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ABSTRACT 
 

Background: Dental caries is one of the most common chronic diseases, and it is caused by the 
acid fermentation of bacteria that have become attached to the teeth. Streptococcus mutans (S. 
mutans) and Lactobacillus acidophilus (L. acidophilus) anchor surface proteins to the cell wall and 
form a biofilm to aid adhesion to the tooth surface. Some natural plant products, particularly several 
flavonoids, are effective inhibitors. However, given the scarcity of inhibitors and the emergence of 
drug resistance, the development of new inhibitors is critical. The high-throughput virtual screening 
approach was used in this study to identify new potential inhibitor of against S. mutans and L. 
acidophilus by using ligand (Ellagic acid). 
Aim: To evaluate the drug interaction ligand (Ellagic acid) and protein [A3VP1 of AgI/II] of 
Streptococcus mutans (PDB ID: 3IPK), glucan-1,6 - alpha-glucosidase from Lactobacillus 
acidophilus NCFM (PDB ID: 4AIE). 
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Materials and Methodology: The pdb format of two selected proteins was retrieved from the 
RCSB protein database. Then inhibitors were docked with protein (A3VP1 of AgI/II) and glucan-1,6-
alpha-glucosidase to identify the potent inhibitor. An evaluation criterion was based on the binding 
affinities by using AutoDock. 
Results: The binding energy of Ellagic acid - Streptococcus mutans docked complex-10.63 
kcal/mol

 
and with Ellagic acid – Lactobacillus acidophilus docked complex was -7.30 kcal/mol. 

Conclusion: In this study, Showed that lesser binding energy better is the binding of the ligand and 
protein. These findings can provide a new strategy for dental caries disease therapy by using 
Ellagic acid as a inhibitor against  Streptococcus mutans and Lactobacillus acidophilus 
 

 
Keywords: Dental caries; Lactobacillus acidophilus; molecular docking; potential inhibitors; 

Streptococcus mutans. 
 

1. INTRODUCTION 
 
Tooth decay is one of the most severe public 
health concerns. Dental caries is the most 
prevalent illness as a result of lifestyle changes. 
Since bacteria cause dental caries (tooth decay), 
there has been a continuing interest in creating 
vaccines or passive vaccination regimens for 
management or prevention [1]. Although dental 
caries is not deadly, and caries is now thought to 
be primarily preventable in developed nations 
with a healthy diet and excellent oral hygiene, 
there are still substantial difficulties with 
paediatric illness, particularly among 
impoverished communities. As a result, caries is 
one of the most frequent infectious illnesses in 
the world. As a result, research on vaccine 
formulations including peptide components 
derived from the surface proteins of 
Streptococcus mutans, a key agent linked with 
tooth caries [2].  Streptococcus mutans acid 
resistant strains, such as Lactobacillus 
acidophilus, are important pathogens. The 
primary characteristics of S.mutans able to form 
the colony of an existing biofilm, which is harmful 
to oral disorders. 
 
S. mutans adherence inside dental plaque can 
be mediated by both sucrose-independent and 
sucrose-dependent mechanisms. In sucrose-
independent adhesion, salivary components 
inside the acquired enamel pellicle may begin the 
attachment process, whereas sucrose is 
primarily responsible for colonising the tooth 
surface in sucrose-dependent adhesion. Antigen 
I/II surface protein present on most oral 
streptococci substantially predisposes S. mutans 
to sucrose-independent adherence [3]. Proteins 
in the antigen I/II family have comparable 
structural properties based on amino acid 
domains, but their usefulness in binding salivary 
agglutinins, salivary pellicle components, and 
other plaque bacteria varies [4,5]. The interaction 

between antigen I/II and salivary components is 
primarily mediated by the alanine-rich and 
proline-rich domains [6–10]. 
 
The acid tolerance of S. mutans is primarily 
mediated by an F1F0-ATPase proton pump and 
involves adaptation with an accompanying 
change in gene and protein expression. 
Evidence suggests that acid tolerance may be 
aided by synthesising water insoluble glucan and 
biofilm formation [11,12]. 
 
