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1 Introduction

In this paper, we consider the family of differential-reflection operators on the real line

Λf(x) = f ′(x) +
A

′
(x)

A(x)

(
f(x)− f(−x)

2

)
− ερf(−x), (1)

where A is a so-called Che’bli function on R, ρ ≥ 0 is the index of A, and −1 ≤ ε ≤ 1. Some of
our results still hold for arbitrary ε ∈ R. However, for simplicity, we will restrict ourselves to the
interval [−1, 1]. The function A and the real number ε are the deformation parameters giving back
three well known cases when:

-Dunkl’s operators when A(x) = Aα(x) =| x |2α+1 and ε arbitrary.
-Heckman’s operators when A(x) = Aα,β(x) =| sinhx |2α+1 (coshx)2β+1 and ε = 0.
-Cherednik’s operators when A(x) = Aα,β(x) =| sinhx |2α+1 (coshx)2β+1 and ε = 1.

Ben said [1] has proved that there exists a unique automorphism of the space E(R) of C∞ functions
on R, satisfying

VA,ε ◦
d

dx
f = ΛA,ε ◦ VA,εf and VA,εf(0) = f(0), (2)

for all f ∈ E(R).

A summary of this harmonic analysis is provided in Sec. 2. Through this paper, the classical
theory of mean-periodic functions on R is extended to the differential-reflection operator ΛA,ε. More
explicitly, a function f in E(R) is called ΛA,ε-mean-periodic if there exists a non zero compactly
supported distribution µ on R, such that

µ#f(x) = 0, for all x ∈ R,

# being the generalized convolution generated by the differential-reflection operator ΛA,ε. By using
the intertwining operator VA,ε and the results of Schwartz in the classical setting [2], we express in
Sec. 3 the ΛA,ε-mean-periodic function f in terms the elementary functions

Φλ,l(x) = VA,ε

(
yleiλy

)
(x).

Namely, f may be expanded formally as

f(x) =
∑
(λ,l)

∑
0≤s≤l−1

cλ,sΦλ,s(x), cλ,s ∈ C,

the summation being extended over the distinct roots λ of FA,ε(µ) counted with multiplicities l,
where FA,ε(µ) stands for the generalized Fourier transform of µ defined by

FA,ε(µ)(λ) = ⟨µy,ΦA,ε(−λ, y)⟩ , λ ∈ C.

Starting from the distribution µ, we construct in Sec. 4 a biorthogonal system which shows that
the coefficients cλ,s in the series above are uniquely determined by f . In Sec. 5, we show that the
series above is actually convergent to f in the topology of E(R), after a certain Abel summation
procedure is performed. Moreover, we introduce a class of distributions µ for which the Abelian
summation process can be dispensed.

In the classical setting, the notion of mean-periodicity was first introduced by Delsarte [3], and
then analyzed in depth by Schwartz [1], Kahane [4], Berenstein and Taylor [5]. Later, Trimeche
[6] extended the theory of mean-periodic functions to a class of singular second-order differential
operator on the half-line . It is pointed out that all the results obtained in theory of mean-periodic
function emerge as easy consequences of those stated in the present article.
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2 Preliminaries

In this section we provide some facts about harmonic analysis related to the differential-difference
operator ΛA,ε. We cite here, as briefly as possible, only those properties actually required for the
discussion. For more details we refer to [1].

Notation. We denote by

− E(R) the space of C∞ functions on R, endowed with the topology of compact convergence
for all derivatives;

− E
′
(R) the space of distributions on R with compact support;

− Da(R), a > 0, the space of C∞ functions on R supported in [−a, a], equipped with the
topology induced by E(R);

− D(R) = ∪a>0Da(R) endowed with the inductive limit topology;

−PWa(C), be the space of entire functions h on C wich are of exponential type and rapidly
decreasing

∃a > 0,∀t ∈ N, sup
λ∈C

(1 + |λ|)te−a|Imλ| | h(λ) |< ∞

Remark 2.1. Clearly ΛA,ε is a bounded linear operator from E(R) into itself. If µ ∈ E ′(R) and
n ∈ N, define Λn

A,εµ ∈ E ′(R) by

⟨Λn
A,εµ, f⟩ = (−1)n ⟨µ,Λn

A,εf⟩, f ∈ E(R).

