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Abstract
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1 Introduction
In this paper, we consider the family of differential-reflection operators on the real line

A (x) (f(x) — f(==)
2

) — epf(~a), 1)

where A is a so-called Che’bli function on R, p > 0 is the index of A, and —1 < ¢ < 1. Some of
our results still hold for arbitrary ¢ € R. However, for simplicity, we will restrict ourselves to the
interval [—1,1]. The function A and the real number ¢ are the deformation parameters giving back
three well known cases when:

-Dunkl’s operators when A(z) = Ay (z) =| = |**™! and ¢ arbitrary.
-Heckman’s operators when A(x) = Aq g(x) =| sinha |**** (coshx)**T* and ¢ = 0.
-Cherednik’s operators when A(z) = Aq 5(z) =| sinhz |**T! (coshz)*’*! and e = 1.

Ben said [1] has proved that there exists a unique automorphism of the space £(R) of C*° functions
on R, satisfying

Vi o %f —AucoVaof and  Vaof(0) = £(0), 2)
for all f € E(R).

A summary of this harmonic analysis is provided in Sec. 2. Through this paper, the classical
theory of mean-periodic functions on R is extended to the differential-reflection operator A4 .. More
explicitly, a function f in E(R) is called A4 .-mean-periodic if there exists a non zero compactly
supported distribution p on R, such that

u#f(x) =0, forallz e R,

# being the generalized convolution generated by the differential-reflection operator A4 .. By using
the intertwining operator Va . and the results of Schwartz in the classical setting [2], we express in
Sec. 3 the Aa .-mean-periodic function f in terms the elementary functions

Dy (x) =Va,e (yle”‘y) (z).
Namely, f may be expanded formally as

flx) = Z Z ex,sPas(z), cns €C,

(M) 0<s<i—1

the summation being extended over the distinct roots A of Fa .(u) counted with multiplicities I,
where Fa.(u) stands for the generalized Fourier transform of p defined by

Fae(w)A) = (py, Pac(=Ay)), AeC

Starting from the distribution u, we construct in Sec. 4 a biorthogonal system which shows that
the coefficients cy s in the series above are uniquely determined by f. In Sec. 5, we show that the
series above is actually convergent to f in the topology of £(R), after a certain Abel summation
procedure is performed. Moreover, we introduce a class of distributions p for which the Abelian
summation process can be dispensed.

In the classical setting, the notion of mean-periodicity was first introduced by Delsarte [3], and
then analyzed in depth by Schwartz [1], Kahane [4], Berenstein and Taylor [5]. Later, Trimeche
[6] extended the theory of mean-periodic functions to a class of singular second-order differential
operator on the half-line . It is pointed out that all the results obtained in theory of mean-periodic
function emerge as easy consequences of those stated in the present article.
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2 Preliminaries

In this section we provide some facts about harmonic analysis related to the differential-difference
operator Aa .. We cite here, as briefly as possible, only those properties actually required for the
discussion. For more details we refer to [1].

Notation. We denote by

— E(R) the space of C*° functions on R, endowed with the topology of compact convergence
for all derivatives;

— SI(R) the space of distributions on R with compact support;

— Do(R), a > 0, the space of C*° functions on R supported in [—a,a], equipped with the
topology induced by E(R);

— D(R) = Ua>0Da(R) endowed with the inductive limit topology;

—PW,(C), be the space of entire functions h on C wich are of exponential type and rapidly
decreasing
Ja > 0,Vt € N,sup(1 + [A])'e "™ | h(N) |< o0
Aec

Remark 2.1. Clearly Aa, is a bounded linear operator from E(R) into itself. If u € £'(R) and
n €N, define A . € E'(R) by
<A2,5M7 f) = (_1)n <.U'7 Z,ef>7 f S E(R)

2.1 Intertwining operators

Throughout this paper we will denote by A a function on R satisfying the following;:

eA(z) =| z |**™! B(z), where a > —1 and B is any even, positive and smooth function on R with
B(0) =1.
e A is increasing and unbounded on R.