Lactobacillus acidophilus (LB) is another bacteria 
that substantially influences S. mutans-induced 
biofilm in the oral cavity. LB bacteria are 
commensal microorganisms that colonise the 
human mouth cavity, among other places. 
Because it ferments carbohydrates into acidic 
compounds, which lower the pH in the oral cavity 
and encourage biofilm development, LB is 
closely linked to the development of dental caries 
in dentine [13]. Low pH and antibacterial 
compounds, such as hydrogen peroxide or 
bacteriocins generated by LB microorganisms, 
on the other hand, encourage the cleansing of 
the oral cavity from microorganisms that are non-
adaptive to such environmental circumstances, 
such as Porphyromonas. The specific etiologic 
factor in dental caries is Lactobacillus 
acidophilus. They claim that this microorganism 
grows luxuriantly in the presence of active 
lesions, with it constantly found on the teeth and 
in the saliva, whereas in the absence of active 
lesions, it is either completely absent or present 
in relatively small numbers. 
 
Furthermore, given recent advances in computer 
technology and the rapid accumulation of 
structural, chemical, and biological data on an 
ever-increasing number of therapeutic targets, it 
is easy to see how the use of in silico 
approaches such as chemoinformatics, 
molecular modelling, and artificial intelligence 
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(AI) has grown significantly in recent decades 
[13–18]. Indeed, in silico methods currently allow 
for the virtual screening of millions of compounds 
in a reasonable amount of time, lowering the 
initial expenses of hit discovery and increasing 
the likelihood of identifying the required 
therapeutic candidates. 
 
To be sure, in silico moves toward now 
empowering the virtual screening of millions of 
mixtures in a reasonable time, accordingly 
decreasing the underlying expenses of hit 
distinguishing proof and further developing 
possibilities of tracking down the ideal medication 
applicants. As of now, a few atomic 
demonstrating procedures are accessible to work 
with drug disclosure errands, a large portion of 
them being grouped into structure-based and 
ligand-put together approaches. Structure-based 
techniques depend on the data obtained from the 
3D construction of an objective of interest. They 
permit positioning data sets of particles as 
indicated by ligands primary and electronic 
complementarity to a given objective [19]. In this 
unique situation, sub-atomic docking is among 
one of the most well known and fruitful 
construction situated in silico techniques, which 
assist with foreseeing the associations between 
particles and natural targets [19]. For the most 
part, this interaction is achieved by first 
anticipating the sub-atomic direction inside a 
receptor and afterwards assessing their 
complementarity using a scoring capacity [19]. 
 
Since its first appearance during the 1970s, 
docking has ended up being a significant 

apparatus to see how synthetic mixtures 
collaborate their sub-atomic targets and for drug 
revelation and improvement. Indeed, the number 
of studies announcing: (I) the utilisation of atomic 
docking to distinguish underlying determinants 
fundamental for effective ligand-receptor 
restricting, and (ii) the improvement of more 
precise docking techniques have vigorously 
expanded since its first appearance [19–31]. 
Among the first and additional fascinating 
investigations on the utilisation of docking in drug 
revelation and science is Kuntz et al. in the mid-
1980s [28]. According to Kuntz ID, stated that 
computational strategy empowering the 
investigation of mathematically achievable 
ligand-receptor arrangements for the known 
heme-myoglobin/metmyoglobin and 
thyroxine/prealbumin structures  [28]. This ignited 
up with the present study to evaluate the the 
drug interaction ligand (Ellagic acid) and protein 
[A3VP1 of AgI/II] of Streptococcus mutans (PDB 
ID: 3IPK), glucan-1,6 - alpha-glucosidase from 
Lactobacillus acidophilus NCFM (PDB ID: 4AIE). 
 

2. METHODOLOGY 
 

2.1 Preparation of Ligand 
 
The two dimensional structure of the selected 
ligand Ellagic acid was retrieved from ChemDraw 
Professional 16.0 software (Fig. 1), and it was 
saved in mol format. The optimised 3D Ellagic 
acid structure was generated through the energy 
minimisation process using Chem3D 16.0 
software, and it was saved in pdb format (Figs. 2 
and 3). 

 

 
 

Fig. 1. 2D structure of the selected ligand Ellagic acid 
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Fig. 2. Chem 3D structure of Ellagic acid – Before optimisation 
 

 
 

Fig. 3. Chem 3D structure of Ellagic acid – After optimisation 
 

2.2 Preparation of Target Proteins 
 
The selected target proteins were (1) Crystal 
structure of A3VP1 of AgI/II of Streptococcus 
mutans (PDB ID: 3IPK) classified under cell 
adhesion, and its structure was determined by X-
ray diffraction method having a resolution of 2.04 
Aº, and (2) Structure of glucan-1,6-alpha-
glucosidase from Lactobacillus acidophilus 
NCFM (PDB ID: 4AIE) classified under and its 
structure was determined by X-ray diffraction 
method having a resolution of 2.05 Aº. 

