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Abstract: Optimal low-thrust trajectories for the direct escape from the Earth’s sphere of influence,
starting from Sun-Earth or Earth-Moon L2, are analyzed with an indirect optimization method.
The dynamic model considers four-body gravitation and JPL ephemeris; solar radiation pressure is
also considered. Specific techniques and improvements to the method are introduced to tackle the
highly chaotic and nonlinear dynamics of motion close to Lagrangian points, which challenges the
remarkable precision of the indirect method. The results show that escape trajectories have optimal
performance when the solar perturbation acts favorably in both thrust and coast phases. The effects
of the solar and Moon perturbations are more evident in the Earth-Moon L2 escapes compared with
those from the Sun-Earth L2. EML2 escapes have single- or two-burn solutions depending on the
trajectory deflection, which is needed to have a favorable solar perturbation. The SEL2 escapes, on
the contrary, mainly have a single initial burn and a long coast arc, but need an additional final thrust
arc if the required C3 is high. As applications of such Lagrangian Point trajectories, results include
considerations about escape maneuvers from different SEL2 high-fidelity Lyapunov orbits and escape
for interplanetary trajectories towards near-earth asteroids.

Keywords: escape trajectories; Lagrangian points; electric propulsion; trajectory optimization;
indirect methods

1. Introduction

Lagrangian points (LPs) have received great interest in the last few decades. LPs
represent equilibrium positions in the three-body dynamics, and a spacecraft at an LP
remains locked in the reference frame (RF) which rotates with the two primaries (e.g., Sun
and Earth or Earth and Moon), maintaining a fixed position [1]. In addition to these peculiar
dynamical characteristics, these positions offer highly advantageous strategic locations for
both logistic purposes and the study and analysis of deep space [2–7]. For these reasons,
the scientific community is showing great interest in visiting LPs and, in the near future,
numerous space missions are planned towards these points.

Among other initiatives, the European Space Agency is planning a mission [8] (for-
merly known as LAGRANGE) with two spacecraft in Sun-Earth L1 and L5 for observation
and monitoring of interplanetary space and solar activity, and the PLATO mission [9], in
Sun-Earth L2 (SEL2). In addition to being targets of specific missions, LPs could also be
used as departure points for interplanetary missions. For instance, a recent contribution [10]
showed how departures from either Sun-Earth L4 or Sun-Earth L5 might be extremely
favorable for missions to near-earth asteroids (NEAs) that have small minimum orbit
intersection distance (MOID), in particular when the target asteroid passes relatively close
to the Earth.

In a similar way, the future Lunar Orbital Platform Gateway (LOP-G; formerly named
Deep Space Gateway—DSG) is a joint effort led by NASA, in collaboration with CSA, ESA,
and JAXA, in order to place a platform close to the Moon, on a stable orbit around, though
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quite far from, Earth-Moon L2 (EML2). This orbiting platform will be used to greatly sim-
plify some deep space operations, produce a more practical handling of lunar resources, and
serve as a supply point for spacecraft, such as Deep Space Transport, moving to and from
distant destinations [11–13]. NASA published a reference trajectory in the full ephemeris
model for a 15-year-long positioning [14] of the LOP-G. The selected orbit is a southern L2
near rectilinear halo orbit (NRHO) with 9:2 lunar synodic resonance, which minimizes the
required station-keeping maneuvers while eliminating eclipses almost completely.

Very small propulsive requirements (∆V below 100 m/s and often even below 10 m/s)
are needed to escape from LPs on low energy trajectories with final C3 (C3, f ) below
0.5 (km/s)2; these values are suitable, for instance, for missions to NEAs. These kinds of
trajectories are the focus of the present paper, which aims at an initial evaluation of escape
from SEL2 and EML2 for an electric propulsion (EP) spacecraft.

The optimization of EP escape trajectories is here carried out with an indirect method,
which is based on the theory of optimal control and transforms the propellant minimization
problem into a multipoint boundary value problem (BVP). The BVP is solved with an
iterative single-shooting procedure based on Newton’s method. High-accuracy results
were sought. The dynamic model considers four-body gravitation (spacecraft, subject to
Earth, Moon, and Sun gravity), JPL ephemeris for the position of the bodies, and solar
radiation pressure (SRP). It also includes an 8×8 spherical harmonic model for Earth [15,16],
even though its effect is negligible as no close passage occurs; the harmonic model for the
Moon is here neglected but can be easily implemented if needed.

Indirect methods are computationally efficient but may suffer from poor convergence.
Techniques to address numerical issues and to find proper tentative solutions are here intro-
duced. The present analysis considers escapes from L2 and does not impose a constraint on
the escape velocity direction. Analysis and results are to be transitioned in future studies on
escape trajectories for specific missions. A proper tentative solution is needed, and the use
of partial solutions and/or solutions of simpler problems is often an effective means to find
such tentative solutions [17]. The solutions obtained here are suitable as tentative guesses
for escape from orbits with practical uses, such as NRHOs, and linked to the analysis of the
interplanetary phase for the joint optimization of escape and interplanetary transfer to the
selected interplanetary destination [18].

In the recent literature, Ref. [19] considered evasion from SEL2 in the circular restricted
three-body problem. Direct escape was compared to trajectories with Earth gravity assist;
impulsive maneuvers were first considered and then extended to EP, using direct collocation
and a nonlinear programming optimization scheme. The analysis is here extended to take
orbit eccentricity and Moon gravity into account. In the Earth-Moon system, access to LPs
was analyzed in Ref. [20], but the emphasis was not on EP escape trajectories. Impulsive
escape trajectories from EML2 were analyzed in Ref. [21] in the Sun-Earth-Moon bi-circular
restricted four-body problem, either for direct escape or via Earth swing-by; the Sun
gravitational perturbation and the relative Moon angular position were both considered.
Here the analysis is extended by implementing the use of EP, the JPL’s DE430 ephemeris,
and a higher fidelity model for non-assisted EML2 escapes. Results will highlight the
influence that the most relevant parameters (e.g., time of flight, positions of the perturbing
bodies with respect to each other and to the spacecraft) have on propulsive requirements
and characteristics of the optimal escape trajectories.

Section 2 introduces the dynamic model with a detailed analysis of the relevant
perturbations taken into consideration. Section 3 describes how the optimal control problem
is developed and implemented. Sections 4 and 5 show the optimal trajectories obtained for
departures, respectively, from SEL2 and EML2; both sections include subsections resulting
from trajectories obtained with different boundary conditions. Section 6 provides examples
of applications of the results. Finally, Section 7 presents the paper’s conclusions.
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2. Dynamic Model

The dynamic model considers a point-mass spacecraft with variable mass. The prob-
lem state variables are position r, velocity V , and mass, m, of the spacecraft, and are ruled
by the following differential equations:

dr/dt = V (1)

dV/dt = −µr/r3 + T/m + aJ + alsg + asrp (2)

dm/dt = −T/c (3)

where −µr/r3 is the spherical Earth gravitational acceleration, aJ is the perturbing acceler-
ation due to Earth’s non-sphericity, alsg is the perturbing acceleration due to Moon (lunar)
and Sun (solar) gravity (i.e., lunisolar effect), and asrp is the perturbation due to SRP. The
trajectory is controlled by the thrust vector T . The available power and thrust are inversely
proportional to the squared distance from the Sun, assuming efficiency, ηT , and effective
exhaust velocity, c, as constants—T = 2(ηT/c)P1/R2

s = T1/R2
s —where P1 and T1 are the

values at 1 AU and Rs is expressed in AU.
The Earth Mean Equator and Equinox of Epoch J2000 frame (i.e., EME2000) is adopted