2.1 Intertwining operators

Throughout this paper we will denote by A a function on R satisfying the following:

•A(x) =| x |2α+1 B(x), where α > − 1
2
and B is any even, positive and smooth function on R with

B(0) = 1.
•A is increasing and unbounded on R+.

•A′

A
is a decreasing and smooth function on R∗

+, and hence the limit 2ρ := limx→+∞
A′(x)
A(x)

≥ 0
exists.
• There exists a constant δ > 0 such that for all x ∈ [x0,∞) for somex0 > 0,

A′(x)

A(x)
=


2ρ+ e−ρxD(x) if ρ > 0,

2α+ 1

x
e−ρxD(x) if ρ = 0,

with D being a smooth function bounded together with its derivatives.

Such a function A is called a Chebli function.

Let △, be the following second order differential operator

△ f(x) = −(µ2 + ρ2)f(x) withf(0) = 1 andf ′(0) = 0. (3)

The system 3 admits a unique solution φµ. The following Laplace type representation of φµ can be
found in [7].

For every x ∈ R∗ there exists a probability measure νx on R supported in [− | x |, | x |] such that
for all µ ∈ C.

φµ(x) =

∫ |x|

−|x|
e(iµ−ρ)tνx(dt)

3
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Also, for x ∈ R∗, there is a non-negative even continuous function K(| x |, .) supported in [− | x |, |
x |] such that for all µ ∈ C

φµ(x) =

∫ |x|

−|x|
K(| x |, t)cos(µt)dt.

let λ ∈ C and consider the initial data problem

ΛA,εu = iλu, with u(0) = 1, (4)

let λ ∈ C. There exists a unique solution ΨA,ε(λ, .) to the problem (4). Further, for every x ∈ R,
the function λ → ΨA,ε(λ, x) is analytic on C. More explicitly:

(i) For iλ ̸= εϱ,

ΨA,ε(λ, x) = φµε(x) +
1

iλ− εϱ

d

dx
φµε(x) with µ2

ε := λ2 + (ε2 − 1)ϱ2. (5)

We may rewrite the solution (5) as

ΨA,ε(λ, x) = φµε(x) + (iλ+ εϱ)
sgn(x)

A(x)

∫ |x|

0

φµε(t)A(t)dt. (6)

(ii) For iλ = εϱ,

ΨA,ε(λ, x) = 1 + 2εϱ
sgn(x)

A(x)

∫ |x|

0

A(t)dt. (7)

For every x ∈ R∗, there is a non-negative continuous function Kε(x, .) supported in [− | x |, | x |]
such that for all λ ∈ C,

ΨA,ε(λ, x) =

∫
|y|<|x|

Kε(x, y)e
iλydy. (8)

For f ∈ E(R) we define VA,εf by

VA,εf(x) =

∫
|y|<|x|

Kε(x, y)f(y)dy forx ̸= 0, and VA,εf(0) = f(0).

Observe that
ΨA,ε(λ, x) = VA,ε(e

iλ.)(x). (9)

Theorem 2.1. [1] The operator VA,ε is the unique automorphism of E(R) such that

ΛA,ε ◦ VA,ε = VA,ε ◦
d

dx
(10)

where ΛA,ε is the family of differential-reflection operator.

Below we will deal with the dual operator tVA,ε of VA,ε in the sense that∫
R
VA,εf(x)g(x)A(x)dx =

∫
R
f(y)tVA,εg(y)dy

This can be written
tVA,εg(y) =

∫
|y|<|x|

Kε(x, y)g(x)A(x)dx.