The pdb format of two selected target proteins 
was retrieved from the RCSB Protein Data Bank 
database. The optimisation of the target proteins 
was performed by eliminating the heteroatoms 
and water molecules. 
 

2.3 Molecular Docking Study 
 
The optimised ligand Ellagic acid was docked 
with the crystal structure of A3VP1 of AgI/II of 
Streptococcus mutans (PDB ID: 3IPK) and 
structure of glucan-1,6-alpha-glucosidase from 
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Lactobacillus acidophilus NCFM (PDB ID: 4AIE) 
respectively using AutoDock 4.2.6 software. The 
flexible docking study was performed using the 
pdbqt format of Ellagic acid, rigid macromolecule 
and predicted active, flexible residues. 
 
Concerning the EMBL-EBI PDBsum Generate 
tool, the active residues were predicted to be 
modelled as flexible residues. 
 

(a) PDB ID: 3IPK – SER 697, ASP 760, SER 
761, SER 762, TRP 816, ARG 824 

(b) PBD ID: 4AIE – TYR 330, ASN 498, GLU 
499, GLU 500, PRO 529 

 

The grid box was built to cover all predicted 
flexible active residues of the respective target 
protein. The grid parameters followed in 
molecular docking analysis are depicted in Figs. 
4 and 5. 
 
Centre of ligand molecule: -0.003, -0.000, -0.012 
 
Lamarckian genetic algorithm (LGA) with the 
maximum of 2.5 million energy evaluations was 
used to explore the molecular docking analysis. 
The molecular docking parameters followed for 
flexible docking of ligand Ellagic acid towards 
selected two target proteins in Fig. 6. 

 
 

Fig. 4. Grid parameters followed in the molecular docking of Ellagic acid with Streptococcus 
mutans (PDB ID: 3IPK) 
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Fig. 5. Grid parameters followed in the molecular docking of Ellagic acid with Lactobacillus 
acidophilus (PDB ID: 4AIE) 

 

 
 

Fig. 6. Docking parameters followed for both the molecular docking analysis 
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3. RESULTS 
 
The binding energy for the topmost confirmation 
of the respective docked complex was predicted 
using AutoDock 4.2.6 software. The 2D and 3D 
protein-ligand binding interactions for the 
topmost confirmation of the respective docked 
complex were interpreted using BIOVIA 
Discovery Studio Visualizer 2021 Client software 
 

1. Figs. 7 and 8 showed the Docking results 
of binding energy Ellagic acid with 
streptococcus mutans was -10.63 kcal/mol. 

2. Fig. 9 showed the 3D docking pose of the 
Ellagic acid – Streptococcus mutans (PDB 
ID: 3IPK) docked complex. 

3. Fig. 10: 2D representation of binding 
interactions of the Ellagic acid – 

Streptococcus mutans  (PDB ID: 3IPK) 
docked complex 

4. Figs. 11 and 12  showed most potential 
inhibitors exhibited more favourable 
binding free energy with Ellagic acid – 
Lactobacillus acidophilus docked complex 
was -7.30 kcal/mol. 

5. Fig. 13 3D docking pose of the Ellagic acid 
– Lactobacillus acidophilus (PDB ID: 4AIE) 
docked complex 

6. Fig. 14 showed that 2D representation of 
binding interactions of the Ellagic acid – 
Lactobacillus acidophilus  (PDB ID: 4AIE) 
docked complex. 

 
The lower the binding energy (the more negative 
the free binding energy results in stronger 
complexes), the better the ligand-protein binding 

 
DOCKING RESULTS OF ELLAGIC ACID WITH Streptococcus mutans (PDB ID: 3IPK) 
 

 
 

Fig. 7. Docking results of Ellagic acid with Streptococcus mutans (PDB ID: 3IPK) 
 

 
 

Fig. 8. Binding energy calculation for the Ellagic acid – Streptococcus mutans   docked 
complex 
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Fig. 9. 3D docking pose of the Ellagic acid – Streptococcus mutans (PDB ID: 3IPK) docked 
complex using BIOVIA Discovery Studio Visualizer software 

 

 
 

Fig. 10. 2D representation of binding interactions of the Ellagic acid – Streptococcus mutans  
(PDB ID: 3IPK) docked complex using BIOVIA Discovery Studio Visualizer software 
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DOCKING RESULTS OF ELLAGIC ACID WITH Lactobacillus acidophilus (PDB ID: 4AIE) 
 

 
 

Fig. 11. Docking results of Ellagic acid with Lactobacillus acidophilus (PDB ID: 4AIE) 
 

