Journal of Advances in Mathematics and Computer Science
31(4): 1-8, 2019; Article no.JAMCS. 47485
ISSN: 2456-9968
(Past name: British Journal of Mathematics \& Computer Science, Past ISSN: 2231-0851)

Conformal Vector Fields on Finsler Space with Special (α, β) - Metric

N. Natesh ${ }^{1^{*}}$, S. K. Narasimhamurthy ${ }^{1}$ and M. K. Roopa ${ }^{1}$
${ }^{1}$ Department of Mathematics, Kuvempu University, Shankaraghatta - 577 451, Shimoga, Karnataka, India.

Authors' contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/JAMCS/2019/v31i430117
Editor(s):
(1) Prof. H. M. Srivastava, Department of Mathematics and Statistics, University of Victoria, Canada.
Reviewers:
(1) John D. Clayton, University of Maryland, USA.
(2) Juan Antonio Pérez. Universidad Autnoma de Zacatecas, Mxico. Complete Peer review History: http://www.sdiarticle3.com/review-history/47485

Original Research Article

Received: 04 December 2018
Accepted: 18 February 2019
Published: 29 March 2019

Abstract

In this paper, we study the conformal vector fields on a class of Finsler metrics. In particular Finsler space with special (α, β) - metric $F=\alpha+\frac{\beta^{2}}{\alpha}$ is defined in Riemannian metric α and 1-form β and its norm. Then we characterize the PDE's of conformal vector fields on Finsler space with special (α, β) - metric.

Keywords: Finsler space; conformal vector fields; special (α, β) - metric.
2010 Mathematics Subject Classification: 53B40, 53C60.

1 Introduction

The conformal theory of curves on Finsler geometry, emphasizing on the notion of circles preserving transformations, recently studied by the authors Z. Shen and Xia have studied conformal vector

[^0]fields on a Randers manifold with certain curvature properties. Next, the conformal changes of metrics which leave invariant geodesic circles known as concircular transformation are characterized by a second order differential equation. The conformal vector fields are important in Riemann Finsler geometry. Let (M.F) be a Finsler manifold. It is known that a vector field $v=v^{i} \frac{\partial}{\partial x^{i}}$ on M is a conformal vector field on F with conformal factor $c=c(x)$ if and only if $X_{v}\left(F^{2}\right)=4 c F^{2}$, where $X_{v}=v^{i} \frac{\partial}{\partial x^{i}}+y^{i} \frac{\partial v^{j}}{\partial x^{i}} \frac{\partial}{\text { partialy }{ }^{j}}$ [1]. They also determine conformal vector fields on a locally projectively flat Randers manifold. Besides they use homothetic vectorfields ($c=$ constant) on Randers manifolds to construct new Randers metrics of scalar flag curvature [2]. Randers metrics seem to be among the simplest non - trivial Finsler metrics with many investigation in Physics, Electron optics with a magnetic field, dissipative mechanics, irreversible thermodynamics etc.

In this paper, we shall study the conformal vector fields on Finsler space with special (α, β)- metric, whose metric is defined in Riemannian metric α and 1 -form β and its norm. Then we characterize the PDE's of conformal vector fields on Finsler space with special (α, β) - metric.
In natural way, we consider the general (α, β) - metrics are defined as the form:

$$
\begin{equation*}
F=\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right) . \tag{1.1}
\end{equation*}
$$

This kind of metrics is first discussed by Yu and Zhu [3], Many well-known Finsler metrics are general (α, β) - metrics. For example, the Randers metrics and the square metrics are defined by functions $\phi=\phi\left(b^{2}, s\right)$ in the following form:

$$
\begin{gather*}
\phi=\frac{\sqrt{1-b^{2}+s^{2}}+s}{1-b^{2}} . \tag{1.2}\\
\phi=\frac{\left(\sqrt{1-b^{2}+s^{2}}+s\right)}{\left(1-b^{2}\right)^{2} \sqrt{1-b^{2}+s^{2}}} . \tag{1.3}
\end{gather*}
$$

Based on the some reviews, further we shall study the covariant derivatives of conformal vector field is directly proportional to Finsler Special (α, β) - metric.

