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Abstract

In a recent preprint, Gullerud and Walker proved a theorem and made a conjecture about the
correctness of efficiently generating Bézout trees for Pythagorean pairs. In this note, we give a
simple proof of their theorem, confirm that their conjecture is true, and furthermore we give a
generalization.
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1 Introduction

The integers triple (x, y, z) is called a Pythagorean triple if x2 + y2 = z2. It is called primitive if
they are relatively prime. It is well known that all positive primitive Pythagorean triples (x, y, z)
with y even can be written as

x = m2 − n2, y = 2mn, z = m2 + n2,
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for some relatively prime integers m and n such that m > n > 0 [1]. Following Gullerud and Walker
[2], we call such (m,n) a Pythagorean pair. Given (m,n), it is clear that (n,m) and (m,−n) also
generate Pythagorean triples; such pairs are called associated pairs of (m,n). Note that if (m,n) is a
Pythagorean pair, then f(m,n) := (2m+n,m) (where f is defined on Z×Z) is another Pythagorean
pair. Similarly, f(n,m) = (2n + m,n) and f(m,−n) = (2m − n,m) are also Pythagorean pairs.
Define now a trinary tree generated by (m,n) as follows:

..(m,n).

f(m,−n)

. f(m,n).

f(n,m)

.

· · ·

.

· · ·

.

· · ·

.

· · ·
. · · ·. ,.

· · ·

.

· · ·

.

· · ·

.

· · ·

where recursively, each node on a given level produces three nodes on a next level by applying the
functions f1(m,n) = f(m,−n), f2(m,n) = f(m,n) and f3(m,n) = f(n,m) and so on. Randall and
Saunders [3] proved that the trinary tree produced from (3, 1) contains all pairs of relatively prime
odd integers. Similarly, the trinary tree produced from (2, 1) contains all pairs of relatively prime
integers of opposite parity. Thus these together generate all relatively prime Pythagorean pairs
(m,n) with m > n > 0.

We call (r, s) the Bézout coefficients associated with (m,n) if (r, s) is obtained from the standard
division algorithm so that rm + sn = gcd(m,n). For comparison, for an input of (m,n) in the
Matlab gcd function

[G,U, V ] = gcd(m,n),

the output will be G = gcd(m,n) in the usual notation, and U = r, V = s are the Bézout coefficients.
In an attempt to efficiently generate the Bézout coefficients for Pythagorean pairs, Gullerud and
Walker introduced the notion of Bézout tree of (m,n) generated by (u, v), which is defined by

g(u, v) = (v, u− 2v),

g(v, u) = (u, v − 2u) and

g(u,−v) = (−v, u+ 2v),

and the tree is arranged in the analogous format as in the tree starting with (m,n). Gullerud and
Walker proved the following result, for which we offer a simple argument.

Theorem 1.1. (cf. Theorem 1.2 of [2]) Let (m,n) be a Pythagorean pair with m > n with
associated pairs (n,m) and (m,−n). Let f and g be as defined above, and let mu + nv = 1 for
some u, v ∈ Z. Then g(u, v), g(v, u) and g(u,−v) respectively yield the necessary coefficients u′, v′

such that
(2m+ n)u′ +mv′ = 1,

(2n+m)u′ + nv′ = 1, and

(2m− n)u′ +mv′ = 1

respectively.
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Proof. In terms of matrices, we have

f(m,n) =

[
2m+ n

m

]
=

[
2 1
1 0

] [
m
n

]
.

If we let A =

[
2 1
1 0

]
, then it is clear that g(u, v) is given by

g(u, v) =

[
v

u− 2v

]
=

[
0 1
1 −2

] [
u
v

]
= (A−1)T

[
u
v

]
.

It follows that

[
u′

v′

]
:= g(u, v) satisfies

(2m+ n)u′ +mv′ = [u′, v′]

[
2m+ n

m

]
= g(u, v)T f(m,n)

= [u, v]A−1A

[
m
n

]
= um+ vn = 1,

as required. The other two cases are handled in exactly the same way. 2

Before stating the conjecture (and we call it Theorem 1.4 now), let’s look at the following example
(Example 1.3 of [2]), where on the left it is the trinary tree generated by (3, 1) up to a depth of 2,
and on the right, it is the Bézout tree of (3, 1) generated by (0, 1) up to the same depth. Note that
the defining rule for the second tree is analogous to the first: one proceeds from one node at a given
level to three nodes at the next level by applying the functions g1(u, v) = g(u,−v), g2(u, v) = g(u, v)
and g3(u, v) = g(v, u).

