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Abstract

In this paper, we study the conformal vector fields on a class of Finsler metrics. In particular

Finsler space with special (α, β)- metric F = α+ β2

α
is defined in Riemannian metric α and 1-form

β and its norm. Then we characterize the PDE’s of conformal vector fields on Finsler space with
special (α, β)- metric.
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1 Introduction

The conformal theory of curves on Finsler geometry, emphasizing on the notion of circles preserving
transformations, recently studied by the authors Z. Shen and Xia have studied conformal vector
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fields on a Randers manifold with certain curvature properties. Next, the conformal changes of
metrics which leave invariant geodesic circles known as concircular transformation are characterized
by a second order differential equation. The conformal vector fields are important in Riemann -
Finsler geometry. Let (M.F ) be a Finsler manifold. It is known that a vector field v = vi ∂

∂xi on

M is a conformal vector field on F with conformal factor c = c(x) if and only if Xv(F
2) = 4cF 2,

where Xv = vi ∂
∂xi + yi ∂vj

∂xi
∂

partialyj [1]. They also determine conformal vector fields on a locally

projectively flat Randers manifold. Besides they use homothetic vectorfields (c = constant) on
Randers manifolds to construct new Randers metrics of scalar flag curvature [2]. Randers metrics
seem to be among the simplest non - trivial Finsler metrics with many investigation in Physics,
Electron optics with a magnetic field, dissipative mechanics, irreversible thermodynamics etc.

In this paper, we shall study the conformal vector fields on Finsler space with special (α, β)- metric,
whose metric is defined in Riemannian metric α and 1-form β and its norm. Then we characterize
the PDE’s of conformal vector fields on Finsler space with special (α, β)- metric.
In natural way, we consider the general (α, β) - metrics are defined as the form:

F = αϕ(b2,
β

α
). (1.1)

This kind of metrics is first discussed by Yu and Zhu [3], Many well-known Finsler metrics are
general (α, β) - metrics. For example, the Randers metrics and the square metrics are defined by
functions ϕ = ϕ(b2, s) in the following form:

ϕ =

√
1− b2 + s2 + s

1− b2
. (1.2)

ϕ =
(
√
1− b2 + s2 + s)

(1− b2)2
√
1− b2 + s2

. (1.3)

Based on the some reviews, further we shall study the covariant derivatives of conformal vector field
is directly proportional to Finsler Special (α, β)- metric.

2 Preliminaries

Let M be an n-dimensional differentiable manifold and TM be the tangent bundle. A Finsler metric
on M is the function F = F (x, y) : TM −→ R satisfying the following conditions:

1. F (x, y) is a C∞ function on TM\{0};

2. F (x, y) ≥ 0 and F (x, y) = 0 → y = 0;

3. F (x, λy) = λF (x, y), λ > 0;

4. the fundamental tensor gij(x, y) =
1
2

∂2(F2)

∂yi∂yj is positively defined.

Let

Cijk = 1
4
[F 2]yiyjyk = 1

2

∂gij
∂yk .

Define symmetric trilinear form C = Cijkdx
i ⊗ dxj ⊗ dxk on TM\{0}. We call C be the Cartan

torison tensor.
Let F be a Finsler metric on an n - dimensional manifold M. The canonical geodesic σ(t) of F is
characterized by

d2σi(t)

dt2
+ 2Gi(σ(t), ˙σ(t)) = 0,
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where Gi are . 014/the geodesic coefficients having the expression Gi = 1
4
gij{[F 2]xkylyk − [F 2]xl}

with (gij) = (gij)
−1 and σ̇ = dσi

dt
∂

∂xi . A spray on M is a globally C∞ vector field G on TM\{0}
which is expressed in local coordinates as follows

G = yi ∂
∂xi − 2Gi ∂

∂yi .

Given geodesic coefficients Gi, we define the covariant derivatives of a vector field as XXi(t) ∂
∂xi

along a curve c(t) by

DiX(t) = { ˙Xi(t) +Xj(t)N i
j(c(t),

˙c(t))} ∂
∂xi |c(t) ,

where N i
j = ∂Gi

∂yj ,
˙Xi(t) = dXi

dt
and ċ = dci

dt
∂

∂xi .