0‘%/ is a decreasing and smooth function on R%, and hence the limit 2p := lim,— 4o i/((f)) >0
exists.
e There exists a constant 6 > 0 such that for all « € [zo, 00) for somexq > 0,

2p+ e P"D(x) if p>0,

A(z) 2+ 1
x
with D being a smooth function bounded together with its derivatives.

e P"D(z)if p=0,

Such a function A is called a Chebli function.

Let A, be the following second order differential operator
A f(z) = —(p* + p°) f(x) withf(0) = 1 andf'(0) = 0. (3)

The system 3 admits a unique solution ¢,. The following Laplace type representation of ¢, can be
found in [7].

For every x € R* there exists a probability measure v, on R supported in [— |  |,|  |] such that
for all u € C.

|| )
oulx) = / @
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Also, for z € R, there is a non-negative even continuous function K (| z |,.) supported in [— | z |, |
z |] such that for all u € C

||
pu(z) = K(| x |,t)cos(ut)dt.

it

let A € C and consider the initial data problem
Aacu =i, with u(0) =1, (4)

let A € C. There exists a unique solution ¥4 .(A,.) to the problem (4). Further, for every z € R,
the function A — W4 (A, ) is analytic on C. More explicitly:

(i) For i\ # ep,
1 d

Vac(A ) = puc(z) + N cpdztre (x) with p2 1= \* + (% — 1)0”. (5)
We may rewrite the solution (5) as
||
) sgn(x

) = g (0) + (0420 5 [T, awa. ©

() Jo

(ii) For i\ = e,

sgn(z) (1!
Uao(\z) =1+ 20 / A(t)dt. 7
(.2) G [ a ™
For every x € R”, there is a non-negative continuous function K.(z,.) supported in [— | z |,| z |]

such that for all A € C,
Varha) = [ Koo (8)
lyl<|z|

For f € £(R) we define V4 . f by

Vacf@) = [ Ke(w)f@dyfora £ 0, and Va,.f(0) = f(0)

lyl<|z|
Observe that

ae(02) = Vae(e™)(@). 9)
Theorem 2.1. [I] The operator Va . is the unique automorphism of E(R) such that
d
AA,E o VA,E = VA,E o % (10)

where Aa o is the family of differential-reflection operator.

Below we will deal with the dual operator tVA,e of V4, in the sense that

/ Ve f(2)g(x) Az)dz = / F@)'Va cg(y)dy
R R

This can be written
Viacgly) = / Koy
y|<|lz

Theorem 2.2. The integral transform 'V, is a topological automorphism of D(R) satisfying the
intertwining relation
d
diy tVA,Ef == tVA,E(AA,E + 26495)7 f S D(R)7
where S denotes the symmetry (Sf)(z) := f(—x).

For more details you can see [1].
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2.2 Generalized fourier transform

The generalized Fourier transform of a distribution u € €’(R) is defined by
Fae()A) = (1, @ac(=A,)), AreC
Assume that —1 < e < 1. For f € D(R) The generalized Fourier transform is defined by

Fae(f)(N) :/f($)‘I/A,5()\,*$)A(ZE)d$, AeC.

R
Recall the following identities :

Faelp) =Fu("Vaen), nef (R), (11)

Faelf)=Fu("Vacf), feDR),

FacAacw)N) = iAFac()(), pe& (R),
Fae(Aae+2e0S)(N) =iAFa(f)(N), [ e€DR),

Fu being the usual Fourier transform on R given by

aww:/fmmmxuemm

R

An outstanding result about the generalized Fourier transform Fa . is as follows.

Theorem 2.3. (Paley- Wiener)

(i) The generalized Fourier transform Fa . is a bijection from g (R) onto PW(C). More precisely,
w has its support in [—a, a] if, and only if, Fa.(u) € Ha.

(i) The generalized Fourier transform Fa, is a topological isomorphism from D(R) onto PW (C).
More precisely, f € Da(R) if, and only if, Fa,c(f) € PW,(C).