Example 1.2.

..(3, 1). (7, 3).

(5, 3)

.

(5, 1)

.

(11, 7)

. (17, 7).

(13, 3)

.

(11, 3)

.

(13, 5)

.

(7, 5)

.

(9, 5)

.

(11, 5)

.

(7, 1)

. (0, 1). (1,−2).

(−1, 2)

.

(0, 1)

.

(2,−3)

. (−2, 5).

(1,−4)

.

(−1, 4)

.

(2,−5)

.

(−2, 3)

.

(−1, 2)

.

(1,−2)

.

(0, 1)

Comparing the above two trees shows that the second tree yields the Bézout coefficients for entries
in the first tree. This is not completely true for the Bézout tree of (2, 1) generated by (0, 1) (which
is the same as the second tree in the above example). To fix the situation, simply change the top
entry in the second level (i.e. at depth 1) from (−1, 2) into (1,−1), then propagate accordingly
using the functions defined by gi(u, v), i = 1, 2, 3. We make this precise by introducing the following
trees up to a depth of 2 (cf. Figure 2.1 of [2], where there are typos regarding two entries in the
upper right subtree).
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Example 1.3.

..(2, 1). (5, 2).

(3, 2)

.

(4, 1)

.

(8, 5)

. (12, 5).

(9, 2)

.

(7, 2)

.

(8, 3)

.

(4, 3)

.

(7, 4)

.

(9, 4)

.

(6, 1)

. (0, 1). (1,−2).

(1,−1)

.

(0, 1)

.

(2,−3)

. (−2, 5).

(1,−4)

.

(1,−3)

.

(−1, 3)

.

(1,−1)

.

(−1, 2)

.

(1,−2)

.

(0, 1)

The dotted line in the second tree above means that the entry (1,−1) does not come from (0, 1) by
applying the function g1(u, v), instead one defines the entry (1,−1) using the Bézout coefficients
of the corresponding Pythagorean pair (3, 2). After this modification, it appears that the new
Bézout tree yields all the Bézout coefficients of the first tree. Hence the merit of this construction
is that (if it is proven to be true) it gives an efficient way to construct the Bézout coefficients for
all Pythagorean pairs.

We can state Conjecture 2.1 of [2] (now a theorem) as follows.

Theorem 1.4. Consider the trinary trees generated by (2, 1) and (3, 1). Let (u, v) be the pair in
the Bézout tree corresponding to the relatively prime pair (m,n) and (U, V ) be the pair given by
the gcd function for the same pair (m,n). Then the following hold:

(1) For all (u, v) in the Bézout tree of (3, 1) generated by (0, 1), (u, v) = (U, V ).
(2) One third of the (u, v) in the Bézout tree of (2, 1) generated by (0, 1) are not equal to (U, V ).

Changing the value of g(0,−1) in the second level of the Bézout tree from (−1, 2) to (1,−1) results
in a tree in which (u, v) = (U, V ) for all (u, v).

The above theorem is clearly implied by the following theorem.

Theorem 1.5. For a relatively prime Pythagorean pair (m,n) with m > n > 0, except for (m,n) =
(2, 1) and for f1(m,n) := f(m,−n), the following diagram is commutative, i.e. β(fi(m,n)) =
gi(β(m,n)), i = 1, 2, 3:

..

(m,n)

.

(m′, n′)

.(r, s). (r′, s′).

fi

.

β

.

β

.
gi

where β(m,n) gives the Bézout coefficients (r, s) for (m,n).

We will prove Theorem 1.5 in Section 2 using the standard Euclidean algorithm. In Section 3, we
give a generalization (see Theorem 3.2).
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2 Euclidean Algorithm and the Proof of Theorem 1.5

For simplicity we will assume that all ordered pairs (m,n) consist of relatively prime integers, even
though the result can be generalized to the case when gcd(m,n) = d > 1.