Theorem 2.2. The integral transform tVA,ε is a topological automorphism of D(R) satisfying the
intertwining relation

d

dy
tVA,εf = tVA,ε(ΛA,ε + 2εϱS), f ∈ D(R),

where S denotes the symmetry (Sf)(x) := f(−x).

For more details you can see [1].
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2.2 Generalized fourier transform

The generalized Fourier transform of a distribution µ ∈ E
′
(R) is defined by

FA,ε(µ)(λ) = ⟨µ,ΦA,ε(−λ, .)⟩ , λ ∈ C.

Assume that −1 ≤ ε ≤ 1. For f ∈ D(R) The generalized Fourier transform is defined by

FA,ε(f)(λ) =

∫
R
f(x)ΨA,ε(λ,−x)A(x)dx, λ ∈ C.

Recall the following identities :

FA,ε(µ) = Fu

( tVA,εµ
)
, µ ∈ E

′
(R), (11)

FA,ε(f) = Fu

( tVA,εf
)
, f ∈ D(R),

FA,ε(ΛA,εµ)(λ) = iλFA,ε(µ)(λ), µ ∈ E
′
(R),

FA,ε(ΛA,ε + 2εϱS)(λ) = iλFΛ(f)(λ), f ∈ D(R),
Fu being the usual Fourier transform on R given by

Fu(µ)(λ) =

∫
R
e−iλx dµ(x), µ ∈ E

′
(R).

An outstanding result about the generalized Fourier transform FA,ε is as follows.

Theorem 2.3. (Paley-Wiener)

(i) The generalized Fourier transform FA,ε is a bijection from E
′
(R) onto PW (C). More precisely,

µ has its support in [−a, a] if, and only if, FA,ε(µ) ∈ Ha.

(ii) The generalized Fourier transform FA,ε is a topological isomorphism from D(R) onto PW (C).
More precisely, f ∈ Da(R) if, and only if, FA,ε(f) ∈ PWa(C).

2.3 Generalized convolution

The generalized translation operators T x, x ∈ R, tied to ΛA,ε are defined on E(R) by

T xf(y) = VA,ε,xVA,ε,y

[
V −1
A,εf(x+ y)

]
, y ∈ R.

The T x, x ∈ R, are linear bounded operator from E(R) into itself, and possess the following
fundamental properties:

T 0 = identity, T xT y = T yT x, T xf(y) = T yf(x),

ΛA,εT
x = T xΛA,ε and (T xΨA,ε)(λ, y) = ΨA,ε(λ, x)ΨA,ε(λ, y).

The generalized convolution product of two distributions µ, ν ∈ E
′
(R), is the distribution µ#ν ∈

E
′
(R) given by

⟨µ#ν, f⟩ = ⟨µx, ⟨νy, T xf(y)⟩⟩ , f ∈ E(R).

The generalized convolution of µ ∈ E
′
(R) and f ∈ E(R), is the function µ#f ∈ E(R) given by

µ#f(x) =
⟨
µy, T

−xf−(y)
⟩
, x ∈ R,

with f−(y) = f(−y).

5



Rebhi; JAMCS, 27(3): 1-13, 2018; Article no.JAMCS.38207

Proposition 2.1. (i) Let µ, ν ∈ E
′
(R) and f ∈ D(R). Then

FA,ε(µ#ν) = FA,ε(µ)FA,ε(ν), (12)

FA,ε(µ#f) = FA,ε(µ)FA,ε(f). (13)

(ii) For µ, ν ∈ E
′
(R) and f ∈ E(R) we have

µ#(ν#f) = (µ#ν)#f.

(iii) If µ, ν ∈ E
′
(R) and f ∈ E(R) then

VA,ε

( tVA,εµ ∗ f
)
= µ#VA,εf, (14)

tVA,ε(µ#ν) = tVA,εµ ∗ tVA,εν,

where ∗ denotes the classical convolution on R.

