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ABSTRACT 
 

Classical nucleation theory predicts the limit of superheat of liquids quite well. To come up with an 
equation for the limit of superheat of polymer solutions, the lattice model for polymer solutions was 
used to give the surface tension of polymer solutions. A formula for bubble nucleation in polymer 
solutions was derived by Jennings with the precursor equation dlnA/dK=1/(6K) where J=AexpK 
gives the nucleation rate for liquids. The aim of this paper was to show that the precursor equation 
holds for monomer in the polystyrene-cyclohexane system. Thus, the precursor equation is true for 
all molecular weight polymer. This happens because the surface tension of polystyrene is 
significantly more than cyclohexane and the influence of the surface tension dominates. 
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NOMENCLATURES 
 
a  : Surface area of solvent molecule 
A  : Prefactor 
B  : Coefficient 
d  : Density of liquid 
J  : Nucleation rate 
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k  : Boltzmann constant 
K  : Exponent 
M  : Molecular weight of liquid 
MWi  : Molecular weight: solvent 1, polymer 2 
Pe  : Equilibrium vapor pressure 
PL  : Ambient pressure 
PV  : Vapor pressure 
T  : Temperature Kelvin of limit of superheat of solution 
To  : Limit of superheat of solvent in Kelvin 
w  : Weight fraction polymer 
δ  : Poynting correction factor 
ΔT  : Rise in superheat in Centigrade = T - To 
σ  : Surface tension 
 

1. INTRODUCTION 
 
Classical nucleation theory goes back to Josiah 
Willard Gibbs where increasing entropy and 
decreasing energy give way to an emerging 
bubble forming aided by the rise in temperature 
known as the limit of superheat. Flory and 
Huggins theory provided an understanding of the 
behavior of a polymer solution and Prigogine and 
Marechal [1] derived equations for the surface 
tension of polymer solutions, following 
Flory/Huggins. Other attempts at solving the 
problem of bubble nucelation in polymer 
solutions were complicated and had no good 
data, for example (in addition to 
Prud’homme/Gregory [2]), Yarin, et al. [3] said 
bubble growth is controlled by momentum 
transfer and diffusion or Han and Han [4] did a 
lengthy theoretical study that was very involved. 
My theory offers simple equations that are exact 
and predict the linearity in weight fraction and the 
trend in molecular weight polymer. Conceivably, 
the equations and results in this study could be 
applied toward fuel burning where the limit of 
superheat is present and affects the efficiency of 
thrust of a rocket or high performance racecar. 
 
2. THEORY 
 
This paper is based on a highly cited paper by 
Blander and Katz [5] and another paper by Siow 
and Patterson [6]. Jennings joined these streams 
of thought for the first time in 2012 by coming up 
with this formula for the limit of superheat as 
polymer--->0. 
 

lim w2-->0 ∂T/∂w2= (MW1/MW2) (3kTo2/σa)     (1) 
 
Mathematically, Eq. (1) is only true in the limit of 
zero weight fraction polymer in the solution 
because of the limitation in getting the surface 
tension. However, the actual Jennings and 

Middleman [7] data shows straight vectors in 
(w,T) space for lower molecuar weight. In 
Jennings’ [8] paper, the [9] equation (1) was 
expanded because of that. Here is the expanded 
equation. 
 

∆T = 3kTo2wMW1/σaMW2            (2) 
 
So, the question is, What led to Eq. (2)? It is Eq. 
(3) from Jennings [9] paper. 
 

lim w2-->0 (∂lnA/∂w2)/(∂K/∂w2) = 1/(6K)            (3) 
 
Another way to write (3) is (4). 
 
dlnA/dK=1/(6K)               (4) 
 
A and K are found in the equation (Z) in the 
APPENDIX, Blander and Katz’s formula for 
bubble nucleation in liquids: A is the prefactor in 
(Z) and K is the exponent in (Z). In APPENDIX is 
sketched out my method for checking the validity 
of (4) for monomer, that is r = 1, where r is the 
ratio of the molar volume of polymer to the molar 
volume of solvent. Furthermore, (4) has a well-
defined integration constant that was calculated 
in Jennings [10] article. See the same Jennings 
[10] article for details pertaining to this derivation 
and Jennings [9] for all of the values to input in 
the equations in APPENDIX. Polystyrene-
cyclohexane is a model system, so Eq. (4) is 
proposed as a general equation when the 
surface tension of the polymer is significantly 
greater than the surface tension of the         
solvent. 
 

3. METHODOLOGY 
 
In the early 1980s, Jennings and Middleman 
collected data on liquid--->gas nucleation in 
polymer solutions that was published in 1985. In 
early 2020 the study was complete, except direct 
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calculation revealed that the surface tension is so 
influential that only the surface tension terms 
matter and so the 2012 equations are true for 
any degree of polymerization, that is r = 1 up to r 
= infinity, for the polystyrene-cyclohexane model 
system.  
 

4. RESULTS AND DISCUSSION 

 
Unfortunately, there is no known data, except a 
lone styrene point in the 1985 paper, but 
plugging in the numbers gave a result that was 
off by about a factor of 10. There is data on 
polystyrene/benzene gathered by Prud’homme 
and Gregory [2], but it does not agree with Eq. (2) 
at all. The beauty of this entire study from Fall 
1980 to now is that it shows how the very 
successful classical nucleation theory unites with 
the lattice model for polymer solutions. The 
author knows of no one else who used Siow and 
Patterson’s [6] theory to solve this problem and 
the others who attempted it had complicated 
equations. 
 