 
 

Fig. 12. Binding energy calculation for the Ellagic acid – Lactobacillus acidophilus docked 
complex 
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Fig. 13. 3D docking pose of the Ellagic acid – Lactobacillus acidophilus (PDB ID: 4AIE) docked 
complex using BIOVIA Discovery Studio Visualizer software 

 

 
 

Fig. 14. 2D representation of binding interactions of the Ellagic acid – Lactobacillus 
acidophilus (PDB ID: 4AIE) docked complex using BIOVIA Discovery Studio Visualizer 

software 
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4. DISCUSSION 
 
Dental caries is a chronic disease that affects a 
large percentage of the global population. 
Microflora in teeth exhibits subtle variations due 
to poor oral hygiene and dietary habits [32,33]. S. 
mutans, one of the most common dental caries 
pathogens, adheres to the tooth surface via cell 
wall surface proteins and dental plaque, 
producing pathogenic acid metabolites through 
carbohydrate fermentation and causing 
demineralisation of Soft tissues [32,34,35]. 
 
Recent research has shown that some oral 
bacteria produce alkali to reduce mouth acidity 
and thus prevent cavities [36]. Streptococcal 
AgI/II proteins can interact with other 
microorganisms known to populate the oral 
cavity, leading to the production of polymicrobial 
biofilms. These interactions frequently stabilise 
the colonisation of microorganisms linked to the 
development of periodontitis or tooth caries. The 
Ag I/II protein family, represented by SpaP, 
SspA, or SspB, has been found on S. mutans 
surface and the surfaces of other bacteria such 
as Streptococcus pyogenes Streptococcus 
agalactiae, and Streptococcus suis [2]. Six 
different areas are found in the genetic 
sequences encoding Ag I/II. The A area, which is 
high in alanine, and the P region, which is rich in 
proline, are the most significant of these. Region 
V, positioned between them, contains the 
majority of the distinct sequences found in 
various strains. The A and V sections encode 
sticky epitopes found on the surface of bacterial 
cells (referred to as adhesive types) that are 
important for bacterial cell affinity to salivary 
glycoproteins [37]. 
 
Moreover, inhibiting A3VP1 of AgI/II  and glucan-
1,6-alpha-glucosidase activity may become an 
effective therapy for dental caries. In this study, 
we tested compounds against A3VP1 of AgI/II  
and glucan-1,6-alpha-glucosidase that catalysed 
the binding of surface proteins to the cell wall. To 
calculate the precision of our screening system, 
heteroatoms and water molecules. The Grid 
score is based on the anchor and-grow 
algorithm, which involves docking a flexible 
ligand to a rigid receptor. Here we used the 
genetic algorithm parameter. Aside from Gtfs, 
enzymes such as mutanase and -1,6-
glucosidase influence the production and 
structure of glucans. As a result, the structure of 
glucans in the biofilm matrix is variable, and 
water-insoluble polysaccharides predominate in 
matured dental plaque. To our best knowledge, 

this is the first study to include molecular 
information—docket about ellagic acid and 
binding proteins against S. mutans and L. 
acidophilus. 
 

In general, van der Waals energy contributed the 
most to total binding free energy. In our study, 
results state that having lesser binding energy. 
 

5. CONCLUSION 
 

Docking and scoring have evolved dramatically 
in recent years. It has evolved into a valuable 
tool in the drug discovery process. The purpose 
of this study was to investigate the viability of 
docking approaches for our target Ellagic acid 
and to identify the compound. The predictive 
power of docking and scoring functions was 
compared. Our findings indicate that the docking 
programmes investigated here do a reasonable 
job of docking and significantly aid the drug 
discovery process. 

 
Furthermore, the analysis of the docked ligands 
with the protein revealed some significant 
molecular interactions. The ligand docking 
results revealed that the binding pocket contains 
amino acid residues (a) PDB ID: 3IPK – SER 
697, ASP 760, SER 761, SER 762, TRP 816, 
ARG 824 (b) PBD ID: 4AIE – TYR 330, ASN 498, 
GLU 499, GLU 500, PRO 529. ARG 824, SER 
762, LYS 822, SER 818 (PDB ID: 3IPK)were the 
most powerful hydrogen bond forming amino 
acid residues. At the same time, PDB ID: 4AIE 
ASN 498 were the most significant hydrogen 
bond forming amino acid residues. Finally, we 
discovered a potent Ellagic acid that will be 
beneficial in developing new, less toxic, and 
highly effective drugs for the treatment of 
prevention and treatment for dental caries. 
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