3 ΛA,ε-mean-periodic Functions

According to Schwartz [2], a function f in E(R) is called mean-periodic relatively to a distribution

µ in E
′
(R), if it is a solution of the convolution equation

µ ∗ f(x) = 0, for all x ∈ R.

In this section we extend the notion of mean-periodicity to the differential-difference operator ΛA,ε,
by replacing in the equation above the ordinary convolution * by the generalized convolution #.

Definition 3.1. We say that a function f ∈ E(R) is ΛA,ε-mean-periodic, if there exists 0 ̸= µ ∈
E

′
(R) such that

µ#f(x) = 0, for all x ∈ R.
If we want to emphasize the equation satisfied by f we will say that f is mean-periodic with respect
to µ or µ-ΛA,ε-mean-periodic.

Notation. For f ∈ E(R), write τ(f) for the closure of the subspace of E(R) spanned by T−xf−, x ∈
R.

Remark 3.1. (i) Notice that

µ#f = 0 ⇔ µ = 0 on τ(f) ⇔ µ ∈ (τ(f))⊥

(ii) According to the Hahn-Banach theorem, Definition 3.1 is equivalent to τ(f) ̸= E(R).

Examples. (i) Let a be a nonzero real number. Each function f ∈ E(R) satisfying

T−xf−(a) = f(x), for all x ∈ R,

is ΛA,ε-mean-periodic with respect to µ = δa − δ0, where δa denotes the Dirac measure at the point
a.

(ii) By virtue of (6) and Theorem 2.2, every 0 ̸= f ∈ D(R) is not ΛA,ε-mean-periodic.

Proposition 3.1. For λ ∈ C, x ∈ R and l ∈ N, put

ϕλ,l(x) = xleiλx and Φλ,l(x) = VA,ε(ϕλ,l)(x) (15)

Then

6
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(i) Φλ,l(x) = (−i)l
∂l

∂λl
ΨA,ε(λ, x).

(ii) For all µ ∈ E
′
(R), we have

(FA,ε(µ))
(l) (λ) = (−i)l ⟨µ,Φ−λ,l⟩, (16)

µ#Φλ,l(x) =

l∑
s=0

(
l
s

)
Φλ,l−s(x)(−i)s (FΛ(µ))

(s) (λ). (17)

(iii) The function x → Φλ,l(x) is ΛA,ε-mean-periodic.

Proof. Assertion (i) :

Φλ,l(x) = VA,ε(ϕλ,l(x))

=
∫
|y|<|x| Kε(x, y)ϕλ,l(y)dy

=
∫
|y|<|x| Kε(x, y)(y

leiλy)dy

=
∫
|y|<|x| Kε(x, y)(−i)l

∂l

∂λl
(eiλy)dy

= (−i)l
∫
|y|<|x| Kε(x, y)

∂l

∂λl
(eiλy)dy,

using Leibniz Rule we get,

Φλ,l(x) = (−i)l
∂l

∂λl
(

∫
|y|<|x|

Kε(x, y)e
iλydy)

= (−i)l
∂l

∂λl
ΨA,ε(λ, x).

Formula (16) follows also by using differentiation under the integral sign. Let us check (17). By
(15) and (14),

µ#Φλ,l = VA,ε

( tVA,εµ ∗ ϕλ,l

)
. (18)

But an easy computation shows that

ν ∗ ϕλ,l(x) =
l∑

s=0

(
l
s

)
ϕλ,l−s(x)(−i)s (Fu(ν))

(s) (λ),

for all ν ∈ E
′
(R). So

tVA,εµ ∗ ϕλ,l(x) =

l∑
s=0

(
l
s

)
ϕλ,l−s(x)(−i)s (FA,ε(ν))

(s) (λ), (19)

by virtue of (11). Identity (17) follows now by combining (15), (18) and (19). Finally, to have

µ#Φλ,l ≡ 0, it is sufficient in view of (17), to choose 0 ̸= µ ∈ E
′
(R) such that λ is a zero of order

at least l of FA,ε(µ). This completes the proof. 2

Proposition 3.2. Let f ∈ E(R) be ΛA,ε-mean-periodic. Then Φλ,l ∈ τ(f) if and only if, for all
µ ∈ (τ(f))⊥, we have

(FA,ε(µ))
(l) (−λ) = 0.