Let F = α + β2

α
be a Finsler Special (α, β)- metric expressed in terms of a Riemannian metric α

and a vector field V on M .
From equation (1.1), where ϕ = ϕ(b2, s) is a positive smooth function on [0, b0) × (−b0, b0). It is
required that

ϕ− ϕ2s > 0, ϕ− ϕ2s+ (b2 − s2)ϕ22 > 0, (2.1)

for b < b0,where ϕ1 = ∂ϕ
∂b2

, ϕ2 = ∂ϕ
∂s

ϕ22 = ∂2ϕ
∂s2

, α =

√
1−b2+s2

1−b2
, β = s

1−b2
.

We write the function where ϕ = ϕ(b2, s) in the following Taylor expansion

ϕ = r0 + r1s+ r2s
2 + o(s3),

where

ri = ri(b
2), and r0 = 1

(1−b2)
1
2
, r1 = 1

1−b2
, r2 = 1

2(1−b2)3/2
.

Now (1.2) implies that

r0 > 0, r0 + 2b2r2 > 0.

But there is no restriction on r1 . If we assume that r1 ̸= 0, then F is not reversible.(since F is not
a symmetric see [4]).
Now, the Finsler Special (α, β) metric is on the conformal vector field, then Finsler Special (α, β)-
metric becomes

ϕ(b2, s) = s2

(1−b2)
√

1−b2+s2

and (1.2) and (1.3) satisfy

1

2b2
+

r11
r1

− r10
r0

+

{
r2
r0

[2
r11
r1

− r10
r0

]− r12
r0

}
b2 =

1

2b2(1− b2)
. (2.2)

Definition 2.1. Let F be a Finsler metric on a manifold M, and V be a vector field on M. Let ϕt

be the flow generated by V. Define ϕ̃ : TM → TM by ϕt(x, y) = (ϕt(x), ϕt ∗ (y)). Then the vector
field V is said to be conformal if

˜ϕ∗
tF = e−2σtF, (2.3)

where σt is a function on M for every t. Differentiating the above equation by t at t = 0, we obtain

Xv(F ) = −2cF, (2.4)

where c is called the conformal factor and Xv is covariant derivative of vector field X, it can be
defined as

Xv = V i ∂

∂xi
+ yi ∂V

j

∂xi

∂

∂yj
, c =

d

dt
|t = 0σt. (2.5)
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3 Conformal Vector Fields on Finsler Space with Special
(α, β)- metric

In this section we shall study the conformal vector field on Kropina metric with (1.2). Let V be a
conformal vector field of F with conformal factor c(x).

i.e.,Xv(F
2) = 4cF 2. (3.1)

Now we are in the position from (1.2) and to solve the above with the Kropina metric, we have

F = α+
β2

α
=

s2

(1− b2)
√
1− b2 + s2

,

then (3.1) implies

Xv(F
2) = ϕ2Xv(α

2) + α2Xv(ϕ
2),

Xv(F
2) = [A1Xv(α

2) + 2α2Xv(b
2)A2 + 2αXv(β)A3 − 2βXv(α)A4], (3.2)

where,

A1 = s4

(1−b2)
√

1−b2+s2
, A2 = s4

(1−b2)3(1−b2+s2)2
,

A3 = 0, A4 = 0

Xv(α
2) = 2V0;0, Xv(β) = (V jbi;j + bjVj;i)y

i.

Again equation (3.2) equivalent to

B1V0;0 + αB2(V
jbi;j + bjVj;i)y

i + s2α2Xv(b
2)− 2B3cα

2 = 0 (3.3)

B1 =
s2

(1− b2)
√
1− b2 + s2

, B2 = 0,

B3 =
s2

2
(1− b2)2(1− b2 + s2)

3
2 −

{
s2

(1− b2)
√
1− b2 + s2

}
. (3.4)

To simplify the computation, we fixed point x ∈ M and make a co-ordinate change such that

y =
s√

b2 − s2
α, α =

b

b2 − s2
α, β =

bs√
b2 − s2

α, α =

√√√√ n∑
a=2

(ya)2.