2.3 Generalized convolution
The generalized translation operators T, x € R, tied to A4 . are defined on E(R) by
Tf(y) = VaeaVaey [Vacflz+9)], yeR.

The T, = € R, are linear bounded operator from £(R) into itself, and possess the following
fundamental properties:

T° =identity, T*TY =TYT", T f(y) =T"f(z),
A T* =T Aae and (TP ) Ny) =TYa\2)Pa(Ny).
The generalized convolution product of two distributions u,v € & (R), is the distribution pu#v €
SI(R) given by
(n#v, f) = (pa, (v, T f(y))) ;. f € ER).
The generalized convolution of u € 5'(]R) and f € £(R), is the function p#f € E(R) given by
p#f(@) = (uy, T (y)), z€R,

with f7(y) = f(—vy).
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Proposition 2.1. (i) Let u,v € £ (R) and f € D(R). Then
Fae(p#v) = Fae(p)Fae(v), (12)
Fae(u#f) = Fae(p)Fae(f) (13)
(ii) For p,v € £ (R) and f € E(R) we have
pat (vt f) = (patv)#f.
(iii) If v € E (R) and f € E(R) then
Vae ("Vaeps f) = p#Vaef, (14)

Vae(p#v) = "Vaep « "Vaev,

where x denotes the classical convolution on R.

3 Aj.-mean-periodic Functions

According to Schwartz [2], a function f in £(R) is called mean-periodic relatively to a distribution
W in 5,(R), if it is a solution of the convolution equation

p* f(x) =0, forallzeR.

In this section we extend the notion of mean-periodicity to the differential-difference operator A,
by replacing in the equation above the ordinary convolution * by the generalized convolution #.

Definition 3.1. We say that a function f € E(R) is Aa,.-mean-periodic, if there exists 0 # p €
5/(R) such that
uF#f(x) =0, forallz eR.

If we want to emphasize the equation satisfied by f we will say that f is mean-periodic with respect
to u or p-Aa,c-mean-periodic.

Notation. For f € £(R), write 7(f) for the closure of the subspace of £(R) spanned by T~*f~, = €
R.

Remark 3.1. (i) Notice that
p#f =0 p=0on7(f) & pe(r(f)”
(i) According to the Hahn-Banach theorem, Definition 3.1 is equivalent to 7(f) # E(R).
Examples. (i) Let a be a nonzero real number. Each function f € £(R) satisfying
T %f (a) = f(z), forallzeR,

is A a,.-mean-periodic with respect to p = §, — do, where J, denotes the Dirac measure at the point
a.
(ii) By virtue of (6) and Theorem 2.2, every 0 # f € D(R) is not A4 .-mean-periodic.

Proposition 3.1. For A€ C, x € R andl € N, put
dai(z) =2'e™ and @y y(z) = Vac(dai)(x) (15)
Then
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(i) @) = ()} D Wac(h ).
(i) For all p € g (R), we have

(Fae (1) V) = (=)' (1, @), (16)

O ( Z( )<I>A,z-s(m)(fz‘)5(ﬂ(u))“> ). (17)

s=

(#i) The function x — ®x,(x) is Aa,-mean-periodic.
Proof. Assertion (i) :

Pri(x) = Vae(dri(®))

f\y\<|z| Ke(x,y)px1(y)dy
- ﬁy\<|x|KE(xvy)(yl€ZAy)dy

Lo
- f‘y\<|z| Ka(%y)(—z)lﬁ(e Ay)dy

o
= fly|<\oc (z y)a)\l( )‘y)dy’
using Leibniz Rule we get,
! al IAY
@X,Z(JJ) = ( ) 8)\ ( Kg(x,y)e dy)
lyl<|]

(L)

Formula (16) follows also by using differentiation under the integral sign. Let us check (17). By
(15) and (14),
p#®rL = Vae ("Vaep* oaz) - (18)