7
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Proof. The result follows by using (16) and the Hahn-Banach theorem. 2

Definition 3.2. We call spectrum of a ΛA,ε-mean-periodic function f ∈ E(R), denoted by sp(f),
the set of pairs (λ, l), λ ∈ C, l ∈ N, such that the functions Φλ,s belong to τ(f) for 0 ≤ s ≤ l − 1
and not for s = l.

Remark 3.2. According to Proposition 3.2, (λ, l) ∈ sp(f) if and only if, −λ is a common zero of
order l of the generalized Fourier transforms of elements of (τ(f))⊥.

The next statement clarifies the relationship between ΛA,ε-mean-periodic functions and classical
mean-periodic functions.

Proposition 3.3. A function f ∈ E(R) is ΛA,ε-mean-periodic with respect to a distribution µ ∈
E ′(R) if, and only if, V −1

A,εf is a classical mean-periodic function with respect to tVA,εµ.

Proof. The result is a direct consequence of (14). 2

From the work of Schwartz [2] and the proposition above, we deduce the following characterization
of Λ-mean-periodic functions.

Theorem 3.1. Let f ∈ E(R) be ΛA,ε-mean-periodic. Then f can be approximated in the topology
of E(R) by finite linear combinations of functions of the type Φλ,l, (λ, l) ∈ sp(f).

4 Biorthogonal System

Notation. Throughout this section fix 0 ̸= µ ∈ E
′
(R). Put

ZA,ε(µ) = {(λk, lk), k ∈ N, lk ∈ N} ,

where λk is a zero of order lk of the entire function FA,ε(µ).

Starting from the distribution µ, we construct in this section a biorthogonal system in E
′
(R), that

is, a family of distributions µk,m ∈ E
′
(R), satisfying

⟨µk,m,Φλs,j⟩ = δk,s δm,j (20)

for 0 ≤ m ≤ lk − 1 and 0 ≤ j ≤ ls − 1. Given a µ-ΛA,ε-mean-periodic function f ∈ E(R), formula
(20) will allow us to compute the coefficients ck,l in a possible development of f with respect to
the functions Φλk,l, k ∈ N, 0 ≤ l ≤ lk − 1. We adopt here the arguments used by Delsarte [3] and
Schwartz [2].

Notation. For f ∈ E(R), put

Ik(f)(x) =

∫ x

0

f(t)eiλk(x−t)dt, x ∈ R.

Lemma 4.1. Let f ∈ E(R). Then

(i) The general solution of the equation(
d

dx
− iλk

)lk

g = f,

is given by

g(x) =

lk−1∑
s=0

βs ϕλk,s(x) +

lk times︷ ︸︸ ︷
Ik ◦ · · · ◦ Ik (f)(x), βs ∈ C.

8
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(ii) The general solution of the equation

(ΛA,ε − iλk)
lk g = f, (21)

is given by

g(x) =

lk−1∑
s=0

βs Φλk,s(x) + VA,ε◦

lk times︷ ︸︸ ︷
Ik ◦ · · · ◦ Ik ◦V −1

A,ε(f)(x), βs ∈ C.

Proof. Assertion (i) is easily checked. By virtue of (10), equation (21) is equivalent to(
d

dx
− iλk

)lk (
V −1
A,εg

)
= V −1

A,εf.

Assertion (ii) follows then from (i). 2

Lemma 4.2. There is a unique distribution µ− ∈ E
′
(R) such that

FA,ε(µ−)(λ) = FA,ε(µ)(−λ), for all λ ∈ C.