2 Preliminaries

Let M be an n-dimensional differentiable manifold and $T M$ be the tangent bundle. A Finsler metric on M is the function $F=F(x, y): T M \longrightarrow R$ satisfying the following conditions:

1. $F(x, y)$ is a C^{∞} function on $T M \backslash\{0\}$;
2. $F(x, y) \geq 0$ and $F(x, y)=0 \rightarrow y=0$;
3. $F(x, \lambda y)=\lambda F(x, y), \lambda>0$;
4. the fundamental tensor $g_{i j}(x, y)=\frac{1}{2} \frac{\partial^{2}\left(F^{2}\right)}{\partial y^{2} \partial y^{j}}$ is positively defined.

Let

$$
C_{i j k}=\frac{1}{4}\left[F^{2}\right]_{y^{i} y^{j} y^{k}}=\frac{1}{2} \frac{\partial g_{i j}}{\partial y^{k}} .
$$

Define symmetric trilinear form $C=C_{i j k} d x^{i} \otimes d x^{j} \otimes d x^{k}$ on $T M \backslash\{0\}$. We call C be the Cartan torison tensor.
Let F be a Finsler metric on an n - dimensional manifold M . The canonical geodesic $\sigma(t)$ of F is characterized by

$$
\frac{d^{2} \sigma^{i}(t)}{d t^{2}}+2 G^{i}(\sigma(t), \sigma(t))=0,
$$

where G^{i} are . 014/the geodesic coefficients having the expression $G^{i}=\frac{1}{4} g^{i j}\left\{\left[F^{2}\right]_{x^{k} y^{l}} y^{k}-\left[F^{2}\right]_{x^{l}}\right\}$ with $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$ and $\dot{\sigma}=\frac{d \sigma^{i}}{d t} \frac{\partial}{\partial x^{2}}$. A spray on M is a globally C^{∞} vector field G on $T M \backslash\{0\}$ which is expressed in local coordinates as follows

$$
G=y^{i} \frac{\partial}{\partial x^{i}}-2 G^{i} \frac{\partial}{\partial y^{i}} .
$$

Given geodesic coefficients G^{i}, we define the covariant derivatives of a vector field as $X X^{i}(t) \frac{\partial}{\partial x^{i}}$ along a curve $\mathrm{c}(\mathrm{t})$ by

$$
\left.D_{i} X(t)=\left\{X^{i}(t)+X^{j}(t) N_{j}^{i}(c(t), \dot{c(t)})\right\} \frac{\partial}{\partial x^{i}} \right\rvert\, c(t),
$$

where $N_{j}^{i}=\frac{\partial G^{i}}{\partial y^{j}}, X^{i}(t)=\frac{d X^{i}}{d t}$ and $\dot{c}=\frac{d c^{i}}{d t} \frac{\partial}{\partial x^{i}}$.
Let $F=\alpha+\frac{\beta^{2}}{\alpha}$ be a Finsler Special (α, β) - metric expressed in terms of a Riemannian metric α and a vector field V on M.
From equation (1.1), where $\phi=\phi\left(b^{2}, s\right)$ is a positive smooth function on $\left[0, b_{0}\right) \times\left(-b_{0}, b_{0}\right)$. It is required that

$$
\begin{equation*}
\phi-\phi_{2} s>0, \phi-\phi_{2} s+\left(b^{2}-s^{2}\right) \phi_{22}>0, \tag{2.1}
\end{equation*}
$$