2.1. Euclidean Algorithm

We recall that for relatively prime integers m > n > 0, the Division Algorithm is given by

m = q1n+ r1

n = q2r1 + r2

· · ·
rk−2 = qk · rk−1 + rk,

where 0 < r1 < n, 0 < ri < ri−1 for i = 2, 3, · · · , k − 1, rk−1 = gcd(m,n) = 1 and rk = 0 if n > 1,
and q1 = m, r1 = 0 if n = 1 = gcd(m,n). We can record the process using matrices as follows:[

m
n

]
=

[
q1 1
1 0

] [
n
r1

]
=

[
q1 1
1 0

] [
q2 1
1 0

] [
r1
r2

]
=

[
q1 1
1 0

]
· · ·
[

qk 1
1 0

] [
1
0

]
.

Similarly for n > m > 0 and relatively prime, we have[
m
n

]
=

[
0 1
1 0

] [
q1 1
1 0

]
· · ·
[

qk 1
1 0

] [
1
0

]
.

Note that these intermediate matrices with left upper corner entry qi or 0 are uniquely determined.
Note that the Bézout coefficients (r, s) for the relatively prime pair (m,n) with m,n > 0 can be
found by backward substitutions from the steps of the division, or what amounts to be the same,
from the first row vector of A−1, where A is the matrix

A =

[
q1 1
1 0

]
· · ·
[

qk 1
1 0

]
or

A =

[
0 1
1 0

] [
q1 1
1 0

]
· · ·
[

qk 1
1 0

]
.

To prove Theorem 1.5, we need a few lemmas.

Lemma 2.2. Assume that m > n > 0 and gcd(m,n) = 1. Then (r, s) gives the Bézout coefficients
for (m,n), i.e. (r, s) = β(m,n) if and only if (s, r − 2s) = β(2m+ n,m).

Proof. By division algorithm, we can write[
m
n

]
= A

[
1
0

]
,

where A is an invertible integer matrix of the form

A =

[
q1 1
1 0

]
· · ·
[

qk 1
1 0

]
, det(A) = ±1.

By the given assumption, A−1 is of the form

A−1 =

[
r s
∗ ∗

]
.
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Now we perform the division algorithm for 2m+ n and m, where the first step is the following:

2m+ n = 2 ·m+ n,

which is followed by the division of m by n. Hence we can write[
2m+ n

m

]
=

[
2 1
1 0

]
A

[
1
0

]
,

where the first row of the matrix

([
2 1
1 0

]
A

)−1

gives the Bézout coefficient (r′, s′) of the division

of 2m+ n by m. But ([
2 1
1 0

]
A

)−1

= A−1

[
2 1
1 0

]−1

=

[
r s
∗ ∗

] [
0 1
1 −2

]
=

[
s r − 2s
∗ ∗

]
,

from which we have (r′, s′) = (s, r − 2s) as required. 2

Lemma 2.3. Assume that m > n > 0 and gcd(m,n) = 1. Then (r, s) = β(m,m− n) if and only if
(s, r − s) = β(2m− n,m).

Proof. Clearly we have gcd(m,m − n) = gcd(2m − n,m) = 1. Similar to the proof of Lemma 2.2,
we may write [

m
m− n

]
= A

[
1
0

]
,

where the first row of A−1 gives the Bézout coefficients for the division of m by m− n, i.e.

A−1 =

[
r s
∗ ∗

]
.

Performing the first step of the division of 2m− n by m, we have

2m− n = 1 ·m+ (m− n),

i.e. [
2m− n

m

]
=

[
1 1
1 0

] [
m

m− n

]
=

[
1 1
1 0

]
A

[
1
0

]
,

whence the Bézout coefficients for the division of 2m − n by m are given by the first row of the
matrix ([

1 1
1 0

]
A

)−1

= A−1

[
1 1
1 0

]−1

=

[
r s
∗ ∗

] [
0 1
1 −1

]
=

[
s r − s
∗ ∗

]
,

as required. 2

Lemma 2.4. Assume that m > n > 0, n < m
2

and gcd(m,n) = 1. Then[
m
n

]
=

[
q1 1
1 0

]
A

[
1
0

]
and [

m
m− n

]
=

[
1 1
1 0

] [
q′2 1
1 0

]
A

[
1
0

]
,

6
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where q1 > 1, 1 + q′2 = q1 and A is void if n = 1.

Proof. By assumption, we can write
m = q1n+ r

with q1 = ⌊m
n
⌋ ≥ 2 and r < n.