(Figure 1); I, J, K are unit vectors along the reference axes of EME2000. Precession and
nutation are neglected. Right ascension ϑ and declination ϕ are introduced along with
the radius magnitude r to write the position vector as r = r cos ϑ cos ϕI + r sin ϑ cos ϕJ +
r sin ϕK. The topocentric RF, identified by unit vectors ı (radial),  (eastward), and k
(northward) is introduced. The unit vectors are defined by the following:

ı

k

 =

 cos ϑ cos ϕ sin ϑ cos ϕ sin ϕ
− sin ϑ cos ϑ 0

− cos ϑ sin ϕ − sin ϑ sin ϕ cos ϕ


I
J
K

 (4)

I
J

K

r

ϑ

ϕ

k


ı

Figure 1. EME2000 vs. topocentric RF.

The position vector in the topocentric frame is r = rı and the velocity vector is
expressed as V = ṙ = uı + v + wk, with u, v, and w as the radial, eastward, and northward
components, respectively. The seven scalar state equations are easily derived as

dr/dt = u (5)

dϑ/dt = v/(r cos ϕ) (6)

dϕ/dt = w/r (7)

du/dt = −µ/r2 + (v2 + w2)/r + Tu/m + (aJ)u + (alsp)u + (asrp)u (8)

dv/dt = (−uv + vw tan ϕ)/r + Tv/m + (aJ)v + (alsp)v + (asrp)v (9)

dw/dt = (−uw− v2 tan ϕ)/r + Tw/m + (aJ)w + (alsp)w + (asrp)w (10)

dm/dt = −T/c (11)
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Boundary conditions contain initial values of position (r0, ϑ0, ϕ0), velocity (u0, v0,
w0), and mass (m0), and final values of r f . Constraints on either the final value of
C3 = u2

f + v2
f + w2

f − 2µ/r f or the final time may be introduced. No constraint is imposed
on the final value of the terrestrial longitude and latitude. The final mass is maximized.
The perturbation due to Earth’s harmonic potential was already present in the dynamical
model and has been maintained, even though it has negligible influence on results and
speed of calculations—it is described in Refs. [15,16]; details are here omitted for the sake
of conciseness. Results show that SRP has a negligible influence on performance for the
present study, causing variations of the final mass of a few grams. Nevertheless, the SRP
perturbation is included in the integration (for further references, please refer to Ref. [15]),
but it is not further analyzed in the results.

Lunisolar Effect

DE430 JPL ephemerides [22] are used to retrieve Moon (subscript `) and Sun (subscript
s) positions. If subscript b is used to indicate a generic body, its position vector rb is given
in rectangular coordinates xb, yb, zb with respect to the Earth in the international celestial
reference frame (ICRF), i.e., rb = xb I + yb J + zbK. The small differences between ICRF and
EME2000 are neglected, and the latter is used in the present analysis. The gravitational
perturbation caused by the body, which has gravitational parameter µb and position vector
with respect to the Earth rb, is obtained as the difference of the gravitational accelerations
on spacecraft (abg) and Earth (abE). One has

abg = −(µb/R3
b)Rb − (µb/r3

b)rb (12)

where Rb = r − rb is the spacecraft relative position vector (and −rb is Earth’s relative
position) with respect to the perturbing body. A schematic representation is provided in
Figure 2 below.

J

IE

S/C

b, µb

abE

abs/c

ı (u) (v)

r

rb

Rb

ϑ

ϑb

Figure 2. Schematic representation of gravitational perturbation in EME2000 RF.

The acceleration is projected onto the topocentric frame at epoch to easily obtain
the perturbing components. When the perturbing body is very far compared with the
Earth–spacecraft distance (i.e., when rb � r, as it happens for the Sun) and coplanarity is
assumed, a simple expression of the tangential and radial components of the perturbation
can be derived (please refer to Refs. [15,16] for further details).

(ass/c − asE) · û =
3
2

µs

r3
s

sin [2(ϑs − ϑ)] (13)

(ass/c − asE) · ûı =
3
2

µs

r3
s
{1 + cos [2(ϑs − ϑ)]} (14)

where û and ûı are, respectively, the tangential and radial unit vectors.
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The spacecraft velocity has main components along tangential and radial directions, so
these terms can be used to estimate the positive or negative effects of solar perturbation dur-
ing the escape. Equations (13) and (14) show that it is possible to enclose the perturbation
effect dependence on Sun–spacecraft position in the two following proportionality terms:

ξv = sin (2∆ϑ) (15)

ξu = 1 + cos (2∆ϑ) (16)

where ∆ϑ is the angular difference between the Sun and the spacecraft. Energy is increased
by the acceleration component along the spacecraft direction. Large positive ξv tends
to be more useful during the initial phase (tangential velocity), whereas large ξu should
be preferred in the final phases, when the velocity tends to the radial direction. Large
ξv occurs when the Sun is in the first (0◦ < ∆ϑ < 90◦) or third (−180◦ < ∆ϑ < −90◦)
quadrant in the spacecraft rotating frame, whereas other ∆ϑ combinations may have null
or negative influence on the spacecraft energy if the spacecraft is continuously moving
outward. The radial acceleration, on the other hand, cannot produce a negative effect
(unless the spacecraft is moving towards the Earth) and has a maximum positive influence
when the Sun is in between the fourth and first quadrants (−45◦ < ∆ϑ < 45◦) or in between
the second and the third quadrants (∆ϑ > 135◦ and ∆ϑ < −135◦). In general, the combined
effect of the two solar perturbation components may produce an overall positive effect on
the spacecraft energy when the Sun is either close to −157.5◦ or +22.5◦ with respect to the
Earth–spacecraft direction.

3. Optimization

The theory of optimal control [23,24] is applied to the differential system described
above to determine the optimal solution for escape. The final mass is maximized, given
the initial state (position, velocity, and mass) and the final distance from the Earth. The
final time and/or the final value of C3 may be added to the boundary conditions. Thrust
(magnitude, constrained between 0 and the maximum available value, and direction) is
the control variable. Adjoint variables λ are coupled to the state differential equations and
the Hamiltonian is defined as H = λT

r V + λT
V(−µr/r3 + T/m + aJ + a` + as)− λmT/c.

Euler–Lagrange equations provide differential equations for the adjoint variables; they are
presented in Appendix A, and additional details can be found in Ref. [15]. The Hamilto-
nian must be maximized by the optimal controls, i.e., thrust magnitude and direction, in
agreement with Pontryagin’s maximum principle (PMP). The thrust T must be parallel
to the adjoint vector λV , also named the primer vector. The Hamiltonian is rewritten as
H = λT

r V + λT
V(−µr/r3 + aJ + a` + as) + T(λV/m− λm/c), and is linear with respect to

T; a bang–bang control arises and the thrust must be maximized, T = Tmax, when the
switching function SF = λV/m− λm/c > 0, while the thrust shall be null T = 0, when
SF < 0. Singular arcs, usually associated with atmospheric flight, are here excluded.

