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Abstract 
 
The oscillations theory of neutral impulsive differential equations is gradually occupying a central place 
among the theories of oscillations of impulsive differential equations. This could be due to the fact that 
neutral impulsive differential equations plays fundamental and significant roles in the present drive to 
further develop information technology. Indeed, neutral differential equations appear in networks 
containing lossless transmission lines (as in high-speed computers where the lossless transmission lines 
are used to interconnect switching circuits).   In this paper, we study the behaviour of solutions of a certain 
class of second-order linear neutral differential equations with impulsive constant jumps.  This type of 
equation in practice is always known to have an unbounded non-oscillatory solution.  We, therefore, seek 
sufficient conditions for which all bounded solutions are oscillatory and provide an example to 
demonstrate the applicability of the abstract result. 
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1 Introduction and Statement of the Problem 
 
Consider the second order linear neutral impulsive differential equations of the form 
 

        

      

0

k k k k k 0 k

y t p y t q t y g t , t t , t S

y t p y t q y g t , t t , t S,



 

        
                               (1.1) 

 

where 0 1 k0 t t t       with 
k

k
lim t



,  

( i ) ( i ) ( i )
k k ky ( t ) y (t ) y ( t ), i 0,1    

 and 

k ky(t ), y(t ) 

 represent the left and right limits of y(t )  at kt t , respectively.  Except otherwise specified, 
throughout this discussion we shall assume the following conditions are satisfied without further mention: 
 

i)  
p R

, 0  , kq 0 , 

ii) 
 0q P C t , , R  , 

iii) 
 0g C t , , R  , 

iv) 
 

t
lim g t


 
. 

 
Since Sturm’s famous memoir in the 17th century, it is observed that a great deal of interest has been 
focused on the behaviour of solutions of ordinary and delay differential equations in spite of the existence of 
extensive literature in these fields [1,2,3-5,6]. Still more interesting, the theory of impulsive differential 
equations has brought in yet another dimension to the whole scenario and has helped to usher in a new body 
of knowledge for further considerations. The effects of these new inputs can be observed in the study of 
oscillatory properties of impulsive differential equations with deviating arguments as well as the 
investigation of neutral impulsive differential equations which have recently captured the attention of many 
applied mathematicians as well as other scientists around the world [7,8,9,10,11,12]. 
 
Neutral delay impulsive differential equations contain the derivative of the unknown function both with and 
without delays. Some new phenomena can appear, hence the theory of neutral delay impulsive differential 
equations is even more complicated than the theory of non-neutral delay impulsive equations. The 
oscillatory behavior of the solutions of neutral systems is of importance in both the theory and applications, 
such as the motion of radiating electrons, population growth, the spread of epidemics, in networks 
containing lossless transmission lines (see [1,13,14,15] and the references therein). 
 
The above definition in equation (1.1) becomes more meaningful if we define other related terms and 
concepts that will continue to be useful as we progress through the article. 
 
In ordinary differential equations, the solutions are continuously differentiable, sometimes at least once, 
whereas impulsive differential equations generally possess non-continuous solutions [16,17]. Since the 
continuity properties of the solutions play an important role in the analysis of the behaviour, the techniques 
used to handle the solutions of impulsive differential equations are fundamentally different, including the 
definitions of some of the basic terms. In this section, we examine some of these changes: 
 

Let an evolution process evolve in a period of time J  in an open set    nJ R  and let the function 
nf : R   be at the least a continuous mapping fulfilling local Lipchitzian condition in 

ny R , (t ,y )   
.  Let the real numerical sequence

 k k 1
S t J




 

 be increasing without finite 
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accumulation point such that 0 1 k0 t t t       with 
k

k
lim t



.  The points kt , k N  are called 

moments of impulse effect.   Then the governing second order impulsive differential equation is of the form 
  

k

k k k

y ( t ) f ( t ,y ,y ), t t

y (t ) f ( y,y ), t t ,

  


             
   

where 

dy
y

dt


, 

2

2

d y
y

dt


,  ( t ,y( t ))  ,  
( i )

ky (t )  ( i ) ( i )
k ky (t ) y (t )  , i 0,1  and k ky(t ), y(t ) 

 

represent the left and right limits of y(t )  at kt t , respectively.  For the sake of definiteness, we shall 

suppose that the functions y(t )  and y ( t )
 are continuous from the left at the points kt  such that 

k ky ( t ) y ( t )  , k ky( t ) y(t )  . 
 
For the description of the continuous change of such processes, ordinary differential equations are used, 
while the moments and the magnitude of the change by jumps are given by the jump conditions.  Now, in the 
case of unfixed moments of impulse effects, the impulse points may be time and state-dependent, that is, 

k kt t ( t ,y( t )) .  When the function kt  depends on the state of the system (1.1), then it is said to have 
impulses at variable times.  This is reflected in the fact that different solutions will tend to undergo impulses 
at different times. 
 
