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Abstract: This work investigates the effects of the surface errors of the satellite antenna on the
detection performance of the space VLBI system. First, the relationship between the surface errors
and the antenna gain loss is analyzed, and then the influence of the gain loss on the detection
performance of the VLBI system is analyzed. Both the uniform and nonuniform distributions of
errors are studied, and the second-order Taylor expansion is performed on the errors to simplify
the calculation. When the errors distribute nonuniformly, the solver SCIP is adopted to solve the
corresponding distribution, which leads to the maximum gain loss of the antenna. Taking the
VLBI system with two base stations as the object, and each station’s radio telescope is a hoop truss
deployable antenna with 30 m aperture, the effects of antenna gain loss on the detection capability of
the radio telescope and the delay error of the VLBI system are studied. The study of extreme working
conditions will have a higher guiding significance for the overall link analysis of practical projects.

Keywords: parabolic reflector antenna; surface errors; gain loss; space VLBI

1. Introduction

Very long baseline interferometry (VLBI) is an astronomical observation technique
with the highest spatial resolution and has been widely used in deep space exploration [1].
The resolution of VLBI is proportional to its baseline length and observation frequency,
as shown in Figure 1. In the case of a certain wavelength, in order to obtain a higher
resolution, it is necessary to launch some radio telescopes into space to form a space VLBI
network (SVLBI) [2]. The baseline length of the SVLBI is much larger than the diameter
of the earth, as shown in Figure 2. Limited by the size of the rocket launch envelope, it is
necessary to use a deployable space antenna in order to obtain a sufficiently high antenna
gain. The truss-type deployable antenna is one of the most widely used types of space
satellite antennas, and can meet the requirements of a good flexibility, light weight, high
surface accuracy and high stability [3].

In order to ensure a high electromagnetic performance, antennas have high require-
ments for the accuracy of the reflector surface [4], and the root-mean-square error (rms) is a
standard parameter used to characterize random surface errors. Paolo Rocca [5] divided
the root-mean-square of the surface errors into a certain number of areas for radiation anal-
ysis, and then integrated the entire aperture surface to obtain the total antenna radiation,
which is an effective method when the errors distribute uniformly. In order to analyze the
electrical performance deeper when the surface errors distribute nonuniformly, Peiyuan
Lian [6] used a genetic algorithm to analyze the antenna gain loss and the first side lobe
level under the nonuniform distribution. However, the disadvantage is that the obtained
result may not be the global optimal solution.
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Figure 1. Schematic diagram of very long baseline interferometry. d is the distance between the
two antennas, θ is the signal source direction and τ is the geometric delay characterizing the time
difference between the arrival of the signal to the two antennas.

Figure 2. Sketch of SVLBI.

Then, under the premise of meeting the accuracy requirements, scholars applied the
Taylor expansion to approximate the influence of antenna error analysis to further reduce
the complexity of mathematical operations; the resulting approximate radiation integral is
then decomposed by expanding an exponential phase error function. Abolfazl Haddadi [7]
analyzed the radiation integral using functional calculus and extracted the first variational
derivative of the radiation field of the surface profile. Shuxin Zhang [8] applied the second-
order Taylor expansion to the phase error analysis caused by the parabolic antenna profile
error. Compared with the conventional method, the deviation can be ignored. Although the
antenna performance when the errors are not uniformly distributed has been studied in [8],
this paper will further study the case where the gain loss is maximized.

Different from the research on general radars and communication antennas, the focus
of this paper is the gain loss caused by the antenna surface errors of the 30 m aperture
space VLBI observatory. The antenna gain loss is further studied for its influence on the
antenna’s minimum detection ability and the resolution of the VLBI system. This paper not
only applies the second-order Taylor expansion to the study of the electrical performance
of the antenna when the surface errors distribute nonuniformly, but also establishes a
mathematical model that takes the gain loss as the objective function, where solving
constraint integer programs (SCIP) can be applied when the errors distribute nonuniformly.