The handling of thrust discontinuities is one of the main challenges in indirect opti-
mization, because they can create numerical problems in the gradients evaluation. Several
techniques have been used to deal with this problem, such as smoothing techniques [25–27]
or homotopy and continuation approaches [28,29]. More recently, new regularization
techniques, such as uniform trigonometrization methods [30] and integrated control reg-
ularization methods [31], have also been introduced to handle thrust discontinuities and
other kinds of path constraints.

In this analysis, a different approach is adopted. The switching structure (i.e., a suitable
sequence of thrust and coast arcs) is specified a priori, and modified if PMP is violated. The
simplest thrust–coast structure is initially assumed and eventually modified when required,
according to PMP. Each trajectory is divided into a number of distinct phases equal to the
number of thrust and coast arcs specified, thus producing a multipoint boundary value
problem. The duration of each j-th phase, ∆tj, is unknown and subject to optimization.
Additional boundary conditions specify that the switching function must be null at the
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switching points, where the engine is turned on or off. This approach guarantees improved
numerical accuracy and convergence speed/robustness compared with the alternative
strategy of deciding the thrust level during integration, according to the instantaneous
value of the switching function.

The equations are integrated by using a variable-order, variable-step integration
scheme based on Adams–Moulton formulas. The achieved numerical accuracy is therefore
comparable to the one obtained via high-precision orbital propagators in commercial or
open-source software, such as STK or GMAT; as expected for indirect methods, computa-
tional times are minimal—below 10 seconds per trajectory on a standard 2.70 GHz CPU
laptop—if the initial guesses are within a reasonable error range.

The initial values for some variables, e.g., the adjoint variables, are generally unknown.
In order to solve the BVP, a Newton’s scheme is adopted. Tentative values q are assumed
for the unknowns (switching/final times and unknown adjoint initial values) and the error
on the boundary conditions is determined after integration. Each i-th component of q is
perturbed by a small quantity δqi (e.g., 10−7) and the variation of the error ∆χ is evaluated,
again after integration. The unknowns are corrected at each iteration, aiming at nullifying
the errors by assuming linear behavior and evaluating numerically the error–gradient
matrix ∂χ/∂q = ∆χ/∂q, so that

∆q = −K[∂χ/∂q]−1χ (17)

where K is a relaxation parameter. Values between 0.01 and 1 are usually suited to obtain
convergence.

A suitable tentative guess can be built from simple considerations. Given the initial
state, a switching structure with a thrust arc followed by a coasting arc can initially be
assumed. The length of the burn can be estimated from the available thrust acceleration,
assuming a reasonable ∆V (e.g., 50–100 m/s for these cases). The velocity adjoint vector is
taken parallel to the spacecraft velocity (energy gain is usually sought), with a magnitude
that makes the switching function positive. The position adjoint vector is taken in the
radial direction and with magnitude to have a decreasing magnitude of primer vector and
switching function. Once a solution for a specific case is found, it can be used as a tentative
guess for different scenarios (e.g., departure date, constraints on escape C3, etc.).

The boundary conditions at escape are geocentric. In addition to the final radius,
the escape characteristic energy, and therefore C3, may also be specified. It follows that
the same geocentric C3 can produce different heliocentric energies based on the escape
direction, which is here not constrained. The Results Section will present some observations
about the heliocentric escape conditions, but a detailed analysis is left for future studies.

4. Escape Trajectories from Sun-Earth L2

In 2018, the European Space Agency proposed an F-class mission [32] departing from
SEL2, where the spacecraft is carried as a piggyback of the ARIEL or PLATO missions.
The spacecraft would remain in L2 for a suitable time and then depart from this point
for an interplanetary trajectory; the escape trajectory is analyzed here. According to
the preliminary mission specifications, a spacecraft mass of 850 kg is considered. The
propulsion system is based on the performance of the ArianeGroup RIT 2X: Power available
to the thruster 4.2/R2

s kW (distance from the Sun Rs in AU), constant efficiency 0.625,
constant specific impulse 3300 s, with the thrust that scales as power.

Departures from the Lagrangian point L2 of the Sun-Earth system are considered. The
initial distance from the Earth is the radius of Hill’s sphere, evaluated by supposing that
the mass of the smaller primary (Moon with respect to Earth or Earth with respect to Sun)
is much smaller than the bigger primary. Velocity is selected to have the same angular
velocity of the primaries relative motion. One has
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r0 = rs,0[1/(3µs)]
1/3 (18)

ϑ0 = ϑs,0 + π (19)

ϕ0 = −ϕs,0 (20)

u0 = 0 (21)

v0 = vs,0(r0/rs,0) (22)

w0 = −ws,0(r0/rs,0) (23)

where rs,0 is the Sun-Earth distance at epoch t0. Quantities are here normalized by using
Earth’s ellipsoid major semi-axis rE = 6378.1363 km and the corresponding circular velocity√

µE/rE as reference values, where µE = 398,600.4415 km3/s2 is Earth’s gravitational
parameter. The normalized gravitational parameter of the Earth is equal to one.

The reference departure date is 15 October 2025, when the instantaneous Earth-Moon
distance matches its average value of 384,400 km. The analysis time is extended up to the
point in which the instantaneous Earth-Moon distance is again at the average value, which
happens on 12 November 2025. Five sample cases are of interest, namely one each week,
hereinafter referred to as cases 1–5.

SEL2 departures have been analyzed under different constraints. In particular, the
distance of escape is always fixed at 3 million km from the Earth, namely beyond Earth’s
sphere of influence (SOI), when the combination of gravitational attractions of Earth and
Moon becomes negligible compared with the Sun’s one. The first analysis bounds the time
to escape at 90 days, while leaving the final energy as a free parameter. Then, escape C3
equal to 0.2 and 0.5 (km/s)2, with no constraints on the escape time will be considered.

4.1. Sun-Earth L2 Escapes with Constrained Final Time

The solutions for the five departure dates show a common trend during the escape.
Figure 3 highlights a whole family of solutions (represented by the hundreds of subtle lines)
with departures starting from case 1, on 15 October 2025, up to case 5, on 12 November 2025.
These selected five cases are henceforth highlighted with specific styles. A family collects
solutions that can be found with a continuation approach: There are close similarities, and,
at a first approximation, each curve seems simply rotated due to the different departure
position. Each trajectory is however different, mainly due to the Moon position during
flight, which changes with the departure date.

The spacecraft is actually pulled towards the boundary of the SOI by the Sun, which
has a large positive overall effect on the orbit energy. Its direction at the beginning and
at the end of each selected escape is represented in the lower part of the figure. Thrust
is therefore used to achieve a trajectory that maintains the Sun in a favorable position,
maximizing the effect of its pull (∆ϑ close to 180◦, see Figure 4). Figure 5 shows that for the
selected SEL2 escapes the whole energy gain, except for a minor thrust contribution at the
beginning, is due to the solar perturbation. Please note that, henceforth, thrust phases are
shown as bold lines in those figures that may contain that information.