for $b<b_{0}$, where $\phi_{1}=\frac{\partial \phi}{\partial b^{2}}, \phi_{2}=\frac{\partial \phi}{\partial s} \phi_{22}=\frac{\partial^{2} \phi}{\partial s^{2}}, \alpha=\frac{\sqrt{1-b^{2}+s^{2}}}{1-b^{2}}, \beta=\frac{s}{1-b^{2}}$.
We write the function where $\phi=\phi\left(b^{2}, s\right)$ in the following Taylor expansion

$$
\phi=r_{0}+r_{1} s+r_{2} s^{2}+o\left(s^{3}\right),
$$

where

$$
r_{i}=r_{i}\left(b^{2}\right), \text { and } r_{0}=\frac{1}{\left(1-b^{2}\right)^{\frac{1}{2}}}, \quad r_{1}=\frac{1}{1-b^{2}}, r_{2}=\frac{1}{2\left(1-b^{2}\right)^{3 / 2}} .
$$

Now (1.2) implies that

$$
r_{0}>0, \quad r_{0}+2 b^{2} r_{2}>0 .
$$

But there is no restriction on r_{1}. If we assume that $r_{1} \neq 0$, then F is not reversible.(since F is not a symmetric see [4]).
Now, the Finsler Special (α, β) metric is on the conformal vector field, then Finsler Special (α, β) metric becomes

$$
\phi\left(b^{2}, s\right)=\frac{s^{2}}{\left(1-b^{2}\right) \sqrt{1-b^{2}+s^{2}}}
$$

and (1.2) and (1.3) satisfy

$$
\begin{equation*}
\frac{1}{2 b^{2}}+\frac{r_{1}^{1}}{r_{1}}-\frac{r_{0}^{1}}{r_{0}}+\left\{\frac{r_{2}}{r_{0}}\left[2 \frac{r_{1}^{1}}{r_{1}}-\frac{r_{0}^{1}}{r_{0}}\right]-\frac{r_{2}^{1}}{r_{0}}\right\} b^{2}=\frac{1}{2 b^{2}\left(1-b^{2}\right)} . \tag{2.2}
\end{equation*}
$$

Definition 2.1. Let F be a Finsler metric on a manifold M, and V be a vector field on M. Let ϕ_{t} be the flow generated by V. Define $\tilde{\phi}: T M \rightarrow T M$ by $\phi_{t}(x, y)=\left(\phi_{t}(x), \phi_{t} *(y)\right)$. Then the vector field V is said to be conformal if

$$
\begin{equation*}
\phi_{t}^{*} F \xlongequal[=]{=} e^{-2 \sigma_{t}} F, \tag{2.3}
\end{equation*}
$$

where σ_{t} is a function on M for every t . Differentiating the above equation by t at $t=0$, we obtain

$$
\begin{equation*}
X_{v}(F)=-2 c F, \tag{2.4}
\end{equation*}
$$

where c is called the conformal factor and X_{v} is covariant derivative of vector field X, it can be defined as

$$
\begin{equation*}
X_{v}=V^{i} \frac{\partial}{\partial x^{i}}+y^{i} \frac{\partial V^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}}, c=\left.\frac{d}{d t}\right|_{t}=0 \sigma_{t} . \tag{2.5}
\end{equation*}
$$

3 Conformal Vector Fields on Finsler Space with Special (α, β) - metric

In this section we shall study the conformal vector field on Kropina metric with (1.2). Let V be a conformal vector field of F with conformal factor $\mathrm{c}(\mathrm{x})$.

$$
\begin{equation*}
\text { i.e., } X_{v}\left(F^{2}\right)=4 c F^{2} \tag{3.1}
\end{equation*}
$$