5. CONCLUSIONS 
 
The author first started on this project in 1980 
and feels that this paper concludes it. It is 
remarkable how influential the surface tension is 
in bubble nucleation. Possibly this paper will get 
noticed and lead others to explore the 
ramifiactions of the uniting of what started with 
Gibbs and Flory/Huggins. 
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APPENDIX 
 
Part 1 
 
Here, we establish dlnA/dK=1/(6K) for r = 1. 
 
This is the Proof of dlnA/dK = 1/(6K) for all pure liquids J = A exp K, where 
 
J = nucleation rate, A = prefactor and K = exponent. 
 
from Blander and Katz classical nucleation theory liquid→gas. Siow and Patterson present equations 
for the surface tension of polymer solutions. 
 
The starting equations are from 
 
1) Blander and Katz (Z) and 2) Siow and Patterson (A) and (B). 
 
See JH Jennings, International Journal of Thermodynamics article 2012. 
 
page 127-128. Everything here is done as φ2 →0 and T → To. 
 
Note that φ2 and T are orthogonal. 
 

J ≈ 3.73 x 1035 (d2 σ / M3 B)1/2  exp [ - 1.182 x105  σ3  / (T (Pe – PL)
2 δ2)]                                     (Z) 

 
(σ - σ1) a / kT = ln (φ1S / φ1) + ((r -1) / r ) (φ2S - φ2)                                                                               (A) 
 
ln[(φ2S / φ2)

1/ r / ( φ1S / φ1)] = (σ1 - σ2) a / kT                                                                                           (B) 
 
Now, near φ2 = 0, Eq. (B) becomes 
 
φ2S = φ2 exp [r (σ1 - σ2) a / kT]  
 
Putting in the numbers for polystyrene-cyclohexane, ∂φ2S/∂φ2 ≈ 10

-38 
for MW2 = 2000, r = 13.4, and 

even less for higher MW. The object here is to let r = 1 near φ2 = 0 and T near To. 
 
Thus φ2S = φ2 exp [(σ1 - σ2) a / kT] and so (∂φ2S/∂φ2) = exp [(σ1 - σ2) a / kT]. 
 
All of the details had to be included because it was only evident later that the surface tension term 
dominated. This had to be shown by direct calculation. 
 
1. d = d1 + (d2 – d1) φ2S 
 
 ∂d/∂φ2 = (d2 – d1) (∂φ2S/∂φ2) = (d2 – d1) exp [(σ1 - σ2) a / kTo] 
 
2. Pe = Pe(0) φ1S = Pe(0) (1 - φ2S) 
 
∂Pe/∂φ2 = - Pe(0) (∂φ2S/∂φ2) = - Pe(0) exp [(σ1 - σ2) a / kTo] 
  
3. B ≈ 1 - 1/3 (1- PL/PV) Here the approximation Pe = Pv is used because this is a very small correction 
and they are close. Hence, 
 
 ∂B/∂φ2 = (-1/3) (-1) ∂/∂φ2 PL/Pe 
  
 = (1/3) PL ∂/∂φ2 1/Pe and= (1/3) PL/Pe(0) exp [(σ1 - σ2) a / kTo] 
 
4. δ = 1 - dG /d + 0.5 (dG / d)2 and dG = Pe MW1/RTl 
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dG /d = x is small so δ ≈ e -x 
 
After some manipulation we have. 
 
∂δ/∂φ2 = δ [dG /d + (dG / d2)(d2 – d1)]exp [ (σ1 - σ2) a / kTo ] 
 
Note ideal gas and T and φ2 are orthogonal. These differentials don’t vanish. 
 
It was seen that the surface tension influence dominates wherever it occurs. 
 
∂φ2S/∂φ2 ≈ only vanishes with r greater than 5, say. 
 
To avoid clutter, the values for all these unknowns are left out and they are all in Jennings 2012. 
 
International Journal of Thermodynamics article. This part is to establish the method. 
 
Now, we get lim φ2→ 0 ∂σ/∂φ2 = (k To / a) (1 - exp [(σ1 - σ2) a / kTo]) = (k To / a) (0.9984). 
 
This is arrived at by letting r = 1 in (A) above and partial differentiating with respect to φ2. 
 
It is then seen that the surface tension terms dominate for all r, so dlnA/dK=1/6K. 
 
σ2 is significantly larger than σ1  for this model system (polystyrene-cyclohexane). 
 
Part 2 
 
Getting all these quantities is the hard part and the rest is calculating 
 
lim φ2→0 (∂lnA/∂φ2)/(∂K/∂φ2) = 1/(6K), where A/K are the prefactor/exponent in (Z) above. 
 
For r = 1, 1/(6K) = - 0.002399, or K = - 69.47. 
 
From the IAJER article by Jennings 2020, r = 13.4 and K = - 64.56 for 10 solvents, polar & non-polar. 
 
Deriving Jennings 2012 Equation (1) in the THEORY section there depends on | 1/(6K) | being small, 
so it is true for r = 1 to r = infinity. The surface tension dominates, as is noted by Blander and Katz 
1975. The validity of dlnA/dK = 1/(6K) is therefore true for all r in the polystyrene-cyclohexane system 
and its integration constant for non-polar and polar solvents was calculated in Jennings’ IAJER 2020 
article. All of this puts Jennings’ 2014 Polymers Research Journal equation on solid ground, which is 
formula (2), the equation for bubble nucleation in polymer solutions. The polymer solution data for this 
was first published by Jennings/Middleman 1985 MACROMOLECULES for polystyrene-cyclohexane. 
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