Thrust is used so that the Sun moves from the second to the third quadrant of the frame
that rotates with the spacecraft, where Sun’s gravity acts to increase the orbit energy. The
spacecraft remains close to 180◦ and/or between −135◦ and −180◦ in the rotating frame,
exploiting both tangential and radial components of Sun’s perturbation. The same trend
is shown for different departure dates, with the initial thrust arc adapting to produce the
same effects, as shown in Figure 4. In a Sun-Earth synodic RF centered on Earth (Figure 6),
such trajectories are all located in the fourth quadrant and show evident similarities during
the escape.
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Figure 3. SEL2 escape trajectories over a lunar month, fixed t f = 90 days, free C3, EME2000 RF.
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Figure 4. Time evolution of Sun–spacecraft relative angle for two SEL2 case studies.

The effects of Moon’s perturbation are shown in Figure 7, which presents the trend of
the propellant requests, and thus the ∆V, to reach an escape in 90 days with free final energy.
The reference departure date (15 October 2025) is in the region where ∆V and C3 values
are lowest. The spacecraft is relatively far from the Moon, and Moon’s gravity acts mainly
on the Earth. The initial geometry on the reference departure date shows that the Moon
reduces the spacecraft’s geocentric energy by pulling the Earth; this perturbation modifies
the Sun-Earth–spacecraft geometry so that the Sun’s pull on the spacecraft is increased, and
a lower propulsive effort is needed. The opposite happens after half the lunar period. The
final value of C3 depends on the energy gain provided by thrusting and the overall effect
of the perturbing bodies, causing oscillations in the trajectory performance.
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The effect of Sun’s pull is dominant, and two simple coefficients are defined to assess
how much the influence of the solar perturbation is acting favorably on the escape, ηSP,u
and ηSP,v. The radial and tangential perturbation weights are introduced to evaluate the
normalized contributions of solar perturbation along the whole trajectory. The trajectory is
split into n uniform intervals and ηSP,u and ηSP,v are evaluated as

ηSP,u =
1

2∆tmax

(
n−1

∑
j=1

ξu,j + ξu,j+1

2
∆tj

)
(24)

ηSP,v =
1

∆tmax

(
n−1

∑
j=1

ξv,j + ξv,j+1

2
∆tj

)
(25)

For each family of solutions, the ηSP are normalized with respect to the longest mission
among them. This allowed us to produce a general parameter able to compare those escapes
with a different total duration.

The 1/2 coefficient in ηSP,u is introduced to make ηSP,u = 1 for maximum favorable
effect, whereas ηSP,u = 0 corresponds to null effect. The values of ηSP,v, instead, range
between −1 (most unfavorable) and 1 (most favorable). Figure 8 shows the trend of these
coefficients; it is clear that SEL2 escapes exploit mostly the radial perturbation, with slight
fluctuations of the tangential perturbation that, however, acts always favorably. Even
though they are not an exact measure of solar effect, these coefficients correctly match the
actual propellant consumption trend, with minimum propellant requirements in the region
between maximum ηSP,u and ηSP,v.
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Figure 8. Radial and tangential overall perturbation effect per trajectory for escapes from SEL2.

Table 1 compares the performance of the reference cases C = 1–5, depending on the
departure date. All the solutions belong to the same family (f = I) and have a 2-phase
structure (p = 2).

Table 1. SEL2 escapes performance—fixed t f = 90 days, free C3.

C f p ηSP,u ηSP,v ηSP
∆V C3, f
m/s (km/s)2

1 I 2 0.975 0.208 0.592 30.676 0.1833
2 I 2 0.979 0.174 0.576 36.419 0.1931
3 I 2 0.978 0.178 0.578 55.369 0.2050
4 I 2 0.974 0.217 0.596 54.982 0.1956
5 I 2 0.976 0.210 0.593 33.572 0.1828
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4.2. Sun-Earth L2 Escapes with Constrained Final Energy

When the escape maneuver is the start of an interplanetary transfer, specific values of
escape energy and C3 could be sought. If the final C3 value is constrained, then the escape
trajectory is modified to change the overall effect of Sun’s pull. Two case studies have been
analyzed, by imposing the final C3 equal to 0.2 and 0.5 (km/s)2.

Given the high sensitivity of the convergence process to the adjoint variables initial
values, both the exploration procedure to generate a family of solutions, and the passage
from a solution with the same departure date to a new case with different final conditions,
are particularly delicate. Compared with the previous study [16], various methodologies
and techniques have been developed and implemented to guarantee robustness to the
method and to automate many of these processes. The case studies solutions at fixed
C3 have been found one-by-one starting from a set of tentative solutions built on user
experience (initial thrust aligned with velocity, thrust–coast structure). The other solutions
have been found similarly or via an ad hoc continuation method. A gradual variation is
imposed, starting from the free final C3 solution towards the constrained one (or from the
lower to the higher constrained final C3) or using the closest available solution in terms of
departure date as a tentative guess. It can happen that a forward search from a certain date
and a backward search from a later date do not end up to the same point; therefore, for the
same departure date, solutions belonging to different “families” are found.

This bifurcation phenomenon is visible in Figure 9 (left), which shows that three
families of solutions arise from the single family at fixed escape time when solutions are
forced to C3 = 0.2 (km/s)2. On the contrary, all the solutions for C3 = 0.5 (km/s)2 have
the same strategy. Analogous considerations are shown in Figure 10, in which all the
trajectories reach the same final C3 but with different costs and mission durations.

The first family is found for departure between 15 October 2025 and 21 October 2025,
with trajectories that tend to be radial and have short trip times. The second family is for
departures between 18 October 2025 and 2 November 2025. The third family extends over
the whole launch period considered, and has trajectories with a more tangential velocity
with respect to the other solutions. This result shows how, for the same departure date, it is
possible to pick different strategies according to the specific needs; at the same time, it is
clear that the improved code allows the indirect method to find various solutions without
falling in the same local minima. In this case, family III is always the better solution for
what concerns propellant consumption, but different constraints (C3 value, additional time
constraints) may change the scenario.
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Figure 9. SEL2 escape trajectories over a lunar month—fixed C3 = 0.2 (km/s)2 (left), 0.5 (km/s)2

(right), free t f , EME2000 RF.
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Figure 10. Influence of departure date to escape from SEL2—families of solutions—fixed
C3 = 0.2 (km/s)2, free t f .

Figure 11 shows the trend of the spacecraft energy over time. It can be seen that
the solution with final C3 = 0.5 (km/s)2 includes an evident second thrust arc (T) after a
coast arc (C), for a total of three phases in a T–C–T strategy. In this case, later thrusting is
preferred to achieve the desired large final energy, instead of increasing the initial burn
duration, in order to maintain an unaltered positive effect of solar perturbation.
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Figure 11. Spacecraft energy over time from SEL2—comparison between free and fixed final C3.