Now we are in the position from (1.2) and to solve the above with the Kropina metric, we have

$$
F=\alpha+\frac{\beta^{2}}{\alpha}=\frac{s^{2}}{\left(1-b^{2}\right) \sqrt{1-b^{2}+s^{2}}}
$$

then (3.1) implies

$$
\begin{gather*}
X_{v}\left(F^{2}\right)=\phi^{2} X_{v}\left(\alpha^{2}\right)+\alpha^{2} X_{v}\left(\phi^{2}\right) \\
X_{v}\left(F^{2}\right)=\left[A_{1} X_{v}\left(\alpha^{2}\right)+2 \alpha^{2} X_{v}\left(b^{2}\right) A_{2}+2 \alpha X_{v}(\beta) A_{3}-2 \beta X_{v}(\alpha) A_{4}\right] \tag{3.2}
\end{gather*}
$$

where,

$$
\begin{gathered}
A_{1}=\frac{s^{4}}{\left(1-b^{2}\right) \sqrt{1-b^{2}+s^{2}}}, \quad A_{2}=\frac{s^{4}}{\left(1-b^{2}\right)^{3}\left(1-b^{2}+s^{2}\right)^{2}} \\
A_{3}=0, \quad A_{4}=0 \\
X_{v}\left(\alpha^{2}\right)=2 V_{0 ; 0}, \quad X_{v}(\beta)=\left(V^{j} b_{i ; j}+b^{j} V_{j ; i}\right) y^{i}
\end{gathered}
$$

Again equation (3.2) equivalent to

$$
\begin{array}{r}
B_{1} V_{0 ; 0}+\alpha B_{2}\left(V^{j} b_{i ; j}+b^{j} V_{j ; i}\right) y^{i}+s^{2} \alpha^{2} X_{v}\left(b^{2}\right)-2 B_{3} c \alpha^{2}=0 \\
B_{1}=\frac{s^{2}}{\left(1-b^{2}\right) \sqrt{1-b^{2}+s^{2}}}, \quad B_{2}=0 \\
B_{3}=\frac{s^{2}}{2}\left(1-b^{2}\right)^{2}\left(1-b^{2}+s^{2}\right)^{\frac{3}{2}}-\left\{\frac{s^{2}}{\left(1-b^{2}\right) \sqrt{1-b^{2}+s^{2}}}\right\} \tag{3.4}
\end{array}
$$

To simplify the computation, we fixed point $x \in M$ and make a co-ordinate change such that

$$
y=\frac{s}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}, \quad \alpha=\frac{b}{b^{2}-s^{2}} \bar{\alpha}, \quad \beta=\frac{b s}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}, \quad \bar{\alpha}=\sqrt{\sum_{a=2}^{n}\left(y^{a}\right)^{2}} .
$$

Then we have

$$
\begin{gather*}
V_{0 ; 0}=V_{1 ; 1} \frac{s^{2}}{b^{2}-s^{2}} \overline{\alpha^{2}}+\left(\bar{V}_{1 ; 0}+\bar{V}_{0 ; 1}\right) \frac{s}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}+\bar{V}_{0 ; 0}, \tag{3.5}\\
V^{j} b_{i}+b^{j} V_{j ; i} y^{i}=\left(V^{j} b_{1 ; j}+b^{j} V_{j ; 1}\right) \frac{s}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}+\left(V^{j} \bar{b}_{0 ; j}+b^{j} \bar{V}_{j ; 0}\right), \tag{3.6}
\end{gather*}
$$

where,

$$
\begin{equation*}
\bar{V}_{1 ; 0}+\bar{V}_{0 ; 1}=\sum_{a=2}^{n}\left(V_{1 ; p}+V_{p ; 1}\right) y^{p}, \quad \bar{V}_{0 ; 0}=\sum_{p, q=0}^{n} V_{p ; q} y^{p} y^{q} \tag{3.7}
\end{equation*}
$$

$$
V^{j} \bar{b}_{0 ; j}+b^{j} \bar{V}_{j ; 0}=\sum_{p=2}^{n}\left(V^{j} b_{p ; j}+b^{j} V_{j ; p}\right) y^{p} .
$$

