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Abstract

In this paper, we study the conformal vector fields on a class of Finsler metrics. In particular
Finsler space with special (a, 8)- metric F' = a+ % is defined in Riemannian metric o and 1-form
B and its norm. Then we characterize the PDE’s of conformal vector fields on Finsler space with
special (a, 8)- metric.
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1 Introduction

The conformal theory of curves on Finsler geometry, emphasizing on the notion of circles preserving
transformations, recently studied by the authors Z. Shen and Xia have studied conformal vector
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fields on a Randers manifold with certain curvature properties. Next, the conformal changes of
metrics which leave invariant geodesic circles known as concircular transformation are characterized
by a second order differential equation. The conformal vector fields are important in Riemann -
Finsler geometry. Let (M.F) be a Finsler manifold. Tt is known that a vector field v = v* 6‘273 on
M is a conformal vector field on F with conformal factor ¢ = c(x) if and only if X, (F?) = 4cF?,

where X, = v° aai +9 g“i R — [1]. They also determine conformal vector fields on a locally
T zt partialyd

projectively flat Randers manifold. Besides they use homothetic vectorfields (¢ = constant) on

Randers manifolds to construct new Randers metrics of scalar flag curvature [2]. Randers metrics

seem to be among the simplest non - trivial Finsler metrics with many investigation in Physics,

Electron optics with a magnetic field, dissipative mechanics, irreversible thermodynamics etc.

In this paper, we shall study the conformal vector fields on Finsler space with special (¢, 8)- metric,
whose metric is defined in Riemannian metric @ and 1-form § and its norm. Then we characterize
the PDE’s of conformal vector fields on Finsler space with special («, 8)- metric.

In natural way, we consider the general («, 8) - metrics are defined as the form:

F= a¢(b2,§). (1.1)

This kind of metrics is first discussed by Yu and Zhu [3], Many well-known Finsler metrics are
general (a, 8) - metrics. For example, the Randers metrics and the square metrics are defined by
functions ¢ = ¢(b*, s) in the following form:

V1I—-b24s2+s

¢ = 5 (1.2)
6= (V1—02 + 2 +3s) (1.3)

-0 Vi-Pts?
Based on the some reviews, further we shall study the covariant derivatives of conformal vector field
is directly proportional to Finsler Special («, 3)- metric.

2 Preliminaries
Let M be an n-dimensional differentiable manifold and 7'M be the tangent bundle. A Finsler metric
on M is the function F' = F(z,y) : TM — R satisfying the following conditions:

1. F(z,y) is a C* function on TM\{0};

2. F(z,y) >0and F(z,y) =0—>y=0;
3. F(x,\y) = AF(z,y),\ > 0;
4

2 2
. the fundamental tensor g;;(z,y) = ;gy&gy} is positively defined.
Let
2 9gij
Cijk = i[F }yiyjyk = %375/15 .

Define symmetric trilinear form C' = Ci;rdz’ @ da? @ dz* on TM\{0}. We call C be the Cartan

torison tensor.
Let F be a Finsler metric on an n - dimensional manifold M. The canonical geodesic o(t) of F is
characterized by

2 i . .
Lo B 126G (a(t), 0(t)) = 0,
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where G' are . 014/the geodesic coefficients having the expression G* = g {[F?] &1 — [F?] .}

with (¢”) = (gi;) "' and ¢ = dd%siaii' A spray on M is a globally C* vector field G on TM\{0}

which is expressed in local coordinates as follows

_id i o
G=y"57—2G ByT"

a

Given geodesic coefficients G, we define the covariant derivatives of a vector field as X X*(t) 37

along a curve c(t) by

DiX (t) = {X(t) + X7 (£)Nj (e(t), e(8))} g ()

i _ 0G* S dX? . __dct 9
where Nj = 75, X (t) = % and ¢ = G5 55

Let F = a+ % be a Finsler Special (o, 3)- metric expressed in terms of a Riemannian metric «
and a vector field V on M.

From equation (1.1), where ¢ = $(b%, s) is a positive smooth function on [0,b9) x (—bo,bo). It is
required that

b — P25 >0, ¢ — pas+ (b° — s7)paz > 0, (2.1)
2 /1—b2 452 s
for b < bg,where ¢1 = %,(1)2 = %d)zz = Zﬁ,a = %75 =137 -

We write the function where ¢ = ¢(b?, s) in the following Taylor expansion
¢ =10+ 7118+ 128 + 0(5°),

where

1
1
(1-b2)2

— (B2 - _ 1 _ 1
ri =71i(b%), and 1o = U= e T2 = g eErE

Now (1.2) implies that
ro >0, 1o+ 2[)27"2 > 0.

But there is no restriction on r1 . If we assume that r1 # 0, then F is not reversible.(since F' is not
a symmetric see [4]).