Tables 2 and 3, instead, show the solutions for the escapes with fixed final energy,
while in the lower final energy scenario multiple families of solutions arise, in which
some trajectories exploit more consistently the solar perturbation, whereas others use more
propellant, the scenario with higher final energy only relies on a second consistent final
burn to reach the desired final energy as the only feasible option. Figure 12 shows the semi-
major axes of all these trajectories in the heliocentric ecliptic reference frame, on the left for
the lower energy scenario and on the right for the higher one. The integration is extended
to 2.5 times the time to escape to show the evolution after the exit from Earth’s SOI; while
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for the final C3 = 0.2 (km/s)2 case, this operation produces a simple extension of the final
coasting phase, in the C3 = 0.5 (km/s)2 scenario, the appearing of a fictitious terminal
fourth coasting phase is needed. All the trajectories have similar trends with comparable
costs, almost equal use of the solar perturbation and similar final energies. However, as
anticipated, the escape directions are different; therefore, the orbital parameters, as shown
in Figure 12, show slightly different trends. It is worth noting that small variations occur
after the escape for the residual influence of Earth’s gravity. Nevertheless, departures
spaced apart by one lunar month overlap again quite precisely.

Table 2. SEL2 escapes performance—fixed C3 = 0.2 (km/s)2, free t f .

C f p ηSP,u ηSP,v ηSP
∆V t f
m/s days

1 I 2 0.782 0.160 0.471 22.155 95.92
2 II 2 0.842 0.162 0.502 19.416 103.08
3 II 2 0.795 0.181 0.488 46.462 97.78
1 III 2 0.980 0.193 0.586 1.346 119.75
2 III 2 0.965 0.164 0.564 8.153 117.87
3 III 2 0.914 0.158 0.536 30.253 111.72
4 III 2 0.841 0.173 0.507 37.757 103.07
5 III 2 0.796 0.162 0.479 23.155 97.44

Table 3. SEL2 escapes performance—fixed C3 = 0.5 (km/s)2, free t f .

C f p ηSP,u ηSP,v ηSP
∆V t f
m/s days

1 I 3 0.805 0.199 0.502 220.205 98.60
2 I 3 0.983 0.173 0.578 222.191 119.15
3 I 3 0.898 0.237 0.568 242.771 109.95
4 I 3 0.822 0.253 0.537 246.049 101.40
5 I 3 0.817 0.205 0.511 221.774 99.83
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Figure 12. SEL2 selected escapes—spacecraft semi-major axis in the heliocentric ecliptic RF—fixed
C3 = 0.2 (km/s)2 (left), 0.5 (km/s)2 (right) − 2.5× t f propagation.

5. Escape Trajectories from Earth-Moon L2

The dynamics in the vicinity of EML2 is characterized by a complex gravitational
interaction between the Sun, the Earth, and the Moon. Nevertheless, several researches
and missions have exploited this region for the numerous strategic and design advantages
that it can offer. Indeed, in 2004, the ESA’s Advanced Concepts Team researched the use of
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Lagrange points as departure and arrival points of space missions, demonstrating that the
characteristic orbits nearby of these points are accessible in reasonable times and costs [20].

Lissajous orbits around EML2 have been used for the Artemis P1 mission in 2010
and Chang’e 5-T1 in 2014. The recent Chang’e 4 mission used a halo orbit around EML2
for its relay satellite, Queqiao, which is positioned at EML2 since 2018 for signal-and-
sunlight eclipses avoidance. The NASA’s Exploration Campaign in 2018 assessed that the
Artemis program would include the positioning of an outpost in the vicinity of EML2,
the LOP-G, in a Southern Synodic 9:2 NRHO, that will serve to enable future deep space
exploration missions. By the middle of 2022, the NASA Artemis 1 mission, formerly
Exploration Mission 1, is expected to take place. NASA selected 13 secondary payloads
to be transported in the new SLS Block 1, among which there will be EQUULEUS, a 6U
Cubesat proposed by JAXA and the University of Tokyo [33]. Its primary goal is a low-
energy trajectory control experiment near EML2; its mission and scientific objectives are
discussed in Ref. [34].

These important missions and programs simultaneously show the high scientific inter-
est and the complexities in the use of such L2 points. The proposed analysis implements
direct escapes from EML2 and disregards the complexities that would derive from the
inclusion of NRHOs or Lissajous orbits as departure points, which will be subject of future
research. As per the SEL2 case, the propulsion system has the same values for power and
efficiency, but the specific impulse is imposed constant at 2000 s, like in a typical, current
Hall thruster.

The same specific five departure times in a lunar synodic period of the previous section
are again considered to explore the effect of the relative position of the Moon and the Sun on
the escape maneuver. The first (15 October 2025) and last (12 November 2025) departures
happen at times with the nominal Moon’s mean orbital radius; a perturbed Moon orbit is
considered so the positions in EME2000 are slightly different. The linearized L2 distance is
again used to define the spacecraft initial position. One has

r0 = rl,0

[
1 + (µ`/3)1/3

]
(26)

ϑ0 = ϑl,0 (27)

ϕ0 = ϕl,0 (28)

u0 = ul,0 (29)

v0 = vl,0(r0/rl,0) (30)

w0 = wl,0(r0/rl,0) (31)

The final radius is fixed at 3 million km, beyond Earth’s SOI boundary. Like in the
SEL2 departure analysis, three scenarios are considered: the first with a fixed time to escape
and a free final energy, and other two with escape C3 fixed at a lower (0.2 (km/s)2) and
higher (0.5 (km/s)2) value with free time to escape.

5.1. Earth-Moon L2 Escapes with Constrained Final Time

In similarity to the escape from SEL2, single burn trajectories are initially sought; these
trajectories are characterized by a first thrust (T) arc followed by a coast (C) arc.

Figure 13 shows the manifold of departure trajectories for the selected dates. Those
trajectories exploiting a second burn are distinguished by a small dot at the arc end. The
first (15 October 2025) and last (12 November 2025) departures, i.e., cases 1 and 5, have
slightly different initial positions in EME2000 and the Sun relative angle has a difference
of about 30◦. Nonetheless, the two solutions are similar with a difference in spacecraft
final angular positions close to the 30◦ between Sun positions. When additional departure
dates are considered, three families of solutions can be distinguished (see also Figure 14).
Due to the greater dynamic complexity of the Earth-Moon system, even the trajectories
with fixed final time and free final energy split into several families. Table 4 shows the
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performance for the selected departure dates in each family, and Figure 15 shows some of
them to highlight the differences.
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Figure 13. EML2 escape trajectories—fixed t f = 75 days, free C3, EME2000 RF.

Table 4. EML2 escapes performance—fixed t f = 75 days, free C3.

C f p ηSP,u ηSP,v ηSP
∆V C3, f
m/s (km/s)2

1 I 2 0.833 0.064 0.448 48.763 0.3510
2 I 4 0.783 −0.429 0.177 61.183 0.1523
3 I 2 0.503 −0.712 −0.105 161.279 0.0026
3 II 2 0.434 0.750 0.592 20.476 0.4789
3 III 2 0.805 −0.106 0.349 17.412 0.3108
4 III 2 0.801 −0.376 0.212 38.572 0.1821
5 I 2 0.775 0.302 0.538 51.373 0.4430
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Figure 14. Influence of departure date to escape from EML2—families of solutions—fixed
t f = 75 days, free C3.
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Figure 15. Time evolution of Sun–spacecraft relative angle for selected EML2 solutions.