But an easy computation shows that

vron@) =3 (L) onmr@0 ) ),

for all v € EI(R). So

l
Vaaepx daa Z ( > Dri—s(@)(=4)° (Fae () V), (19)
by virtue of (11). Identity (17) follows now by combining (15), (18) and (19). Finally, to have

u#Px; = 0, it is sufficient in view of (17), to choose 0 # p € g (R) such that X is a zero of order
at least [ of Fa,-(p). This completes the proof. |

Proposition 3.2. Let f € E(R) be Aa,-mean-periodic. Then ®x; € 7(f) if and only if, for all
p € (7(F))*, we have
(Fae(m)® (=3 =0.
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Proof. The result follows by using (16) and the Hahn-Banach theorem. o

Definition 3.2. We call spectrum of a Aa..-mean-periodic function f € E(R), denoted by sp(f),
the set of pairs (A1), A € C, I € N, such that the functions ®,s belong to 7(f) for 0 < s <1—-1
and not for s = 1.

Remark 3.2. According to Proposition 3.2, (A1) € sp(f) if and only if, —X is a common zero of
order | of the generalized Fourier transforms of elements of (7(f))*.

The next statement clarifies the relationship between A4 .-mean-periodic functions and classical
mean-periodic functions.

Proposition 3.3. A function f € E(R) is Aa,-mean-periodic with respect to a distribution p €
E'(R) if, and only if, V;;f is a classical mean-periodic function with respect to *Va .

Proof. The result is a direct consequence of (14). i

From the work of Schwartz [2] and the proposition above, we deduce the following characterization
of A-mean-periodic functions.

Theorem 3.1. Let f € E(R) be Aa,.-mean-periodic. Then f can be approzimated in the topology
of E(R) by finite linear combinations of functions of the type ®x 1, (A1) € sp(f).

4 Biorthogonal System

Notation. Throughout this section fix 0 # u € 5/(R). Put
Zae(p) ={(Ak, k), k € NI €N},

where Ay is a zero of order I of the entire function Fa (u).

Starting from the distribution u, we construct in this section a biorthogonal system in S,(]R)7 that
is, a family of distributions g m € g (R), satisfying
(Kke,my @, 5) = Ok,s O s (20)

for0 <m <lp—1and 0 <j<Il,—1. Given a p-Aa .-mean-periodic function f € £(R), formula
(20) will allow us to compute the coefficients ci,; in a possible development of f with respect to
the functions ®y, i, k € N, 0 <1 < —1. We adopt here the arguments used by Delsarte [3] and
Schwartz [2].

Notation. For f € £(R), put
L(H@ = [ fOCd zer
0

Lemma 4.1. Let f € E(R). Then

(i) The general solution of the equation

d . \™
(%_Z)\k) g_.f7

l times

is given by
le—1

——
9(x) =Y Bsdrns(@) + Tuo---o L (f)(w), Bs€C.
s=0
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(i) The general solution of the equation
(Aae—ide)* g =f, (21)

is given by

l—1 l times

—_—N— 1
g(@) =D Ba®x, (@) + Vaco Ixo oLy oVi(f)(@), B:€C.
s=0
Proof. Assertion (i) is easily checked. By virtue of (10), equation (21) is equivalent to
LN " (Valg) =Vailf
dx k A9 Ael-
Assertion (ii) follows then from (i). |

Lemma 4.2. There is a unique distribution p— € SI(R) such that
Fae(p—)A) =Fae(p)(—=A), forall XeC.
Moreover, if suppu C [—a,a], then supp (u—) C [—a,a].

Proof. The result follows readily from Theorem 2.2(i). m

Remark 4.1. Define p~ € 5,(R) by
[ 1@ @ = [ s, fee®),

Then according to (6) and Theorem 2.2(i), u— = p~ if and only if p = 0.

Notation. If G is a meromorphic function, having v as a pole, we denote by [G()\)], the singular
part of G(X) in a neighborhood of -y, hence G(X) — [G())] is holomorphic in a neighborhood of .

Lemma 4.3. (i) The distribution qi € 5/(R) defined by

Faelae)(A) = A+ )™ {m} A

has a support concentrated at the origin.