Now, the Finsler Special (o, 8) metric is on the conformal vector field, then Finsler Special («, 8)-
metric becomes

2 _ 52
o(b%,5) = (1—b2)y/1—b2 452
and (1.2) and (1.3) satisfy

1 ror T2 T T, T3\ g2 1
- 4 _ o 2Lt 9y _ "2 b= —— 2.2
2b? * 1 70 + 7”0[ r1 7‘0} To 20%(1 — b?) 22)

Definition 2.1. Let F be a Finsler metric on a manifold M, and V be a vector field on M. Let ¢
be the flow generated by V. Define ¢ : TM — TM by oi(z,y) = (¢e(x), d¢ * (y)). Then the vector
field V is said to be conformal if

¢rF = e~ 29t F, (2.3)

where o0, is a function on M for every t. Differentiating the above equation by t at ¢ = 0, we obtain
Xy (F) = —2cF, (2.4)

where c¢ is called the conformal factor and X, is covariant derivative of vector field X, it can be

defined as ]
0 ;O0V7 0 d
+y

Xv = g - — = . ,C= -
v oz’ oz? Oyl ‘T a

|¢ = Ooy. (2.5)
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3 Conformal Vector Fields on Finsler Space with Special
(cr, B)- metric

In this section we shall study the conformal vector field on Kropina metric with (1.2). Let V be a
conformal vector field of F with conformal factor c(x).

i.e., X, (F?) = 4cF>. (3.1)
Now we are in the position from (1.2) and to solve the above with the Kropina metric, we have

62 82
F=a+—= ,
a  (1-b)VI-b2+s2

then (3.1) implies

Xo(F?) = ¢*Xu(a®) + o Xo(¢%),

X, (F?) = [A1 X, (0®) 4+ 20° X, (b°) As + 20X, (B) Az — 28X, () Ad, (3.2)
where,
A o 84 A o 34
1= 4(1472) A_b2+s2 +527 2 = 1T=b2)3(1—b2Fs2)2?

b2
As =0, As=0
Xo(0®) =2Voo, Xo(B) = (V7biy + ¥ Vi )y'.

Again equation (3.2) equivalent to

B1Vo.o + aBa (Vb + 0 Vja)y' + s2°a° X, (b*) — 2Bzca® = 0 (3.3)
52
B = , Ba=0,
-t
B —i(l—bQ)Q(l—b2+52)%—{ 5 } (3.4)
T2 1-)VI_b2+s2) '

To simplify the computation, we fixed point x € M and make a co-ordinate change such that

s _ b _ bs _  _
y= 2@ o= a = a= |

b2 — 52 b2 — 2 Vb2 — 52 @ =
Then we have
2 — — J— J—
VO;O = Vl;l 1)28_752052 + (Vl;O + Vo;l)ma + VO;O, (35)
Vb + V' Viay' = (VVbiy + ij';l)ﬁaJr (V7o + ' V0), (3.6)
where,
Vo +Vou = Z(Vl;p +Vp)y"s Voo = Z Vo' y?, (3.7)
a=2 p,q=0



Natesh et al.; JAMCS, 31(4): 1-8, 2019; Article no.JAMCS. 47485

VjBO;j + ijj;o = Z(ijp;j + ijj;p)yp-

p=2

From (3.5) and (3.6) in to (3.3), which yields

Bi{Via %E + (Vio+ Vog)*ﬁa +Vool}
+Br s b: = a{ (Vb + bj‘/}';l)ib?(s_ =0+ (V7bo,
+0'Vj0)} + [s° X, (%) — 2&,4%@ =0. (3.8)
Consider the polynomial
¢ =10+ 115+ 1res® + o(s>)
with r; = ri(bQ) then we have,
¢1 =15 +ris+ 138>+ 0(s?).
By letting s = 0 in (3.8) we get,
roVo0 + 11(V7boy + bV j0)a + {rs X (b?) — 2cro}a? = 0. (3.9)
According to the irrationality of @, the (3.8) is equivalent to
r1(VIbo,; + 0V 50) =0, (3.10)
7o (Voso + 16 Xo (b%) — 2¢r9)a2 = 0. (3.11)
Therefore, the equation (3.10) yields
(V7boj + bV j0) =0,
Vibej 4+ 0V =0. (3.12)
Now, from equation (3.11), we have,
Viss + Ve = —2{%)@(1)2) —2c}8rs, 2<7 5< M. (3.13)

Again irrationality of @ from (3.3) we get

By (V1;0 + Vog);a =0. (3.14)
b? _ 82

¥ = bs  —,. ;
B1{V1;1 maz + VO;O} + By ﬁoﬂ(‘/]bl;j + bJVj;l)
i S—
+{* X, (b*) — 2c32}ma2 =0. (3.15)
From (3.13) we get

VI;O +V0;1 =0.
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Which is equivalent to
Vl;r + ‘/tr;l =0. (316)

Solving (3.11) for V.0 and plugging it in to (3.15) we have
2 7’(1) 2 7”(% 2 2
2B1s {Vl;lr—(XU(b ) —2¢)} — 2{T—Xv(b ) —2¢}B1(b%)
0 0
+Basb(VIb1,; 4+ 0 V1) + Bsb> X, (b°) — 2¢b® = 0. (3.17)