From (3.5) and (3.6) in to (3.3), which yields

$$
\begin{align*}
& \left.B_{1}\left\{V_{1 ; 1} \frac{s^{2}}{b^{2}-s^{2}} \overline{\alpha^{2}}+\left(\bar{V}_{1 ; 0}+\bar{V}_{0 ; 1}\right) \frac{s}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}+\bar{V}_{0 ; 0}\right\}\right\} \\
& +B_{2} \frac{b}{\sqrt{b^{2}=s^{2}}} \bar{\alpha}\left\{\left(V^{j} b_{1 ; j}+b^{j} V_{j ; 1}\right) \frac{s}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}+\left(V^{j} \bar{b}_{0 ; j}\right.\right. \\
& \left.\left.\quad+b^{j} \bar{V}_{j ; 0}\right)\right\}+\left[s^{2} X_{v}\left(b^{2}\right)-2 B_{3} c\right] \frac{b^{2}}{b^{2}-s^{2}} \overline{\alpha^{2}}=0 . \tag{3.8}
\end{align*}
$$

Consider the polynomial

$$
\phi=r_{0}+r_{1} s+r_{2} s^{2}+o\left(s^{3}\right)
$$

with $r_{i}=r_{i}\left(b^{2}\right)$ then we have,

$$
\phi_{1}=r_{0}^{1}+r_{1}^{1} s+r_{2}^{1} s^{2}+o\left(s^{2}\right) .
$$

By letting $s=0$ in (3.8) we get,

$$
\begin{equation*}
r_{0} \bar{V}_{0 ; 0}+r_{1}\left(V^{j} \bar{b}_{0 ; j}+b^{j} \bar{V}_{j ; 0}\right) \bar{\alpha}+\left\{r_{0}^{1} X_{v}\left(b^{2}\right)-2 c r_{0}\right\} \overline{\alpha^{2}}=0 . \tag{3.9}
\end{equation*}
$$

According to the irrationality of $\bar{\alpha}$, the (3.8) is equivalent to

$$
\begin{gather*}
r_{1}\left(V^{j} \bar{b}_{0 ; j}+b^{j} \bar{V}_{j ; 0}\right)=0, \tag{3.10}\\
r_{0}\left(\bar{V}_{0 ; 0}+r_{0}^{1} X_{v}\left(b^{2}\right)-2 c r_{0}\right) \overline{\alpha^{2}}=0 . \tag{3.11}
\end{gather*}
$$

Therefore, the equation (3.10) yields

$$
\begin{gather*}
\left(V^{j} \bar{b}_{0 ; j}+b^{j} \bar{V}_{j ; 0}\right)=0 \\
V^{j} b_{r ; j}+b^{j} \bar{V}_{j ; r}=0 . \tag{3.12}
\end{gather*}
$$

Now, from equation (3.11), we have,

$$
\begin{equation*}
V_{r ; s}+V_{s ; r}=-2\left\{\frac{r_{0}^{1}}{r_{0}} X_{v}\left(b^{2}\right)-2 c\right\} \delta_{r s}, \quad 2 \leq r, s \leq n \tag{3.13}
\end{equation*}
$$

Again irrationality of $\bar{\alpha}$ from (3.3) we get

$$
\begin{gather*}
B_{1}\left(\bar{V}_{1 ; 0}+\bar{V}_{0 ; 1}\right) \frac{s}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}=0 . \tag{3.14}\\
B_{1}\left\{V_{1 ; 1} \frac{b^{2}}{b^{2}-s^{2}} \overline{\alpha^{2}}+\bar{V}_{0 ; 0}\right\}+B_{2} \frac{b s}{b^{2}-s^{2}} \overline{\alpha^{2}}\left(V^{j} b_{1 ; j}+b^{j} V_{j ; 1}\right) \\
+\left\{s^{2} X_{v}\left(b^{2}\right)-2 c B_{2}\right\} \frac{b^{2}}{b^{2}-s^{2}} \overline{\alpha^{2}}=0 . \tag{3.15}
\end{gather*}
$$