(i) The distribution uk,o € 5,(R) defined by

Fac) (=N |5ty L AN

Fae(pr,0)(X) = (22)

1 if)\Z—)\k,

satisfies
Ly times

(b0, f) = (—i)'* <Qk#u, Vaeo Tyo---oly ovA,i<f)> :

for all f € E(R).
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Proof. (i) As the function (A + \z)% [1/Fae(u)(=A)]_,, is a polynomial Px(A), it follows by
(11) that *Va,.qx = Px(d/dx)(d0). Then using Theorem 2.1(i), we deuce that gy has a support
concentrated at the origin.

(ii) As
A+ A0)"™ Fae (1,0)(A) = Fae (1) A Fae (1) (=),
it follows from (12) that
(=)™ (Aae +ixe)'* piro = qu#tp—.
So for all g in E(R),

(an#tp, g) = (=)' <(AA,5 + i/\k)l’“uk,o,g> =it <Nk,07 (Aae— i)\k)lk9> :
The result is now a direct consequence of (16) and Lemma 4.1(ii). O

Remark 4.2. If the zeros A\, of Fa(p) are simple, then

1 —1
{H,s(u)(—/\)} e O Fac ) ()
that 1is,
B Fac() ()
and

(w0, f) = T3 (e VaeeTko Vac())

i
(Fa.e(m)'(

for all f € E(R).

Proposition 4.1. Define pgm € SI(R), 0<m<l,—1, by

—-1)™ . m
Pkym = ( m3 (Aae +i2)™ tr,0 + Theym Fp—, (23)

where
— Hko € El(R) is defined in Lemma 4.3.
— Th,m € 5/(R) with support concentrated at the origin, whose the generalized Fourier transform
is given by .
Faclrem)) = 0% Ry ) (24)

with
()\ -+ )\k)m

Rim(N) = [JWM]M — (A" [m] Y

Then the family (pr,m) satisfies (20).

Proof. Notice that Ry, ()) is a polynomial, so the support of 74, is concentrated at the origin.
A combination of (22), (23) and (24) yields

(=)™

(A 2™ }
Fa,e(pr,m)(A) = Fae(p)(—A {7 . 25
According to (16) and (25), (tk,m, Px.,;) = 0 for s # k. A straightforward calculation shows that

Fae(ppr,m)N) = (=)™ (Atni)\'k)m +0 (()\ + )\k)lkJrl) ’

in a neighborhood of —Ax. We conclude, in view of (16), that (tkm,®Px,, ;) = 0 for j # m, and
(tk,m> ®Px,,m) = 1. This achieves the proof. O

10
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Corollary 4.1. Let f € E(R). Assume that there are disjoint finite subsets Z; (groupings) such
that Za,c(p) = U7 25 and

i Z Z it P (26)

3=1 \ (Ap,lp)€Z; 0<I<l,—1

is convergent in E(R) to f, with a suitable mode of convergence. Then f is p-Aa .-mean-periodic
and the coefficients ck,; can be computed by the formula

ki = (tk,ts [) - (27)
Proof. The function f is p-A 4 ,.-mean-periodic because that is true for each term in (26). Identity
(27) follows immediately from Proposition 4.1. |

5 Series Expansion with Respect to the Functions @), ;,

Like in the classical setting, the series (26) is not actually convergent in £(R), without a certain
abelian summation procedure is performed :

Theorem 5.1. Let f € E(R) be Aa,.-mean-periodic with respect to p € E'(R). Then there are
disjoint finite subsets Z; (groupings) such that Za..(p) =" Z; and for every € > 0 the series

o0
—e| A
E E E ki Prg e Xl

J=1 \ (Ak,lk)€Z; 0<I<l—1
converges in E(R) to a function f- satisfying :
El_lglofs :fa mn S(R)
The coefficients ci, being determined by (27).