2. Formulation

The times for the electromagnetic waves radiated by the radio source to reach different
VLBI observation stations at a certain moment are different. Take the VLBI system of two
base stations as the project. Under ideal conditions, the signals x(t) and y(t + τ) detected
by the two base stations should be completely consistent, except for the time delay τ.
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However, due to various interferences, the delay value that minimizes the variance of the
two signals in actual processing is the required delay value, as shown in (1):

minQ(τ) =
∫ +∞

−∞
[x(t)− y(t + τ)]2dt (1)

Expanding and simplifying can transform the problem into maximizing signal auto-
correlation as

maxR(τ) =
∫ +∞

−∞
x(t)y(t + τ)dt (2)

For SVLBI, the detection error comes from various factors, such as the performance
of the antenna itself, the movement of the earth, atmospheric interference and the space
environment. In this study, the main concern is the performance change in the satellite
antenna, so other effects are idealized. The detection accuracy under this condition depends
on the sensitivity of the receiver, which means the ability to receive weak signals, usually
expressed by the minimum detectable signal power. In the field of radio astronomy,
the sensitivity of the antenna is usually measured by the system equivalent flux density
(SEFD) as

fsys =
2k
ηA

Ts (3)

where k is the Planck constant, η is the efficiency of the antenna, A is the antenna aperture
area and Ts is the system noise temperature. Then, the deterioration of the minimum
observable flux density Fmin of the radio telescope is computed as

Fmin =
2kTs

ηA
√

TB
(4)

where T is the integration time and B is the observation bandwidth. In actual engineering,
η is jointly determined by radiation efficiency er (the ratio of the total power radiated by
an antenna to the net power accepted by the antenna from the connected transmitter),
sharpening efficiency ηt (the antenna aperture field distribution is generally higher in the
center than at the edge), overflow power ηs (the power pattern of the feed always has a
part outside the reflector) and technical efficiency ηa (feed phase error, design error, etc.),
η = erηtηsηa.

Among them, the technical efficiency ηa is determined by the antenna surface errors,
aperture occlusion, feed phase errors, etc. Combined with the analysis of this article, other
factors are idealized, and only the antenna profile error is concerned.

Fmin is the analysis target of a single base station antenna, and the signal-to-noise ratio
(SNR) of a VLBI system is determined by the antennas of multiple base stations. For a VLBI
system with two base stations,

SNR =
2
π

√
Ta1Ta2Nb

Ts1Ts2
(5)

where Nb is the noise bandwidth and Tsi (i = 1, 2) is the system noise temperature. The
error of the VLBI observation index delay caused by surface shape errors can be derived
from (6).

στ =

√
2c

2πB
√

T
1

SNR
(6)

Tai = 0.0003ηi ASc (7)

where Tai(i = 1&2) is the effective source temperature of the observing station, Nb is the
noise bandwidth, ηi is the antenna efficiency and Sc is the flux density of radio source.
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From the above analysis, it can be seen that, after the other factors are idealized, only
the influence of the shape error on the antenna efficiency needs to be studied, and the
antenna gain and efficiency meet the following requirements:

G =
4πA
λ2 η (8)

To analyze the influence of the surface shape accuracy on the antenna gain, the ra-
diation characteristics of the antenna with the surface shape error must be studied first.
The geometry of a parabolic reflector with random surface errors is depicted in Figure 3.
The aperture has a diameter D = 2a and a focal length F, A is the projected region on the
focal plane with the polar coordinates ρ′ and φ′, and r̂ is the unit vector in the observation
direction. Here, the amplitude aperture distribution is

Q
(
ρ′
)
= B + C(1− ρ′

a2 )
P

(9)

where B and P determine the shape of the aperture distribution, C = 1− B, the edge taper
ET = 20logB and, for engineering, 1 ≤ P ≤ 2.

x

Figure 3. Reflector with random surface errors.