From (3.13) we get

$$
\bar{V}_{1 ; 0}+\bar{V}_{0 ; 1}=0 .
$$

Which is equivalent to

$$
\begin{equation*}
V_{1 ; r}+V_{r ; 1}=0 . \tag{3.16}
\end{equation*}
$$

Solving (3.11) for $\bar{V}_{0 ; 0}$ and plugging it in to (3.15) we have

$$
\begin{align*}
2 B_{1} s^{2}\left\{V_{1 ; 1} \frac{r_{0}^{1}}{r_{0}}\left(X_{v}\left(b^{2}\right)-2 c\right)\right\}-2\left\{\frac{r_{0}^{1}}{r_{0}} X_{v}\left(b^{2}\right)-2 c\right\} B_{1}\left(b^{2}\right) \\
+B_{2} s b\left(V^{j} b_{1 ; j}+b^{j} V_{j ; 1}\right)+B_{3} b^{2} X_{v}\left(b^{2}\right)-2 c b^{2}=0 \tag{3.17}
\end{align*}
$$

By Taylor series, expansion of $\phi\left(b^{2}, s\right)$ then plugging it in to (3.15) and by the coefficients of s we have.

$$
\begin{equation*}
b r_{1}\left(V^{j} b_{1 ; j}+b^{j} V_{j ; 1}\right)+b^{2} X_{v}\left(b^{2}\right) \frac{\partial r_{1}}{\partial b^{2}}-2 c b^{2} r_{1}=0 \tag{3.18}
\end{equation*}
$$

Then

$$
\begin{equation*}
V^{j} b_{1 ; j}+b^{j} V_{j ; 1}=-\left(\frac{r_{1}^{1}}{r_{1}} X_{v}\left(b^{2}\right)-2 c\right) b_{i} . \tag{3.19}
\end{equation*}
$$

From equation (3.13) and (3.19) which yields,

$$
\begin{equation*}
V^{j} b_{i ; j}+b^{j} V_{j ; i}=-\left(\frac{r_{1}^{1}}{r_{1}} X_{v}\left(b^{2}\right)-2 c\right) b_{i} . \tag{3.20}
\end{equation*}
$$

Substituting (3.19) in (3.18), we get,

$$
\begin{equation*}
B_{1} s^{2}\left\{V_{1 ; j}+\left(\frac{p_{1}^{1}}{p_{0}} X_{v}\left(b^{2}\right)-2 c\right)\right\}-b^{2} X_{v}\left(b^{2}\right)\left\{\frac{p_{0}^{1}}{p_{0}} B_{1}-B_{2} \quad+B_{3} s \frac{p_{1}^{1}}{p_{1}}\right\}=0 . \tag{3.21}
\end{equation*}
$$

The coefficients of all powers of s must vanish in (3.21). In particular, the coefficients of s^{2} vanishes, the above equation becomes,

$$
\begin{equation*}
V_{1 ; 1}+\frac{p_{0}^{1}}{p_{0}} X_{v}\left(b^{2}\right)-2 c b=-b^{2} X_{v}\left(b^{2}\right) R_{0} \tag{3.22}
\end{equation*}
$$

where

$$
R_{0}=\left[\frac{p_{0}^{1}}{p_{0}} \frac{p_{2}}{p_{0}}+\frac{p_{0}^{1}}{p_{0}}-2 \frac{p_{1}^{1}}{p_{1}} \frac{p_{2}}{p_{0}}\right] .
$$

By (3.13),(3.16) and (3.22), we have

$$
\begin{equation*}
V_{i ; j}+V_{j ; i}=4 c p_{i j}-2 X_{v}\left(b^{2}\right)\left\{\frac{p_{0}^{1}}{p_{0}} p_{i j}+R_{0} b_{i} b_{j}\right\} . \tag{3.23}
\end{equation*}
$$

It is equivalent to

$$
\begin{equation*}
v_{i ; j}+v_{j ; i}=4 c \alpha-2 X_{v}\left(b^{2}\right)\left\{\frac{p_{0}^{1}}{p_{0}} \alpha+R_{0} \beta\right\} . \tag{3.24}
\end{equation*}
$$