Letting q′2 = q1 − 1, we have
m = 1 · (m− n) + n,

where n < m− n by assumption, and

m− n = (q1 − 1)n+ r = q′2n+ r.

Writing [
n
r

]
= A

[
1
0

]
and expressing the above divisions in terms of matrices, the result is clear. 2

Lemma 2.5. Assume that m > n > 0, gcd(m,n) = 1 and (m,n) ̸= (2, 1). Then (r, s) = β(m,n) if
and only if (r + s,−s) = β(m,m− n).

Proof. Since (m,n) ̸= (2, 1), there are only the following two cases to consider.
Case 1: n < m

2
. Using Lemma 2.4, we see that the division of m by n is described by the procedure[

q1 1
1 0

]
A, (1)

if and only if the division of m by m− n is described by the following procedure:[
1 1
1 0

] [
q′2 1
1 0

]
A, (2)

where
q1 = q′2 + 1.

The fact that (r, s) is the Bézout coefficient for division of m by n means precisely that

A−1

[
q1 1
1 0

]−1

=

[
r s
∗ ∗

]
,

while the Bézout coefficient for the division of m by m − n is given by the first row vector of the
matrix

A−1

[
q′2 1
1 0

]−1 [
1 1
1 0

]−1

.

But

A−1

[
q′2 1
1 0

]−1 [
1 1
1 0

]−1

= A−1

[
q1 − 1 1

1 0

]−1 [
1 1
1 0

]−1

= A−1

([
1 −1
0 1

] [
q1 1
1 0

])−1 [
0 1
1 −1

]
= A−1

[
q1 1
1 0

]−1 [
1 1
0 1

] [
0 1
1 −1

]

7
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=

[
r s
∗ ∗

] [
1 0
1 −1

]
=

[
r + s −s
∗ ∗

]
,

which shows the result.

Case 2: n > m
2
. Assume that (r, s) = β(m,n) and (r′, s′) = β(m,m−n). Since m−n < m

2
, by the

result of Case 1, we have
r = r′ + s′ and s = −s′,

which shows that r′ = r + s and s′ = −s, as required. 2

Remark 2.6. The above lemma does not hold when (m,n) = (2, 1), since (0, 1) = β(m,n) =
β(m,m− n) here, but (r, s) = (0, 1) ̸= (r + s,−s).

Lemma 2.7. Assume that m > n > 0, gcd(m,n) = 1 and (m,n) ̸= (2, 1). Then (r, s) = β(m,n) if
and only if (−s, r + 2s) = β(2m− n,m).

Proof. The mapping (m,n) 7→ (2m−n,m) can be factored as (m,n) 7→ (m,m−n) 7→ (2m−n,m),
so by Lemma 2.5 and Lemma 2.3, the corresponding Bézout coefficients are given by (r, s) 7→
(r + s,−s) 7→ (−s, (r + s)− (−s)) = (−s, r + 2s), as required. 2

Proof of Theorem 1.5

The proof for the pair f1 and g1 follows from Lemma 2.7. Note that the condition (m,n) ̸= (2, 1)
is precisely used here. The proof for the pair f2 and g2 follows from Lemma 2.2. The proof for the
pair f3 and g3 is essentially the same as that of the previous case. Here are the details. Let[

m
n

]
=

[
q1 1
1 0

]
A

[
1
0

]
where the first step of the division process is written out. Now for the division of 2n+m by n, one
has [

2n+m
n

]
=

[
q1 + 2 1

1 0

]
A

[
1
0

]
.

Let (r, s) be the Bézout coefficients for the division of m by n, i.e.[
r s
∗ ∗

]
= A−1

[
q1 1
1 0

]−1

.

If (r′, s′) is the Bézout coefficients for the division of 2n+m by n, then[
r′ s′

∗ ∗

]
= A−1

[
q1 + 2 1

1 0

]−1

= A−1

([
1 2
0 1

] [
q1 1
1 0

])−1

= A−1

[
q1 1
1 0

]−1 [
1 2
0 1

]−1

=

[
r s
∗ ∗

] [
1 −2
0 1

]
=

[
r s− 2r
∗ ∗

]
,

so
r′ = r, s′ = s− 2r,

as required. 2
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3 A Generalization

We first extend the definition of Bézout coefficients to general ordered pairs (m,n) ∈ Z × Z. The
following definition seems to yield the same output as the Matlab’s function [G,U, V ] = gcd(m,n)
[4] or Sage’s xgcd function [5]. We have tested this by writing a Sage script using the following
definitions for relatively prime (m,n) up to a reasonable size. In any case, our proof will be based
on the following definitions.