Proof. By Proposition 3.3, V ; f is a classical mean-periodic function with respect to the distribution
“Va,ept. So using (11) and the results of Schwartz [2], we can find:

— finite subsets Z; such that Z4.(p) = 7" Z;
— a sequence of complex numbers ¢
such that for every € > 0 the series
ol X X aadnae ™
J=1 \(Ag,lg)EZ; 0<I<lEp—1
converges in £(R) to a function f. satisfying :
lim f. =V ~'f, in&(R).
e—0
As the intertwining operator V4 . is an automorphism of £(R), it follows by (11) that
Vae(fe) = Z Z Z Cre,l Pyl el
J=1 \(Ag,lp)€EZ; 0<I<Ip—1

and
lim Va.(f:) = f,
e—0

11



Rebhi; JAMCS, 27(8): 1-18, 2018; Article no.JAMCS.38207

where both the series and the limit are meaningful in the topology of £(R). Finally, we deduce from
Corollary 4.1 that
Ck,l = Ck,l, 0<I<Il—1, keN.

This ends the proof. O

Following Ehrenpreis [8], we introduce a class of distributions for which the Abel summation process
is not necessary.

Definition 5.1. A distribution p € SI(R) is called Aa c-slowly-decreasing, if there are positive
constants ¢, d such that for any z € R,

max {|Fa- ()W), y €R, |z —y| < dlog (1+]a|*)} > c(1+ |z)~°.
Using the results of [8] and Proposition 3.3, it is not hard to establish the following theorem.

Theorem 5.2. Let f € E(R) be Aa,.-mean-periodic with respect to a A-slowly-decreasing distribution
€ E'(R). Then there exist finite groupings Z; of Za (1) such that the series

oo

Z Z Z it Py (28)

J=1 \(\g,lg)€Z; 0<I<lp—1

converges to f in E(R). The coefficients ci, being determined by (27).

The next statement characterizes the A-slowly-decreasing distributions p € £'(R) for which every
grouping Z; in (28) can be taken to contain a single point of Za (u).

Theorem 5.3. Let f € E(R) be Aa,.-mean-periodic with respect to a A-slowly-decreasing distribution
w € E'(R). A necessary and sufficient condition that the series (28) converges to f in E(R) without
groupings (i.e., card(Z;) = 1 for all j) is that for some ¢, d > 0 we have

d' exp(— c|Zm|)
—Fae M| >d ————2
| ¢ SR
for all (X\,1) € Zac(p).
Proof. The result follows easily by combining the results of [5] and Proposition 3.3. O

Competing Interests

Author has declared that no competing interests exist.

References
[1] Salem ben Said, Mohamed Sifi. Intertwining operators associated to a family of differential-
reflection operators. Mediterr. J. Math. 2016;788-790.

[2] Schwartz L. Théorie générale des fonctions moyenne-périodiques. Ann. of Math. 1947;48:857-
929.

[3] Delsarte J. Les fonctions moyenne-periodiques. J. Math. Pures et Appl. 1935;14:403-453.

[4] Kahane JP. Lectures on mean periodic functions. Tata Institute of Fundamental Research,
Bombay; 1975.

[5] Berenstein CA, Taylor BA. A new look at interpolation theory for entire functions of one
variable. Adv. Math. 1979;33:109-143.

12



Rebhi; JAMCS, 27(8): 1-18, 2018; Article no.JAMCS.38207

[6] Trimeche K. Fonctions moyennne-periodiques associées a un opérateur differential singulier sur
(0, 00) et developpement en serie de Fourier generalisée. J. Math. Pures et Appl. 1986;65:1-46.

[7] Chébli H. Théoréme de Paley-Wiener associée a un opérateur différentiel singulier sur (0, co).
J. Math. Pures Appl. 1979;58(1):1-19.

[8] Ehrenpreis L. Solutions of some problems of division IV. Amer. J. of Math. 1960;82:522-588.

©2018 Rebhi; This is an Open Access article distributed wunder the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)

hitp: //www.sciencedomain.org/review-history /24670

13


http://creativecommons.org/licenses/by/4.0

	Introduction
	 Preliminaries
	Intertwining operators
	Generalized fourier transform 
	 Generalized convolution 

	A, -mean-periodic Functions 
	Biorthogonal System 
	Series Expansion with Respect to the Functions k,lk 