The far field pattern of the antenna is proportional to the Fourier transform of its
aperture distribution and may be expressed as

E =
∫∫

Q
(
ρ′
)
ejδejk~ρ′ ·~rds′ (10)

The model of [9] is adopted. It is assumed that the reflector aperture is divided
into N annular regions as shown in Figure 4, where ρn = 1

2 (an + an−1), tanξn = ρn
2F and

σn = 4π
λ εrms(n)cosξn. By assuming that the phase errors δn in the nth annular region and δm

in the mth annular region are statistically independent and have Gaussian distribution with
zero mean and standard deviation equal to σn and σm, respectively, the radiation pattern of
the antenna with surface errors can be derived as

E =
N

∑
n=1

En,n−1ejδn (11)

where
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En,n−1 = En − En−1 =
∫ an

an−1

∫ 2π

0
Q
(
ρ′
)
ejkρ′ sin θ cos(φ−φ′)ρ′dρ′dφ′ (12)

Figure 4. Reflector aperture divided into N annular regions.

Zhang et al. [8] have proven that the second-order Taylor expansion can not only
ensure the calculation accuracy but also reduce the computational complexity. Performing
the second-order Taylor series expansion on phase errors and combining the radiation
fields in subdivision strips, the radiation pattern can be expressed as

E =
N

∑
n=1

En,n−1(1 + jδn −
1
2

δ2
n) (13)

The radiated power can be constructed as

EE∗ =
N

∑
n=1

En,n−1(1 + jδn −
1
2

δ2
n) ·

N

∑
m=1

E∗m,m−1(1− jδm −
1
2

δ2
m) (14)

The corresponding average radiation power is

EE∗ =
N

∑
n=1

N

∑
m=1

En,n−1E∗m,m−1(1−
1
2

σ2
n −

1
2

σ2
m +

1
4

σ2
nσ2

m) (15)

Here, the regular formula for solving EE∗ is given in order to compare the results of
subsequent experiments:

EE∗ =
N

∑
n=1

N

∑
m=1

En,n−1E∗m,m−1e−0.5(σ2
n+σ2

m)+
N

∑
n=1

En,n−1E∗n,n−1(1− σ2
n) (16)

In actual engineering, antenna designers usually use the Ruze formula to estimate the
gain loss as [9] when the surface errors are uniformly distributed:

PGL = 10loge−(4πκErms/λ)2
(17)

where Erms is the root-mean-square value of random surface errors, is the wavelength and κ
is the correction factor.

Before proposing the analysis scheme, give the weight coefficient Sn of each ring and
the relationship between the root-mean-square value of each ring surface error Erms(n) and
the root-mean-square error of the entire reflecting surface Erms(n):

an =
n
N

a (18)
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Sn =
N

∑
n=1

a2
n − a2

n−1
a2 (19)

ε2
rms =

N

∑
n=1

Snε2
rms(n) (20)

The mathematical model to be established is to find the distribution of the error with
the maximum gain loss of the antenna as the objective function given the Erms. The model
is briefly shown as

f ind Erms = (εrms(1), εrms(2), . . . , εrms(N)) (21)

min F(Erms) = (antenna gain) (22)

s.t.
N

∑
n=1

Snε2
rms(n) = ε2

rms (n = 1, 2, . . . , N) (23)

0 ≤ ε2
rms(n) ≤ ε2

rms/Sn (24)

As for the mathematical model where the error is only distributed in a single circle, its
constraint becomes much simpler:

ε2
rms(n) = ε2

rms/Sn (n = 1, 2, . . . , N) (25)

As mentioned earlier, for the multiobjective function optimization model when study-
ing the performance of antenna gain and the side lobe level at the same time, various
algorithms, such as the particle swarm algorithm, genetic algorithm and their combina-
tions, can be used to find the Patero solution set. However, many traditional algorithms,
such as ant colony optimization, genetic algorithm, etc., find it easy to fall into a local
optimal solution, and their crossover and mutation values are highly dependent on experi-
ence. In actual engineering, we should study whether the worst case meets the detection
requirements. In addition, this article mainly considers the influence of antenna gain when
analyzing the effects of surface errors on the antenna performance. When gain loss is the
only objective function, the SCIP solver can be used to solve the problem, which can not
only obtain the global optimal solution stably, but also simply compare.