Definition 3.1. The Bézout coefficients β(a, b) for an ordered pair (a, b) ∈ Z × Z are defined as
follows:

3.1.1. For a > b > 0, β(a, b) = (r, s) with ra + sb = gcd(a, b) is given by the Euclidean algorithm
which is uniquely determined. One writes this as (a, b) 7→ (gcd(a, b), r, s).

This is extended to all ordered pairs by the following rules:

3.1.2. (0, a) 7→ (|a|, 0, sign(a)), where sign(a) is the sign of a, and by convention sign(0) = 0.

3.1.3. (±a, a) 7→ (|a|, 0, sign(a)).

3.1.4. If |a| ̸= |b| and β(|a|, |b|) = (r, s), then (a, b) 7→ (gcd(a, b), sign(a)r, sign(b)s).

3.1.5. If |a| ̸= |b| and (a, b) 7→ (gcd(a, b), r, s), then (b, a) 7→ (gcd(a, b), s, r).

We leave the readers to check that these formulas are consistent.

Theorem 3.2. Let A be a unimodular 2× 2 matrix, i.e. an integer matrix such that det(A) = ±1.
Consider the mappings

f

([
m
n

])
:= A

[
m
n

]
and

g

([
m
n

])
:= (A−1)T

[
m
n

]
for (m,n) ∈ Z × Z such that gcd(m,n) = 1. Then with only finitely many exceptions of relatively
prime ordered pairs (m,n), one has g(β(m,n)) = β(f(m,n)), where β maps an ordered pair
(m,n) ∈ Z× Z to its Bézout coefficients.

Proof. The idea of the proof is that if the group of unimodular 2 × 2 matrices, denoted GL2(Z),
is finitely generated, then we can decompose each element A in the group as a product of its
generators and their inverses (let S = {U1, U

−1
1 , · · · , Ur, U

−1
r } be a set of generators of GL2(Z) and

their inverses), say
A = VkVk−1 · · ·V1,

where each Vi ∈ S, i = 1, · · · , k. Since

(A−1)T = (V −1
k )T (V −1

k−1)
T · · · (V −1

1 )T ,

the proof of compatibility of Bézout coefficients of relatively prime ordered pairs under the transfor-
mation A is reduced to the simple case when A = Vi, where Vi is in the set of generators, and we
check the relation β(f(m,n)) = g(β(m,n)) for f defined by Vi and for g defined by (V −1

i )T . This is
because for a factorization A into the generators (so A is a series of compositions of the generator
functions), if compatibility holds at each step of the successive composition with a finite number
of exceptions, then it is easy to see that there will be only finitely many exceptions for the final

9
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composite function, which is A (we illustrate this in Example 3.3). Now we start to prove the result
for its generators.

It is well known [6] that GL2(Z) is generated by

U =

[
0 1
1 0

]
,S =

[
0 −1
1 0

]
and T =

[
1 1
0 1

]
.

It is easy to check that the sets of exceptional pairs for U,S and S−1 are all given by

{(−1,−1), (−1, 1), (1,−1), (1, 1)}.

To determine the exceptional set ET for T, we check first the following special cases (m,n) such
that

(m,n) ∈ {(0,±1), (±1, 0), (±1,±1), (±1,∓1)}

or

(m+ n, n) ∈ {(0,±1), (±1, 0), (±1,±1), (±1,∓1)}.

This gives exceptional ordered pairs (±1, 0), for which g(β(m,n)) ̸= β(f(m,n)).

For the remaining cases, we may assume that

(|m|, |n|), (|m+ n|, |n|) /∈ {(1, 0), (0, 1), (1, 1)}.

After excluding the special cases above, we use 3.14 and 3.15 to reduce the checking to the following
cases, noting that β(−m,−n) = −β(m,n) and β(−m− n,−n) = −β(m+ n, n).

Case: n > m > 0. Let[
m
n

]
=

[
0 1
1 0

]
A

[
1
0

]
,

[
m+ n

n

]
=

[
1 1
1 0

]
A

[
1
0

]
.

