 1.00           
NDVIRE 0.06 -0.09 0.13 0.06 -0.09 -0.09 0.12 1.00         
RDVI 0.27 -0.01 0.31 0.15 0.09 0.22 0.28 0.33 1.00       
DVI 0.03 -0.19 0.19 0.08 -0.24 -0.12 0.18 0.35 0.00 1.00 

 
  

OSAVI 0.40* 0.16 0.49 0.11 -0.26 0.15 0.47 0.18 0.29 0.28 1.00   
ARVI 0.02 -0.02 0.06 -0.14 -0.04 -0.05 -0.02 0.12 -0.17 0.03 0.12 1 

** and *indicate p-value ≤0.01 and ≤ 0.05 respectively 
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3.2 Comparative Correlation Analysis 
between Above-ground Biomass and 
Vegetation Indices 

 
The Table 2 provides a comprehensive summary 
of descriptive statistics for AGB and various 
vegetation indices such as NDVI, GNDVI, SAVI, 
MSAVI, EVI-1, EVI-2, NDVIRE, RDVI, DVI, 
OSAVI and ARVI. The mean values indicate the 
average levels of these indices, with ARVI having 
the highest mean (0.76) and NDVIRE the lowest 
(0.27). The standard deviation values show the 
variability in the data, with ARVI again showing 
the highest variability (0.073) and EVI-1 the 
lowest (0.034). The range of values, from 
minimum to maximum, highlights the spread of 
data, with AGB ranging from 31.40 to 68.84 Mg 
ha-1. Quartile values provide insights into the 
distribution, with the first quartile, median and 
third quartile values showing the central 
tendency and spread of the data. This statistical 
summary is crucial for understanding the 
variability and distribution of biomass and 
vegetation indices in the study area. 
 
The box plot analysis reveals several key 
insights into the vegetation indices (Fig. 2). NDVI 
and GNDVI exhibit a tight range with medians 
around 0.65, indicating consistent vegetation 
productivity, though outliers suggest some 

variability. SAVI and MSAVI show greater 
spread, particularly MSAVI, hinting at diverse 
vegetation types or growth stages. EVI-1 and 
EVI-2 display similar trends in vegetation density, 
with outliers marking regions of varying vigour. 
NDVIRE’s wider distribution captures subtle 
canopy differences, possibly due to species or 
health variations. RDVI’s outliers point to areas 
of extreme vegetation density, while DVI’s 
balanced distribution highlights variability. 
OSAVI’s broad spectrum reflects its sensitivity to 
vegetation cover variations. 
 
The correlation matrix in Table 3 and Fig. 3. 
reveals significant relationships between AGB 
and various vegetation indices. AGB shows a 
very strong positive correlation with GNDVI 
(0.96) and EVI-2 (0.96), indicating these indices 
are highly effective in predicting biomass. NDVI 
(0.78) and EVI-1 (0.76) also exhibit strong 
positive correlations with AGB, suggesting their 
relevance in biomass estimation. SAVI (0.58) 
and OSAVI (0.40) have moderate correlations, 
reflecting some predictive capability but are less 
robust than GNDVI or EVI-2. Conversely, indices 
like NDVIRE (0.06), RDVI (0.27), DVI (0.03) and 
ARVI (0.02) show weak correlations, indicating 
limited utility in estimating AGB. These insights 
are crucial for selecting appropriate indices for 
accurate biomass estimation in tea plantations. 

 

 
 

Fig. 2. Box and Whisker plot over different Vegetation Indices 
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Fig. 3. Scatter Plots showing person correlation co-efficient between AGB and VI’s which are 
significant 

 

4. CONCLUSION 
 
The research provides valuable insights into 
estimating AGB in tea plantations by leveraging 
allometric equations and correlating field 
measurements with vegetation indices. The 
significant variation in AGB, ranging from 31.40 
Mg ha-1 to 68.84 Mg ha-1 across different plots, 
underscores the heterogeneity in species 
composition and tree density. The strong positive 
correlations of AGB with GNDVI and EVI-2 
suggest these indices are highly effective for 
biomass prediction in such agroforestry systems. 
The integration of remote sensing technologies, 
such as satellite imagery and UAV-based 
sensors, enhances the scalability and precision 
of biomass estimation by allowing for continuous 
monitoring across large areas, reducing the need 
for labour-intensive field measurements. These 
technologies also provide a more comprehensive 
understanding of the spatial and temporal 
dynamics of vegetation. The findings contribute 
to understanding the carbon storage potential of 
tea plantations, with implications for sustainable 
management and climate change mitigation. 
Future research could explore integrating 
additional remote sensing techniques, refining 
models with larger datasets and assessing 
temporal changes in AGB to further enhance 
biomass estimation accuracy and ecological 
health monitoring. 
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