In particular, by observing the same trajectories in the Sun-Earth synodic reference
frame centered on Earth (Figure 16), three escape trends arise. Cases 1, 2, and 3 of family I
occupy the first and fourth quadrants, favorably exploiting the radial component of Sun’s
perturbation in the final part of the escape, in accordance with Figure 15. The spacecraft
always shows terminal ∆ϑ close to 180◦, while case 2 exploits a short second burn to align
the final leg of the trajectory, the late departure of case 3 forces a longer initial burn to
achieve a similar result (Figure 16, right). The specular scenario, for cases 3 and 4 of family
III, sees escape points on the L1 side (i.e., between Earth and Sun, see Figure 4). These
trajectories occupy the second and third quadrants in the rotating reference frame, tending
to null ∆ϑ, which, again, implies favorable radial perturbation. The single trajectory in the
second quadrant, case 3 family II, exploits more substantially the tangential component
with an escape tending to ∆ϑ = 45◦. The last trajectory, case 5, repeats the trend of
family I solutions, being in particular very close, as expected, to the solution departing
a lunar synodic month earlier, even though the different position of the Sun affects the
trajectory details.
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The reference departure date has a T–C escape strategy with low propellant consump-
tion, which corresponds to a positive use of both the tangential and radial solar perturbation
as seen from the evolution of the relative angle between the spacecraft and the Sun. The
same switching structure does not respect PMP for the second departure date. In this
case, the switching function becomes negative during the thrust arc, suggesting that the
thruster should be turned off. The switching structure is modified in agreement with this
behavior and a four-arc trajectory, T–C–T–C, is adopted. The two-burn solution respects
PMP and is therefore optimal; the propellant consumption is correspondingly reduced
with a significant improvement. Case study 3 has solutions pertaining to three different
families, and by analyzing the Sun–spacecraft relative angle from family I to family III,
one can notice that increasingly improved strategies can be implemented. The first family
shows a very high propellant usage to contrast the long period (roughly, between 15 and
50 days since departure) in which the spacecraft is at a null or negative configuration for
the tangential perturbation. The second family has a similar condition but has favorable
radial perturbations, leading to a wider trajectory at a lower cost. The third family, which
spans also to the fourth departure date, is the most favorable one, and it exploits a consis-
tently positive tangential perturbation. Indeed, even if cases 3 and 4 from family III have
departures separated by 90◦, they tend to both end at ∆ϑ ≈ 0◦. The same considerations
are highlighted in Figure 17.
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Figure 17. Radial and tangential overall perturbation effect per trajectory for escapes from EML2.

It is noteworthy that the second family of solutions has a very low propellant consump-
tion with a very high free final energy, implying that constrained final energy solutions,
especially the ones fixed at lower values, will have to reduce somehow the spacecraft
energy to achieve the desired boundary conditions. The same applies to part of family III
solution and to case 5 (family I).

5.2. Earth-Moon L2 Escapes with Constrained Final Energy

The trajectories with fixed final energy have been calculated with the same strategies
implemented for the SEL2 case. The complexities due to the proximity of the Moon and the
perturbations of the third body divide more evidently the families of solutions compared
to the cases with free final energy. Figure 18 shows on the left all the solutions found for
the fixed low energy scenario, while on the right those for C3 = 0.5 (km/s)2. The families
still have many solutions within them, but most of them tend to overlap in their final phase
when the final energy is fixed.
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Figure 18. EML2 escape trajectories over a lunar month—fixed C3 = 0.2 (km/s)2 (left), 0.5 (km/s)2

(right), free t f , EME2000 RF.

Many T–C solutions of the free C3 case assume the two-burn T–C–T–C structure when
constrained to C3 = 0.2 (km/s)2, especially those belonging to the second family. Moreover,
a peculiarity to be observed, clearly shown in the corresponding Tables 5 and 6, is that
low-energy and high-energy fixed solutions, for selected studies, tend to invert the optimal
thrust structure from 2 to 4 phases and vice versa.

Table 5. EML2 escapes performance—fixed C3 = 0.2 (km/s)2, free t f .

C f p ηSP,u ηSP,v ηSP
∆V t f
m/s days

1 I 2 0.702 −0.274 0.214 46.297 78.59
2 I 4 0.711 −0.195 0.258 66.200 75.12
3 II 4 0.190 0.542 0.366 73.777 88.05
3 III 2 0.715 −0.241 0.237 17.354 80.81
4 III 2 0.678 −0.295 0.192 39.099 73.93
5 I 2 0.659 −0.314 0.172 49.933 78.43

Table 6. EML2 escapes performance—fixed C3 = 0.5 (km/s)2, free t f .

C f p ηSP,u ηSP,v ηSP
∆V t f
m/s days

1 I 4 0.695 0.541 0.618 74.853 75.01
2 I 2 0.632 0.301 0.467 147.635 61.40
3 I 2 0.449 0.713 0.581 19.934 72.74
4 I 2 0.654 0.308 0.481 77.468 62.79
5 I 4 0.683 0.539 0.611 64.702 76.59

Figure 19 shows that solutions group themselves towards favorable values of the
solar perturbation. For the C3 = 0.2 (km/s)2 scenario on the left, some trajectories are
shown; case 1 and case 2, from the family I, have high positive values of the solar tangential
perturbation, while cases 3 and 4 from family III overlap towards the same scenario, in
the opposite heliocentric direction. The corresponding family II solution of case 3, which
is a two-burn trajectory, exploits more consistently the radial component and uses more
propellant to achieve the escape. The C3 = 0.5 (km/s)2 case, on the other hand, has
trajectories that move towards positive influences of the tangential solar perturbation, with
cases 1, 2, and 5 that favor the Sun in the third quadrant and cases 3 and 4 in the first
quadrant. Only case 2, depicted in Figure 18 (right), which departs 90◦ later than case 1 but
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converges to the same final point, needs to perform a longer burn at the beginning to align
the outward trajectory to the correct direction.
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Figure 19. Time evolution of Sun–spacecraft relative angle for all EML2 solutions—fixed
C3 = 0.2 (km/s)2 (left), 0.5 (km/s)2 (right), free t f .

Figure 20 shows two sample cases, 2 and 3, selected to show low- and high-energy
trajectories that must either increase or decrease the energy to achieve the fixed energy
counterparts. In particular, case 2 from the free energy scenario has a very low final energy,
whereas case 3 has a very high one. The four-arc solution for case 2 slightly reduces its
duration while increasing the first thrust phase to comply with the final energy increase
and keep similar ∆ϑ during the escape. This action eliminates the second burn making it
a T–C trajectory. When forced to have the higher final energy, the optimal strategy keeps
reducing the overall duration to escape, while increasing the thrust phase length; indeed,
the solution forces the relative angle to stay in the third quadrant between −135◦ and
−180◦, where the solar perturbation acts more favorably.
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Figure 20. Spacecraft energy over time (left) and Sun–spacecraft relative angle (right) for selected
EML2 escape dates—comparison between free and fixed final C3.

With an opposite behavior, the single burn solution in the scenario with free final
energy for case 3 has to reduce its overall energy to achieve the required lower C3. This
increases the overall length of the trajectory with a strong reduction in the first burn phase,
showing that the optimal strategy relies mainly on the solar perturbation to achieve the
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desired energy. Indeed, the majority of the escape, after the initial 30 days, remains in a
region in which the Sun perturbation has a negative effect, retarding the energy increase.