In this paper, we shall restrict ourselves to the investigation of conditions for bounded oscillatory solutions 

of impulsive differential equations for which the impulse effects take place at fixed moments of time k{ t } .  

Our equation under consideration is of the form in equation (1.1), where kt , t 0, k N  . Without further 

mentioning, we will assume throughout this paper that every solution y(t ) of equation (1.1) that is under 

consideration here, is continuous from the left and is nontrivial. That is, y(t )  is defined on some half-line 

y[T , )
 and 

 sup y( t ) : t T 0 
 for all yT T

.  Such a solution is called a regular solution and we are 

only interested in the behaviour of the regular solutions y(t )  of equation (1.1) and assume that the equation 
under consideration possesses such solutions. 
 

We say that a real valued function y(t )  defined on an interval [ a, ) fulfills some property finally if there 

exists T a  such that y(t )  has this property on the interval [T, ) . 
 
 

Definition 1.1:   The solution y(t )  of the impulsive differential equation (1.1) is said to be 
 

i) Finally positive (finally negative)  if there exist T 0  such that y(t )  is defined and is strictly 

positive (negative)  for t T  [8]; 
ii) Non-oscillatory, if it is either finally positive or finally negative; and 
iii) Oscillatory, if it is neither finally positive nor finally negative [7,9]. 

 
Remark 1.1: All functional inequalities considered in this paper are assumed to hold finally, that is they are 

satisfied for all t  large enough. 
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Definition 1.2: We say that a real-valued function y( t )  is the solution of equation (1.1) if there exists a 

number 0t R  such that 0y( t ) PC([t , ),R )   , the function y( t ) p( t )y( t )   is twice continuously 

differentiable for 0 kt t , t t , k N     and y( t )  satisfies equation (1.1) for all 0t t   . 
 
The second order neutral impulsive differential equation (1.1) is a system consisting of a differential 
equation together with an impulsive condition in which the second order derivative of the unknown function 
appears in the equation both with and without delay.  Second order neutral impulsive differential equations 
have numerous applications to problems arising in mechanics, electrical engineering, medicine, biology, 
ecology, etc, and in mathematical and theoretical physics. Its application also appears, for instance, in 
problems dealing with vibrating masses attached to an elastic. They also appear, as the Euler equation, in 
some vibrational problems [7,1].  This work is inspired by the fact that not much has been done in the area of 
qualitative behaviour of the solutions of second-order neutral delay impulsive differential equations. In 
general, equation (1.1) always has an unbounded non-oscillatory solution. Our aim in this study is to 
establish sufficient conditions for which all bounded solutions of equation (1.1) are oscillatory. 
 
Remark 1.2: Without loss of generality, we will deal only with the positive solutions of equation (1.1). 
 

2 Main Results 
 
The following theorem is an extension of Theorem 4.6.3 found on page 258, being its neutral delay version 
as identified in the work by Erbe et al.  [6]. 
 
Theorem 2.1:   Assume that 
 

i) kp 1, q 0 and 0;    

ii) 
 g t t

 and g is non-decreasing for  0t t ; 
iii) Either 

 

 
0 k0

k k

t tt

t q t dt t q



 

 
                      (2.1) 

 
or 
 

 




 

 
  
 
  

k

k

k k
t ,t

t tt

lim t q s ds t q .

                               (2.2) 
 
Then every bounded solution of equation (1.1) is oscillatory. 
 

Proof:   Let us assume, by contradiction, that y(t )  is a bounded finally positive solution of equation (1.1). 
Define 
 

     z t y t p y t   
.                       (2.3) 

 
Then equation (1.1) becomes 
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  k k k k

z (t ) q t y g t , t S

z ( t ) q y g t , t S.

   


                  (2.4) 
 

Since 
g(t )

 is a non-decreasing function, we have that 
 

    
  

    


    k k k k

z (t ) q t y g t 0, t S

z (t ) q y g t 0, t S,
    

     

which implies that 
z ( t )

 is a non-decreasing function of t .  From the above observation, it follows that 
either 
 

 
 

t t
lim z(t ) lim z (t )

                (2.5) 
 
or 
 

 t
lim z (t )


  
                (2.6) 

 

We clearly see that condition (2.5) implies 
z (t ) 0 

 and 
z( t ) 0

 finally.  Now, we assume that condition 

(2.6) holds.  Integrating both sides of equation (2.4) from 0t  to t , and letting t , we obtain  
 

0

k k 0

t

q(s )y(g(s ))ds q y(g(t )) z ( t )



   

. 
 