Then we have

V0;0 = V1;1
s2

b2 − s2
α2 + (V 1;0 + V 0;1)

s√
b2 − s2

α+ V 0;0, (3.5)

V jbi + bjVj;iy
i = (V jb1;j + bjVj;1)

s√
b2 − s2

α+ (V jb0;j + bjV j;0), (3.6)

where,

V 1;0 + V 0;1 =

n∑
a=2

(V1;p + Vp;1)y
p, V 0;0 =

n∑
p,q=0

Vp;qy
pyq, (3.7)
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V jb0;j + bjV j;0 =
n∑

p=2

(V jbp;j + bjVj;p)y
p.

From (3.5) and (3.6) in to (3.3), which yields

B1{V1;1
s2

b2 − s2
α2 + (V 1;0 + V 0;1)

s√
b2 − s2

α+ V 0;0}}

+B2
b√

b2 = s2
α{(V jb1;j + bjVj;1)

s√
b2 − s2

α+ (V jb0;j

+bjV j;0)}+ [s2Xv(b
2)− 2B3c]

b2

b2 − s2
α2 = 0. (3.8)

Consider the polynomial

ϕ = r0 + r1s+ r2s
2 + o(s3)

with ri = ri(b
2) then we have,

ϕ1 = r10 + r11s+ r12s
2 + o(s2).

By letting s = 0 in (3.8) we get,

r0V 0;0 + r1(V
jb0;j + bjV j;0)α+ {r10Xv(b

2)− 2cr0}α2 = 0. (3.9)

According to the irrationality of α, the (3.8) is equivalent to

r1(V
jb0;j + bjV j;0) = 0, (3.10)

r0(V 0;0 + r10Xv(b
2)− 2cr0)α2 = 0. (3.11)

Therefore, the equation (3.10) yields

(V jb0;j + bjV j;0) = 0,

V jbr;j + bjV j;r = 0. (3.12)

Now, from equation (3.11), we have,

Vr;s + Vs;r = −2{r
1
0

r0
Xv(b

2)− 2c}δrs, 2 ≤ r, s ≤ n. (3.13)

Again irrationality of α from (3.3) we get

B1(V 1;0 + V 0;1)
s√

b2 − s2
α = 0. (3.14)

B1{V1;1
b2

b2 − s2
α2 + V 0;0}+B2

bs

b2 − s2
α2(V jb1;j + bjVj;1)

+{s2Xv(b
2)− 2cB2}

b2

b2 − s2
α2 = 0. (3.15)

From (3.13) we get

V 1;0 + V 0;1 = 0.
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Which is equivalent to
V1;r + Vr;1 = 0. (3.16)

Solving (3.11) for V 0;0 and plugging it in to (3.15) we have

2B1s
2{V1;1

r10
r0

(Xv(b
2)− 2c)} − 2{r

1
0

r0
Xv(b

2)− 2c}B1(b
2)

+B2sb(V
jb1;j + bjVj;1) +B3b

2Xv(b
2)− 2cb2 = 0. (3.17)

By Taylor series, expansion of ϕ(b2, s) then plugging it in to (3.15) and by the coefficients of s we
have.

br1(V
jb1;j + bjVj;1) + b2Xv(b

2)
∂r1
∂b2

− 2cb2r1 = 0. (3.18)

Then

V jb1;j + bjVj;1 = −(
r11
r1

Xv(b
2)− 2c)bi. (3.19)

From equation (3.13) and (3.19) which yields,

V jbi;j + bjVj;i = −(
r11
r1

Xv(b
2)− 2c)bi. (3.20)

Substituting (3.19) in (3.18), we get,

B1s
2{V1;j + (

p11
p0

Xv(b
2)− 2c)} − b2Xv(b

2){p
1
0

p0
B1 −B2 +B3s

p11
p1

} = 0. (3.21)

The coefficients of all powers of s must vanish in (3.21). In particular, the coefficients of s2 vanishes,
the above equation becomes,

V1;1 +
p10
p0

Xv(b
2)− 2cb = −b2Xv(b

2)R0, (3.22)

where

R0 = [
p10
p0

p2
p0

+
p10
p0

− 2
p11
p1

p2
p0

].