6. Applications

The results obtained in this article represent a preliminary approach to the indirect
optimization of escape trajectories from Lagrangian points. On the one hand, they can be
used as tentative solutions for the indirect optimization of escape transfers from practical
orbits around/in the vicinity of Lagrangian points. On the other hand, these escape
transfers can be coupled to the analysis of interplanetary legs for the design of missions
aimed at near-earth asteroids.

A complete analysis of escape transfers for different orbits around SEL2 and EML2,
considering the influence of orbit characteristics, departure point and date, etc., is beyond
the scope of the present article. Only high-fidelity Lyapunov orbits around SEL2 are
considered as examples. Departure occurs on October 15 2025, from the orbit intersection
with the Sun-Earth L2 line, i.e., the x-axis of the Sun-Earth synodic frame, (between Earth
and L2) and 90-day escape transfers with free C3 are considered. The initial orbits are
characterized by their Jacobi constant and start from the x-axis at about 200× 103 km,
400 × 103 km, and 800 × 103 km from L2. The solution starting from L2 is used as a
tentative solution for departures from Lyapunov orbits and convergence is readily obtained.
It is worth noting that the new solutions can, in turn, be used as tentative guesses for other
studies (e.g., for the optimization of departure point and/or escape duration). Table 7 and
Figure 21 compare the escape trajectories from L2 and from the three Lyapunov orbits.
The escape transfers show similar propulsive requirements. Escape C3 tends to be smaller
for the larger Lyapunov orbits; this value is however sensibly influenced by the escape
duration and different control structures (e.g., a second thrust arc) could eventually become
optimal for constrained C3 values.

Table 7. Comparison of escapes performance for escape from L2 and Lyapunov orbits—free C3 fixed
t f 90 days.

Departure JC ∆V C3, f
(km/s)2 m/s (km/s)2

L2 3.000887 30.676 0.1833
Lyapunov 1 3.000880 37.607 0.1298
Lyapunov 2 3.000858 34.916 0.0836
Lyapunov 3 3.000776 32.869 0.0263

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

X
S
, 106 km

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
S
, 1

0
6
 k

m

EarthTo Sun

15/10/2025 (I) - SEL2 - 2 arcs - C3 free
15/10/2025 (I) - Lyap 1 - 2 arcs - C3 free
15/10/2025 (I) - Lyap 2 - 2 arcs - C3 free
15/10/2025 (I) - Lyap 3 - 2 arcs - C3 free

0 10 20 30 40 50 60 70 80 90

Time from departure, days

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

C
3
, (

km
/s

)2

15/10/2025 (I) - SEL2 - 2 arcs - C3 free
15/10/2025 (I) - Lyap 1 - 2 arcs - C3 free
15/10/2025 (I) - Lyap 2 - 2 arcs - C3 free
15/10/2025 (I) - Lyap 3 - 2 arcs - C3 free

Figure 21. Performance comparison for escapes from L2 and Lyapunov orbits—Sun-Earth rotating
RF (left), energy over time (right)—free C3, fixed t f 90 days.
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The preliminary design of interplanetary trajectories usually starts from the patched-
conic approximation. The analysis of escape maneuvers and heliocentric leg are often
treated separately at an initial state, and the results are then coupled for a high-fidelity
analysis of the complete transfers. This approach was, for instance, used to design the
ARRM mission [18,35]. In a similar way, the results for the L2 escape obtained in this article
can be useful to design interplanetary transfers. Only the 90-day escape from SEL2 with
free C3 and departure on 15 October 2025, is again taken as an example. The small C3
value suggests that this trajectory can be fit for transfers to NEAs and a set of 75 asteroids
considered in previous works [36,37] is explored. The escape direction has a specific
orientation in the Sun-Earth system (see Figure 6), which should be suited to reach only the
targets that require a similar orbit correction at the selected departure.

The interplanetary leg with two-body dynamics is optimized with different initial
conditions to highlight the effect of the actual escape maneuver on the overall performance.
Departure from Earth’s position with C3 = 0 (km/s)2 on 13 January 2026 (i.e., 15 October
2025, +90 days) is assumed as the reference trajectory. The length of the heliocentric
transfer to rendezvous with the asteroid is 3 years. The reference solutions are compared to
trajectories with departure from the actual heliocentric position and velocity corresponding
to the 90-day escape trajectory departing 15 October 2025.

In this example, escape from L2 improves the reference trajectory for 21 out of 75 avail-
able targets. Propellant budget comparison for these solutions is shown in Table 8, ordered
by percentage propellant saving. Note that 8 out of the first 10 asteroids have perihelion in
the first quadrant, where the perihelion of the heliocentric orbit at escape lies; the required
change in orbital elements is reduced, explaining the saving. The optimal rendezvous trans-
fer is also influenced by a phasing constraint, which may require different orbit adjustments;
therefore, this general observation has exceptions.

Table 8. SEL2 escapes—asteroid rendezvous propellant mass requirements.

Asteroid Reference 90-Day Escape % Savingkg kg

2016 TB57 111.1 76.5 31.2
2013 XY20 82.4 59.7 27.5
2016 CF137 110.5 82.5 25.3
2017 BF29 88.9 66.8 24.8
2011 AA37 64.1 53.1 17.2
2012 BA35 185.7 152.8 17.7
2007 DD 185.3 152.6 17.6

2017 HK1 106.8 88.6 17.1
2015 TJ1 86.0 73.6 14.4

2014 EK24 80.0 69.6 13.0
2017 HZ4 123.4 108.9 11.8
2006 FH36 143.9 126.8 11.9

2015 BM510 88.6 78.8 11.0
2010 HA 76.5 68.3 10.8
2009 OS5 77.7 69.4 10.7
1996 XB27 70.3 63.6 9.6
2016 FY2 106.3 97.0 8.8
2015 VV 75.2 70.0 6.9

2001 QJ142 82.7 79.6 3.8
2013 EM89 66.3 64.9 2.1
2013 RV9 103.7 102.3 1.4
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7. Conclusions

An indirect method has been used for the optimization of EP escape trajectories
from either Sun-Earth or Earth-Moon L2. Even in the presence of complex dynamics and
nonlinear effects, the method proves to be fast and reliable, thanks to the peculiar treatment
of the thrust magnitude. The complexity of motion dynamics makes convergence difficult
and causes the existence of local optima. The techniques to obtain converged solutions
introduced in this article allow one to efficiently explore the solution space and identify
local and global minima of the propellant consumption.

Escape from Sun-Earth L2 is relatively simple, as proper selection of time of flight and
departure date can guarantee suitable escape conditions with extremely low propulsive
requirements. Escape from Earth-Moon L2 shows the complex interaction that the relative
positions of the Moon and the Sun produce on the escape trajectory. On the one hand,
the departure date determines the direction of the escape hyperbola; on the other hand,
it influences the switching structure as the spacecraft tries to maximize the effect of solar
gravity. Privileged escape directions are easily recognized.

The results obtained in this paper offer a good understanding of the main driving
effects that characterize escape trajectories from L2. This analysis provides the basis
for consideration of different departure conditions. Departure from Lyapunov orbits is
straightforward using escape trajectories from L2 as tentative guess. Extension to other
cases—such as those that correspond to an NRHO in the Earth-Moon system or a Lissajous
orbit around Sun-Earth L2—can then be pursued using continuation approaches to modify
the initial orbit.