For the case of uniform error distribution, given the geometric size, operating fre-
quency and error value of the antenna, the gain loss value can be obtained, and then
the changes in the antenna detection capability and system delay error can be analyzed.
However, the uniform distribution is only a special case, and the gain loss will be greater in
the extreme operating conditions when the nonuniform distribution is applied.

3. Numberial Results and Discussion

In order to verify the theoretical analysis of this article, and combined with the actual
engineering, in the numerical simulation, the antenna model built is a 30 m aperture pe-
ripheral truss-type deployable parabolic antenna [10]; the main parameters of the parabolic
antenna are set as follows: diameter of the aperture D = 30 m, frequency f = 1 GHz (the
antennas work at [300 MHz, 1500 MHz]), focal length F = 18 m, edge taper ET = −10 dB,
P = 1.

3.1. Uniform Surface Errors

Figure 5 shows the change in the normalized gain with the antenna surface errors.
From the curve in the figure, it can be seen that the difference between the conventional al-
gorithm and the second-order Taylor expansion algorithm is very small. When εrms = 0.1λ,
there is a difference of only 0.1 dB. Figure 6 shows the difference between the gain loss
obtained by applying the second-order Taylor expansion model and the Ruze equation,
which is also negligible.
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Figure 5. The difference in antenna gain between second Taylor model and regular calculation.
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Figure 6. The magnitude of the gain difference calculated by Taylor expansion model and Ruze equation.

Taking the average radiated power of the antenna when εrms = 0.1λ in Figure 7 as an
example, it can be seen that the range of the main beam width is−5 < u < 5. By combining
Figures 7 and 8, the difference in the average power radiation patterns obtained by the two
calculation models are highly consistent within −5 < u < 5, which further confirms that
the second-order Taylor expansion can be applied to analysis radiation characteristics of
the distorted antenna.
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Figure 7. Normalized average power pattern at εrms = 0.1λ.
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Figure 8. Difference in normalized average power pattern of second Taylor model and regular
calculation at εrms = 0.1λ.

The results calculated by both methods in Figure 5 clearly show that the gain of the
antenna decreases rapidly with the increase in the surface errors. Next, analyze the
influence of the surface error on the antenna detection capability and the performance
of the VLBI system, and normalize them with the values in the ideal state as a reference.
The influence of surface errors on the minimum observable flux density Fmin of a single
radio telescope is shown in Figure 9. The change in the VLBI observation delay error caused
by the surface shape error of a single radio telescope and two radio telescopes is shown
in Figure 10, and the value in the ideal state is also used as the normalization standard.
The minimum detectable flow density of the telescope or the observation delay error will
increase with the attenuation of the gain, which also verifies the practical significance of
launching large apertures antennas. When the ground antenna is deformed, mechanically
compensated and electronically compensated, it can be implemented in order to maintain
the antenna gain. However, space antennas cannot be calibrated currently when deformed.
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Figure 9. The minimum observable flux density Fmin for different random surface errors.
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Figure 10. Delay error στ for different random surface errors.

3.2. Errors Exist in Single Region

Different error distributions with the same rms error for the whole reflector result in
different gain losses; in this experiment, taking εrms = 0.05λ as an example to illustrate.
When the whole rms surface errors is constant and the weight coefficient of each region
is not adjusted, place the errors in a single region in turn, and then analyze the antenna
gain loss. The rms of the surface error of each region and the corresponding antenna gain
loss are shown in Figure 11. Obviously, as the position of the errors goes from the inside to
the outside, the εrms(n) corresponding to each ring continues to decrease. This is because,
as n increases, the total surface errors’ root-mean-square remains unchanged when the
weight coefficient keeps increasing, which is consistent with (16). At the same time, the gain
loss changes from −0.821 dB to −3.090 dB; however, the gain loss is −1.322 dB when the
errors distribute uniformly, which means that, even if εrms is constant, the gain loss is not
necessary; that is to say, the Ruze equation is only applicable to the case where the errors
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are uniformly distributed. Figure 12 shows the extreme value of gain loss of different εrms
to compare the gain loss when the errors are distributed uniformly .
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Figure 11. εrms(n) and gain loss when errors exist in single region.
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Figure 12. Comparison of extreme gain loss when errors exist in single region and gain loss for errors
with uniform distribution.