Then [
r′ s′

∗ ∗

]
= A−1

[
1 1
1 0

]−1

= A−1

[
0 1
1 0

] [
1 −1
0 1

]
=

[
r s
∗ ∗

] [
1 −1
0 1

]
=

[
r s− r
∗ ∗

]
,

where (r, s) = β(m,n) and (r′, s′) = β(m+ n, n).

Case: m > n > 0.

Let [
m
n

]
=

[
q1 1
1 0

]
A

[
1
0

]
.

Then [
r s
∗ ∗

]
= A−1

[
q1 1
1 0

]−1

,[
m+ n

n

]
=

[
q1 + 1 1

1 0

]
A

[
1
0

]
,

hence [
r′ s′

∗ ∗

]
= A−1

[
q1 + 1 1

1 0

]−1

10
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= A−1

[
q1 1
1 0

]−1 [
1 1
0 1

]−1

=

[
r s
∗ ∗

] [
1 −1
0 1

]
=

[
r s− r
∗ ∗

]
.

It follows that for both of the above cases,[
r′

s′

]
=

([
1 1
0 1

]−1
)T [

r
s

]
,

as required.

Case: m > 0, n < 0. Let n = −n′.

Subcase 1: m < n′.

Tracing the relations (here and in what follows, the notation ↔ means a one-to-one correspondence
that can be determined from Definition 3.1)[

m
n

]
↔
[

m
n′

]
↔
[

n′

m

]
and [

m+ n
n

]
↔
[

n′ −m
n′

]
↔
[

n′

n′ −m

]
,

it suffices to find the relation [
n′

m

]
↔
[

n′

n′ −m

]
.

When (n′,m) ̸= (2, 1) (i.e. when (m,n) ̸= (1,−2)), this can be determined by Lemma 2.5. Using
3.1.4, 3.1.5 and Lemma 2.5, we find the same relation between (r′, s′) and (r, s) as above. The
special cases (m,n) = (±1,∓2) are checked directly to be exceptional.

Subcase 2: m > n′.

Tracing the relations [
m
n

]
↔
[

m
n′

]
and [

m+ n
n

]
↔
[

m− n′

n′

]
,

it suffices to find the relation [
m
n′

]
↔
[

m− n′

n′

]
.

We have [
m
n′

]
=

[
q′1 + 1 1

1 0

]
A

[
1
0

]
and [

m− n′

n′

]
=

[
q′1 1
1 0

]
A

[
1
0

]
,

where q′1 = 0 if m < 2n′ and q′1 ≥ 1 if m ≥ 2n′. As a result, we find the same relation as above. In
summary, for the transformation T, the set ET of exceptional cases is given by

ET = {(−1, 0), (1, 0), (1,−2), (−1, 2)}.

11
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Similarly the exceptional set ET−1 is given by

ET−1 = {(−1,−2), (−1, 0), (1, 0), (1, 2)}.

This concludes the proof. 2

Example 3.3. The factorization of [
1 2
0 1

]
= T2

[
2 1
1 0

]
= T2U

and [
2 −1
1 0

]
= T2S

allows us to determine the exceptional set of these transformations. For example, using the proof

of the above theorem, let’s determine the exceptional set ET2S for the transformation

[
2 −1
1 0

]
,

which is described by the following process:

(m,n) → S(m,n) → T(S(m,n)) → T(TS(m,n))
(a) → (b) → (c) → (d)

,

where compatibility of Bézout coefficients can fail at (a) for ordered pairs in the exceptional set ES

of S, or at (b) for ordered pairs in the exceptional set ET of T, or at (c) for ordered pairs in the
exceptional set ET of T. Taking preimage of these exceptional sets to the beginning step (a), we
see that the compatibility of Bézout coefficients for T2S can only possibly fail for ordered pairs in
the set

ES ∪ S−1ET ∪ (TS)−1ET.

By direct checking, this turns out to be all the exceptional cases, i.e.

ET2S = {(−2,−3), (−2,−1), (−1,−1), (−1, 1), (0,−1), (0, 1), (1,−1), (1, 1), (2, 1), (2, 3)}.

Similarly, we get that

ET2 = {(−3, 2), (−1, 0), (−1, 2), (1,−2), (1, 0), (3,−2)}

and

ET2U = {(−2, 1), (−2, 3), (−1,−1), (−1, 1), (0,−1), (0, 1), (1,−1), (1, 1), (2,−3), (2,−1)}.
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