Indirect optimization is computationally fast and escape trajectories can be rapidly
evaluated to build a database of escape conditions/cost. These results can in turn be cou-
pled to the optimization of the heliocentric leg for the preliminary design of interplanetary
missions, providing a more accurate evaluation of the propulsive requirements.
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Abbreviations
The following abbreviations are used in this manuscript:

BVP boundary value problem
DSG Deep Space Gateway
EME2000 Earth Mean Equator and Equinox of Epoch J2000
EML2 Earth-Moon Lagrangian point 2
EP electric propulsion
ICRF International Celestial Reference Frame
LOP-G Lunar Orbital Platform Gateway
LP(s) Lagrangian point(s)
MOID minimum orbit intersection distance
NEA(s) near-earth asteroid(s)
NRHO(s) near rectilinear halo orbit(s)
PMP Pontryagin’s maximum principle
RF reference frame
SEL2 Sun-Earth Lagrangian point 2
SOI sphere of influence
SRP solar radiation pressure
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Nomenclature
a semi-major axis, AU
a perturbing acceleration
c effective exhaust velocity, km/s
C3 characteristic energy, (km/s)2

H Hamiltonian
m mass, kg
p radiation pressure, N/m2

P Power, W
q unknowns tentative values
r radius
R relative distance
SF switching function
t time
T thrust, N
u velocity, radial component, km/s
û unit vector
v velocity, tangential component, km/s
V velocity, km/s
w velocity, out-of-plane component, km/s
η normalized solar perturbation contribution
ηR reflectivity
ηT thruster global efficiency
∆ϑ Sun–spacecraft relative angular difference, deg
ϑ right ascension, deg
λ adjoint variables
µ specific gravitational parameter, km3/s2

ξ proportionality term
ϕ declination, deg
χ error on boundary conditions
Subscripts
0 initial
f final
ı radial direction
 tangential direction
J non-sphericity perturbation
` lunar
lsg lunisolar gravity perturbation
s sun
srp solar radiation pressure perturbation

Appendix A. Euler–Lagrange Equations

The system of Equations (5)–(11) is used to write the Hamiltonian in scalar form
as H = ∑ λx ẋ. Each adjoint variable λx is associated with the generic state variable
x = r, ϑ, ϕ, u, v, w, m. A compact expression of the Euler–Lagrange Equations is
λ̇x = −∂H/∂x. When carrying out the derivatives, one should note that the state variables
appear explicitly in Equations (5)–(11), but some state variables also influence the additional
accelerations and the thrust magnitude.

Third-body position components in the spacecraft-centered topocentric frame (sub-
script b = s, l for Sun and Moon) are written as

(rb)u = xb cos ϑ cos ϕ + yb sin ϑ cos ϕ + zb sin ϕ (A1)

(rb)v = −xb sin ϑ + yb cos ϑ (A2)

(rb)w = −xb cos ϑ sin ϕ− yb sin ϑ sin ϕ + zb cos ϕ (A3)
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(third-body Cartesian coordinates are obtained by JPL’s ephemerides). The space position
with respect to the third body is written as Rb = r− rb and the gravitational effect becomes
(same formal expression for Sun and Moon) the following:

(ab)u = (µb/R3
b)[(rb)u − r]− (µb/r3

b)(rb)u (A4)

(ab)v = (µb/R3
b)(rb)v − (µb/r3

b)(rb)v (A5)

(ab)w = (µb/R3
b)(rb)w − (µb/r3

b)(rb)w (A6)

with dependence on r, ϑ and ϕ. The spacecraft distance from the Sun or from the Moon is
Rb =

√
[r− (rb)u]2 + (rb)2

v + (rb)2
w.

Solar radiation pressure is similar to solar gravity, but also depends on m. The photon
pressure at 1 AU from the sun is p = 4.55682× 10−6 N/m2 Assuming reflectivity ηR = 0.7,
the acceleration on a spherical body of mass m and surface S at a distance from the Sun
Rs is

(asrp)u = −(1 + ηR)
(

p/R3
s

)
(S/m)[(rs)u − r] (A7)

(asrp)v = −(1 + ηR)
(

p/R3
s

)
(S/m)(rs)v (A8)

(asrp)w = −(1 + ηR)
(

p/R3
s

)
(S/m)(rs)w (A9)

and is again function of r, ϑ, and ϕ, but also depends on the mass, m.
Earth’ potential is written as follows:

V = −µE/r

{
1 +

N

∑
n=2

( rE
r

)n n

∑
m=0

[Cnm cos (mϑLo) + Snm sin (mϑLo)]Pnm sin (ϕ)

}
(A10)

The terrestrial latitude coincides with declination ϕ as nutation is neglected. The
terrestrial longitude, ϑLo, is obtained as ϑLo = ϑ− ϑG, with Greenwich right ascension at
time, t, given by ϑG = ϑGref + ωE(t− tref). The reference time tref is 1/1/2000 12:00 UT
(51,544.5 MJD) and ϑG0 = 280.46061837504 deg; ωE is evaluated assuming the sidereal day
equal to 86,164.098903690351 s (no precession is considered). The perturbing acceleration
due to Earth’s non-sphericity is the gradient of Φ = V + µE/r, and its components in the
topocentric frame are thus evaluated as follows:

(aJ)u = ∂Φ/∂r (A11)

(aJ)v = (∂Φ/∂ϑ)/(r cos ϕ) (A12)

(aJ)w = (∂Φ/∂ϕ)/r (A13)

Derivation with respect to r and ϑ is straightforward; derivatives with respect to ϕ
require the derivatives of the associated Legendre functions, which are obtained recursively,
exploiting the properties of Legendre polynomials. The summed acceleration components
are compactly written as aj = (as)j + (a`)j + (asrp)j + (aJ)j with j = u, v, w.

Finally the thrust magnitude is written as the reference thrust at 1 AU divided by the
squared distance from the Sun in AU, that is T = T1/R2

s and also depends on r, ϑ, and ϕ.
The Euler–Lagrange equations become
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λ̇r =
1
r2

[
λϑ

v
cos φ

+ λφw + λu

(
−2µ

r
+ v2 + w2

)
+ λv(−uv + vw tan φ)

+λw

(
−uw− v2 tan φ

)]
− λu

∂au

∂r
− λv

∂av

∂r
− λw

∂aw

∂r
− SF

∂T
∂r

(A14)

λ̇ϑ = −λu
∂au

∂ϑ
− λv

∂av

∂ϑ
− λw

∂aw

∂ϑ
+ SF

∂T
∂ϑ

(A15)

λ̇φ =
1

r cos2 φ

(
−λϑv sin φ− λvvw + λwv2

)
−λu

∂au

∂ϕ
− λv

∂av

∂ϕ
− λw

∂aw

∂ϕ
+ SF

∂T
∂ϕ

(A16)

λ̇u =
1
r
(−λrr + λvvs. + λww) (A17)

λ̇v =
1
r

[
−λϑ

1
cos φ

− 2λuv + λv(u− w tan φ) + 2λwvs. tan φ

]
(A18)

λ̇w =
1
r
(
−λφ − 2λuw− λvvs. tan φ + λwu

)
(A19)

λ̇m =
T

m2 λV − λu
∂au

∂m
− λv

∂av

∂m
− λw

∂aw

∂m
(A20)
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