By Taylor series, expansion of $¢(b%,s) then plugging it in to (3.15) and by the coefficients of s we
have.

bry (Vb + 6 Vi) + bzXU(bz)% — 2cb%r; = 0. (3.18)
Then
Vb, + bV = —(%Xv(fﬂ) — 2¢)b;. (3.19)
1
From equation (3.13) and (3.19) which yields,
Vb + b Vi = —(%Xv(bQ) — 20)b;. (3.20)
1
Substituting (3.19) in (3.18), we get,
pl pl pl
B1s*{Vi,; + (piX,J(bQ) —20)} — b2Xv(b2){p—°Bl — B +B3sp—1} =0. (3.21)
0 0 1

The coefficients of all powers of s must vanish in (3.21). In particular, the coefficients of s> vanishes,
the above equation becomes,

1
Via + %Xv(bz) — 2ch = —b2 X, (b*)Ro, (3.22)
0
where

1 1 1
[@12 4+ Po_ 2&112].
Popo  Po P1 po

Ry =
By (3.13),(3.16) and (3.22), we have
Viij + Vi = 4epij — QXU(bQ){i%pij + Robib; }. (3.23)
It is equivalent to
Vi + v = dea — QXU(bQ){;%a + RofS}. (3.24)
On contracting (3.16) with b* and &’ yields
Viiib't? = 2¢b® — b2Xv(b2){z—i + Rob’}. (3.25)

Which is equivalent to

Vijb't = 2¢8? — b X, (b?).
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Contracting (3.20) with b and ¥’ yields

1

117 2 2 2
Vigh't' = 2¢0° — 0 X, (0°){ 5

1

P1
. 3.26
o (3.26)

Here,we used the fact that X, (b?) = 2b;,,b'V* . Then comparing (3.22) with (3.23), it yields

X, (b*){R1 — Rob*} =0, (3.27)
WhereRlzﬁ—&—%—%.
Therefore (3.27) reduced to
X, (0*){R1 + Rab*} = 0. (3.28)
Here, two cases arises :
Case 1: If
R1 + Rob* # 0, (3.29)

1.1 1 1
where, Ry = Po P2 + Py _ 9P1p2
Po Po PO P1 Po

It follows from (3.29) that X, (b*) = 0 and in (3.19) and we have
Vij + Vi = dea, Vb + b Vi = 2¢B. (3.30)
Notice that if X,(b?) = 0 and (3.30) holds then V satisfies (3.2) and V is an conformal vector field.

Therefore, we obtain

Theorem 3.1. Let ' = %2 be a Kropina metric on an n-dimensional manifold M (n > 3) and let

= ’ X 7 e a conformal vector field. en s a conformal vector fie o with conforma
V =Vi)Z b formal field. Then V/ formal field of F with conformal

factor ¢ = c(zx) iff X, (b*) =0 and

Vi + Vi = 4dca, Vb + bV = 2ch. (3.31)
Case 2: If
R+ Rob® = 0. (3.32)
In this case X, (%) # 0. Then obviously, we have

Viej + Vi = 4o — 2X, (b°)b" > Ribib;, (3.33)
Vb + Vb’ = 228. (3.34)

Since V is conformal vectror field and from above equation (??) reduced to

_ 1-b%+ 5% pi
XU2B12—2*B—7—1:. )

(b*){B1b” " [(b” — s*)Ri] + B2 — ( S0 =57 )p1 0 (3.35)

Then, we obtain the theorem;

Theorem 3.2. Therefore it follows we obtain Let F = ‘XT; be a Kropina metric on an n-dimensional

manifold M (n > 3) and let V = V() a?ci be a conformal vector field. Then ,V is a conformal vector

field of F with conformal factor ¢ = c(x) iff

Vi + Vi = dea — 2X,(6°)b" > Ribiby, (3.36)
V7 bij + Vs = 226, (3.37)
_ . 1 bz 2 1
Xo () {Bib ' [(b° — s*)R}] + B — (5(17—;; % —o0, (3.38)
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where,
L pi p
Ri=(z05+——-—
! (2b2 P1 Po
1 1
* P1 Po, S
Ri=(——-——)—0,
(pl p0)2b2
b (1 + s%) — 4b?
B = ,
s(1 —b2)2
a? —bt (s —2)—1
Bs = ,
s2(1 — b2)2
_ 1 2 p(l)
c=c— -Xu(b")—. 3.39
Gk (3:39)

4 Conclusions

Conformal vector fields play an important role in Finsler geometry. When F' is Riemannian mertic,
the local solutions of a conformal vector field can be determined if F' satisfies certain conditions.
As we know every conformal vector field is associated with scalar function called conformal factor.

In this paper we study the conformal vector field on Finsler - Kropina metric and characterize
conformal vector fields on Kropina metric in terms of PDE’s.
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