3.3. Solve the Maximum Gain Loss with SCIP

When the errors exist in a single circle, it is a special case; in actual engineering,
the error distribution is more uncertain. Therefore, studying the extreme conditions under
the nonuniform distribution of the errors is more instructive. When the gain loss is the
objective function, the SCIP solution can avoid the problems that easily enter the local
optimum, such as the genetic algorithm, and the global optimum solution can be obtained
quickly and accurately. Figure 13 shows the comparison of the maximum gain loss under
several groups of different εrms and the gain loss when the errors are uniformly distributed.
As εrms of the entire surface increases, the difference between the maximum gain loss under
the nonuniform distribution and the gain loss under the uniform distribution also increases,
so the uncertainty and error caused by the solution formula when applying the uniform
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distribution will become larger. Figure 14 shows the difference between the results obtained
by SCIP when N = 20 and N = 50; apparently, the influence of different values of N can
be ignored, which is why N = 20 is chosen.
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Figure 13. Comparison of the biggest gain loss solved by SCIP and gain loss for errors with uni-
form distribution.
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Figure 14. The value of the difference in the biggest gain loss between N = 20 and 50.

Figure 15 shows the influence of the surface errors on the minimum detection flow
density of the base station antenna and the delay error of the radio source noise of the VLBI
system when the gain loss is maximum under the condition of N = 20 and an uneven error
distribution. By comparing Figures 9, 10 and 15, the influence of the gain loss caused by
nonuniform surface errors on the performance of the radio telescope and VLBI system is
similar to that when the errors are distributed uniformly. However, under the extreme
distribution, both the minimum detectable flow density and the system delay error change
much more than the uniform distribution; the main reason is that the gain loss caused by
the surface error under the extreme distribution is greater than the gain loss under the
uniform distribution, which is consistent with the previous analysis. What needs more
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attention in actual engineering is this extreme situation; otherwise, once the set limit value
is exceeded, the entire system cannot work normally.
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Figure 15. The effects of the biggest gain loss on Fmin and στ when errors exist nonuniformly.

The general limit of SNR is
√

2, and 10 in actual engineering, so the requirement of
the delay error cannot exceed 1/10. This project requires εrms = 0.05λ. For εrms = 0.05λ,
when errors distribute uniformly, the gain loss is 1.32 dB, and the delay error will increase
by 16%, which requires an integration time extending by an extra 12%. When errors
distribute uniformly, the largest gain loss achieves 3.09 dB, corresponding to an extension
of the integration time that will be larger than 50%. However, increasing the integration
time is also limited, and will require higher requirements for data recording equipment,
occupy more resources, reduce the data processing speed and even affect clock stability.
Therefore, in the antenna design stage, the extreme operating conditions should be used as
a reference to ensure that the system performance can meet the requirements and avoid a
waste of resources.

4. Conlusions

The transitive relationship between the reflector surface errors and the detection
performance of SVLBI has been established. By taking a hoop truss deployable antenna with
30 m aperture as the project, the effects of different values and distributions of the surface
errors on the performance of the antenna are obtained. Different from conventional research,
the working condition when the antenna gain loss is the largest is analyzed, and the
corresponding VLBI detection delay deviation is calculated. The actual detection delay
error will even double. Due to the deterioration of the antenna performance, the delay error
of the VLBI system increases. The delay error requires additional resources to compensate,
and the delay error cannot be remedied sometimes. A simplified numerical analysis
provides the necessary foundation for calibration or compensation work in future.

Based on the working conditions when the antenna gain loss is the largest studied
in this paper, the corresponding compensation measures will be studied at the signal
processing through software means in the future. In addition, the deformation of the
antenna is not fixed when the satellite is working, and real-time dynamic compensation is
also part of future work.
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