On contracting (3.16) with b^{i} and b^{j} yields

$$
\begin{equation*}
V_{i ; j} b^{i} b^{j}=2 c b^{2}-b^{2} X_{v}\left(b^{2}\right)\left\{\frac{p_{0}^{1}}{p_{0}}+R_{0} b^{2}\right\} . \tag{3.25}
\end{equation*}
$$

Which is equivalent to

$$
V_{i ; j} b^{i} b^{j}=2 c \beta^{2}-b^{2} X_{v}\left(b^{2}\right) .
$$

Contracting (3.20) with b^{i} and b^{j} yields

$$
\begin{equation*}
V_{i ; j} b^{i} b^{j}=2 c b^{2}-b^{2} X_{v}\left(b^{2}\right)\left\{\frac{1}{2 b^{2}}+\frac{p_{1}^{1}}{p_{1}}\right\} \tag{3.26}
\end{equation*}
$$

Here, we used the fact that $X_{v}\left(b^{2}\right)=2 b_{i ; k} b^{i} V^{k}$. Then comparing (3.22) with (3.23), it yields

$$
\begin{equation*}
X_{v}\left(b^{2}\right)\left\{R_{1}-R_{0} b^{2}\right\}=0, \tag{3.27}
\end{equation*}
$$

where $R_{1}=\frac{1}{2 b^{2}}+\frac{p_{1}^{1}}{p_{1}}-\frac{p_{0}^{1}}{p_{0}}$.
Therefore (3.27) reduced to

$$
\begin{equation*}
X_{v}\left(b^{2}\right)\left\{R_{1}+R_{2} b^{2}\right\}=0 \tag{3.28}
\end{equation*}
$$

Here, two cases arises :
Case 1: If

$$
\begin{equation*}
R_{1}+R_{2} b^{2} \neq 0, \tag{3.29}
\end{equation*}
$$

where, $R_{2}=\frac{p_{0}^{1}}{p_{0}} \frac{p_{2}^{1}}{p_{0}}+\frac{p_{2}^{1}}{p_{0}}-2 \frac{p_{1}^{1}}{p_{1}} \frac{p_{2}}{p_{0}}$.
It follows from (3.29) that $X_{v}\left(b^{2}\right)=0$ and in (3.19) and we have

$$
\begin{equation*}
V_{i ; j}+V_{j ; i}=4 c \alpha, \quad V^{j} b_{i ; j}+b^{j} V_{j ; i}=2 c \beta . \tag{3.30}
\end{equation*}
$$

Notice that if $X_{v}\left(b^{2}\right)=0$ and (3.30) holds then V satisfies (3.2) and V is an conformal vector field. Therefore, we obtain

Theorem 3.1. Let $F=\frac{\alpha^{2}}{\beta}$ be a Kropina metric on an n-dimensional manifold $M(n \geq 3)$ and let $V=V^{i}(x) \frac{\partial}{\partial x^{i}}$ be a conformal vector field.Then V is a conformal vector field of F with conformal factor $c=c(x)$ iff $X_{v}\left(b^{2}\right)=0$ and

$$
\begin{equation*}
V_{i ; j}+V_{j ; i}=4 c \alpha, \quad V^{j} b_{i ; j}+b^{j} V_{j ; i}=2 c \beta . \tag{3.31}
\end{equation*}
$$

Case 2: If

$$
\begin{equation*}
R_{1}+R_{2} b^{2}=0 \tag{3.32}
\end{equation*}
$$

In this case $X_{v}\left(b^{2}\right) \neq 0$. Then obviously, we have

$$
\begin{gather*}
V_{i ; j}+V_{j ; i}=4 \bar{c} \alpha-2 X_{v}\left(b^{2}\right) b^{-2} R_{1} b_{i} b_{j}, \tag{3.33}\\
V^{j} b_{i ; j}+V_{j ; i} b^{j}=2 \bar{c} \beta . \tag{3.34}
\end{gather*}
$$