By (3.13),(3.16) and (3.22), we have

Vi;j + Vj;i = 4cpij − 2Xv(b
2){p

1
0

p0
pij +R0bibj}. (3.23)

It is equivalent to

vi;j + vj;i = 4cα− 2Xv(b
2){p

1
0

p0
α+R0β}. (3.24)

On contracting (3.16) with bi and bj yields

Vi;jb
ibj = 2cb2 − b2Xv(b

2){p
1
0

p0
+R0b

2}. (3.25)

Which is equivalent to

Vi;jb
ibj = 2cβ2 − b2Xv(b

2).
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Contracting (3.20) with bi and bj yields

Vi;jb
ibj = 2cb2 − b2Xv(b

2){ 1

2b2
+

p11
p1

}. (3.26)

Here,we used the fact that Xv(b
2) = 2bi;kb

iV k . Then comparing (3.22) with (3.23), it yields

Xv(b
2){R1 −R0b

2} = 0, (3.27)

where R1 = 1
2b2

+
p11
p1

− p10
p0
.

Therefore (3.27) reduced to
Xv(b

2){R1 +R2b
2} = 0. (3.28)

Here, two cases arises :
Case 1: If

R1 +R2b
2 ̸= 0, (3.29)

where, R2 =
p10
p0

p12
p0

+
p12
p0

− 2
p11
p1

p2
p0
.

It follows from (3.29) that Xv(b
2) = 0 and in (3.19) and we have

Vi;j + Vj;i = 4cα, V jbi;j + bjVj;i = 2cβ. (3.30)

Notice that if Xv(b
2) = 0 and (3.30) holds then V satisfies (3.2) and V is an conformal vector field.

Therefore, we obtain

Theorem 3.1. Let F = α2

β
be a Kropina metric on an n-dimensional manifold M (n ≥ 3) and let

V = V i(x) ∂
∂xi be a conformal vector field.Then V is a conformal vector field of F with conformal

factor c = c(x) iff Xv(b
2) = 0 and

Vi;j + Vj;i = 4cα, V jbi;j + bjVj;i = 2cβ. (3.31)

Case 2: If
R1 +R2b

2 = 0. (3.32)

In this case Xv(b
2) ̸= 0. Then obviously, we have

Vi;j + Vj;i = 4c̄α− 2Xv(b
2)b−2R1bibj , (3.33)

V jbi;j + Vj;ib
j = 2c̄β. (3.34)

Since V is conformal vectror field and from above equation (??) reduced to

Xv(b
2){B1b

−1[(b2 − s2)R∗
1] +B2 − (

1− b2 + s2

s(1− b2)
)
p11
p1

= 0. (3.35)

Then, we obtain the theorem;

Theorem 3.2. Therefore it follows we obtain Let F = α2

β
be a Kropina metric on an n-dimensional

manifold M (n ≥ 3) and let V = V i(x) ∂
∂xi be a conformal vector field.Then ,V is a conformal vector

field of F with conformal factor c = c(x) iff

Vi;j + Vj;i = 4c̄α− 2Xv(b
2)b−2R1bibj , (3.36)

V jbi;j + Vj;i = 2c̄β, (3.37)

Xv(b
2){B1b

−1[(b2 − s2)R∗
1] +B2 − (

1− b2 + s2

s(1− b2)
)
p11
p1

= 0, (3.38)
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where,

R1 = (
1

2b2
+

p11
p1

− p10
p0

),

R∗
1 = (

p11
p1

− p10
p0

)
s2

2b2
,

B1 =
b4(1 + s2)− 4b2

s(1− b2)2
,

B2 =
α2 − b4 − b2(s2 − 2)− 1

s2(1− b2)2
,

c = c− 1

2
Xv(b

2)
p10
p0

. (3.39)

4 Conclusions

Conformal vector fields play an important role in Finsler geometry. When F is Riemannian mertic,
the local solutions of a conformal vector field can be determined if F satisfies certain conditions.
As we know every conformal vector field is associated with scalar function called conformal factor.

In this paper we study the conformal vector field on Finsler - Kropina metric and characterize
conformal vector fields on Kropina metric in terms of PDE’s.
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