Hence,  
 

 k 00

k

t tt

q(s )y(g(s ))ds , z ( t ) ,





  
 

 

which implies that 1 0y( t ) L [ t , ) 
 and so, from equation (2.3),  1 0z(t ) L [ t , ) 

where 1 0L [ t , )
 is the 

space of all Lebesgue integrable functions on the interval 0[ t , )
.  This follows that  

 

 t t
lim z(t ) lim z (t ) 0
 

 
,                (2.7) 

 

and therefore .  Finally, by equations (2.7) and (2.6) with  and the non-increasing nature of  
z ( t )

, we have that z (t ) 0   and  z( t ) 0  finally. 
 

Here we see that there are two possibilities for z(t ) : 
 

a) 
         k kz t , z t 0, z t , z t 0, z t 0     

  for  k 1 0t,t t t  ; 

0 0



 
 
 

Abasiekwere et al.; JAMCS, 31(4): 1-9, 2019; Article no.JAMCS.36391 
 
 
 

6 
 
 

b) 
         k kz t , t t 0, z t , z t 0, z t 0     

  for  k 1 0t ,t t t  . 
 

In case (a), there exists a finite number 0   such that  
 

 
t
lim z t 



. 

 

Thus, there exists 2 1t t  such that 
  2z t , t t ,

2
    

   that is, 
    2y t y t , t t

2
      

, 

where 2t  is a sufficiently large number. Using equation (2.3) and the fact that p 1 , we have 

  2y t , t t .
2
  

  Since t
lim g(t )



, then there exists 3 2t t  such that  2g( t ) t    for 3 2t t t  .  

Thus, we have 
 

   3y g t , t t
2
 

                 (2.8) 
 
Combining equations (2.8) and (2.4), we have 
 

   

 

3

k k k 3 k

z t q t , t t , t S
2

z t q , t t , t S.
2





    


     
                            (2.9) 

 
In case (b), we have 
 

    1y t y t , t t .  
 

 

Then there exists L 0  such that  
 

  1y t L, t t . 
                   (2.10) 

 
Substituting equation (2.10) into equation (2.4), we have 
 

   
 

3

k k k 3 k

z t Lq t , t t , t S

z t Lq , t t , t S.

   


                                      (2.11) 
 
Therefore, in both cases, we are led to the same inequality (2.11).  According to the discussion above, there 

always exists positive constants 0L  and 
*

1T t
 such that   

 

   

 

*
0

*
k 0 k k k

z t L q t , t T , t S

z t L q , t T , t S.

    


                     (2.12) 
 

Integrating inequality (2.12) from t  to T ,  we have 
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k

T

*
0 k k

t t Tt

z T z t L q s ds q , T t , t T .

 
 
Hence,  

 

   
 

 
     
 
  


k

T

*
0 k k

t t Tt

z t L q s ds q , T t, t T ,

 
 
which implies that 
 

 
0 k0

k

t tt

q s ds q ,



 

 
 

 
and so 
 

   



 

 
   
 
  


k

0 k

t tt

z t L q s q .

                             (2.13) 
 

Integrating inequality (2.13) from t  to T for 
*T t T   and letting T , we obtain 

 

     



   

 
   
 
  

 
k k

T

0 k

t t T s tt s

z t z T L q u duds q

 

           



   

 
          
 
  

  
k k

T

0 k k k k 2

t t T T tt T

z T L u q u du T t q u du t q (T t )t q , t,t tt ,

 
 

which leads to a contradiction to the boundedness of z(t )  in either of the cases in equation (2.1) or (2.2).  
This completes the proof of Theorem 2.1. 
 
Example 2.1:   Consider the equation 
 

     

     k k k
k

2y t y t 2 y t
t

2y t y t 2 y t .
t

 


  


       
 
                                 (2.14) 

 
It is easy to see that all the assumptions of Theorem 2.1 are satisfied.  Therefore, every bounded solution of 
equation (2.14) is oscillatory.  Equation (2.1) may have unbounded oscillatory solutions.  For example, 

equation (2.14) has y(t ) t sin t  as such a solution. 
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3 Conclusion 
 
In this paper, we are mainly concerned with oscillating systems which remain oscillating after being 
perturbed by instantaneous changes of state or impulsive constant jumps. We considered a certain type of 
second-order neutral delay differential system and provided sufficient conditions governing the impulse 
operators acting on the system so that its bounded solutions are oscillatory.  Roughly speaking, by the proper 
imposition of impulses in Theorem 2.1, the oscillatory properties of the solutions of the neutral differential 
equation referred to in Theorem 4.6.3 of [6] have been preserved.  Here, we are able to demonstrate how 
well-known mathematical techniques and methods, after suitable modification, is extended in proving an 
oscillatory theorem for a class of second-order neutral impulsive differential equations (1.1).  The salient 
techniques for the proof were obtained from studies by Bainov and Simeonov [7]. 
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