Since V is conformal vectror field and from above equation (??) reduced to

$$
\begin{equation*}
X_{v}\left(b^{2}\right)\left\{B_{1} b^{-1}\left[\left(b^{2}-s^{2}\right) R_{1}^{*}\right]+B_{2}-\left(\frac{1-b^{2}+s^{2}}{s\left(1-b^{2}\right)}\right) \frac{p_{1}^{1}}{p_{1}}=0 .\right. \tag{3.35}
\end{equation*}
$$

Then, we obtain the theorem;
Theorem 3.2. Therefore it follows we obtain Let $F=\frac{\alpha^{2}}{\beta}$ be a Kropina metric on an n-dimensional manifold $M(n \geq 3)$ and let $V=V^{i}(x) \frac{\partial}{\partial x^{i}}$ be a conformal vector field.Then, V is a conformal vector field of F with conformal factor $c=c(x)$ iff

$$
\begin{gather*}
V_{i ; j}+V_{j ; i}=4 \bar{c} \alpha-2 X_{v}\left(b^{2}\right) b^{-2} R_{1} b_{i} b_{j}, \tag{3.36}\\
V^{j} b_{i ; j}+V_{j ; i}=2 \bar{c} \beta \tag{3.37}\\
X_{v}\left(b^{2}\right)\left\{B_{1} b^{-1}\left[\left(b^{2}-s^{2}\right) R_{1}^{*}\right]+B_{2}-\left(\frac{1-b^{2}+s^{2}}{s\left(1-b^{2}\right)}\right) \frac{p_{1}^{1}}{p_{1}}=0,\right. \tag{3.38}
\end{gather*}
$$

where,

$$
\begin{gather*}
R_{1}=\left(\frac{1}{2 b^{2}}+\frac{p_{1}^{1}}{p_{1}}-\frac{p_{0}^{1}}{p_{0}}\right), \\
R_{1}^{*}=\left(\frac{p_{1}^{1}}{p_{1}}-\frac{p_{0}^{1}}{p_{0}}\right) \frac{s^{2}}{2 b^{2}}, \\
B_{1}=\frac{b^{4}\left(1+s^{2}\right)-4 b^{2}}{s\left(1-b^{2}\right)^{2}}, \\
B_{2}=\frac{\alpha^{2}-b^{4}-b^{2}\left(s^{2}-2\right)-1}{s^{2}\left(1-b^{2}\right)^{2}}, \\
\bar{c}=c-\frac{1}{2} X_{v}\left(b^{2}\right) \frac{p_{0}^{1}}{p_{0}} . \tag{3.39}
\end{gather*}
$$

4 Conclusions

Conformal vector fields play an important role in Finsler geometry. When F is Riemannian mertic, the local solutions of a conformal vector field can be determined if F satisfies certain conditions. As we know every conformal vector field is associated with scalar function called conformal factor.

In this paper we study the conformal vector field on Finsler - Kropina metric and characterize conformal vector fields on Kropina metric in terms of PDE's.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Shen Z, Xia Q. Conformal vector fields on a locally projectively flat Randers manifold.Publ Math Debrecen. 2014;84:463-474.
[2] Shen ZZ, Xing H. On Randers metrics of isotropic S-curvature.Acta Math Sin Engl Ser. 2008;24:789-796.
[3] Singh UP, Singh AK, Coformal transformations ofKropina metric.
[4] Huang L, Mo X. On spherically symmetric Finsler metrics of scalar curvature. J Geom Phys. 2012;62:2279-2287.

[^1]
[^0]: *Corresponding author: E-mail: nateshmaths@gmail.com

[^1]: (C)2019 Natesh et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    ```
    Peer-review history:
    The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
    address bar)
    http://www.sdiarticle3.com/review-history/47485
    ```