Moreover, if suppµ ⊂ [−a, a], then supp (µ−) ⊂ [−a, a].

Proof. The result follows readily from Theorem 2.2(i). 2

Remark 4.1. Define µ− ∈ E
′
(R) by∫

R
f(x)dµ−(x) =

∫
R
f(−x)dµ(x), f ∈ E(R).

Then according to (6) and Theorem 2.2(i), µ− = µ− if and only if ρ = 0.

Notation. If G is a meromorphic function, having γ as a pole, we denote by [G(λ)]γ the singular
part of G(λ) in a neighborhood of γ, hence G(λ)− [G(λ)]γ is holomorphic in a neighborhood of γ.

Lemma 4.3. (i) The distribution qk ∈ E
′
(R) defined by

FA,ε(qk)(λ) = (λ+ λk)
lk

[
1

FA,ε(µ)(−λ)

]
−λk

has a support concentrated at the origin.

(ii) The distribution µk,0 ∈ E
′
(R) defined by

FA,ε(µk,0)(λ) =


FA,ε(µ)(−λ)

[
1

FA,ε(µ)(−λ)

]
−λk

if λ ̸= −λk,

1 if λ = −λk,

(22)

satisfies

⟨µk,0, f⟩ = (−i)lk

⟨
qk#µ−, VA,ε◦

lk times︷ ︸︸ ︷
Ik ◦ · · · ◦ Ik ◦V −1

A,ε(f)

⟩
,

for all f ∈ E(R).

9
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Proof. (i) As the function (λ + λk)
lk [1/FA,ε(µ)(−λ)]−λk

is a polynomial Pk(λ), it follows by

(11) that tVA,εqk = Pk(d/dx)(δ0). Then using Theorem 2.1(i), we deuce that qk has a support
concentrated at the origin.

(ii) As
(λ+ λk)

lk FA,ε(µk,0)(λ) = FA,ε(qk)(λ)FA,ε(µ)(−λ),

it follows from (12) that
(−i)lk (ΛA,ε + iλk)

lk µk,0 = qk#µ−.

So for all g in E(R),

⟨qk#µ−, g⟩ = (−i)lk
⟨
(ΛA,ε + iλk)

lkµk,0, g
⟩
= i lk

⟨
µk,0, (ΛA,ε − iλk)

lkg
⟩
.

The result is now a direct consequence of (16) and Lemma 4.1(ii). 2

Remark 4.2. If the zeros λk of FA,ε(µ) are simple, then[
1

FA,ε(µ)(−λ)

]
−λk

=
−1

(λ+ λk) (FA,ε(µ))
′(−λk)

,

that is,

qk =
− δ0

(FA,ε(µ))
′(−λk)

and

⟨µk,0, f⟩ =
i

(FA,ε(µ))
′(−λk)

⟨
µ−, VA,ε ◦ Ik ◦ V −1

A,ε(f)
⟩

for all f ∈ E(R).

Proposition 4.1. Define µk,m ∈ E
′
(R), 0 ≤ m ≤ lk − 1, by

µk,m =
(−1)m

m!
(ΛA,ε + iλk)

m µk,0 + τk,m #µ−, (23)

where

− µk,0 ∈ E
′
(R) is defined in Lemma 4.3.

− τk,m ∈ E
′
(R) with support concentrated at the origin, whose the generalized Fourier transform

is given by

FA,ε(τk,m)(λ) =
(−i)m

m!
Rk,m(λ) (24)

with

Rk,m(λ) =

[
(λ+ λk)

m

FA,ε(µ)(−λ)

]
−λk

− (λ+ λk)
m

[
1

FA,ε(µ)(−λ)

]
−λk

Then the family (µk,m) satisfies (20).

Proof. Notice that Rk,m(λ) is a polynomial, so the support of τk,m is concentrated at the origin.
A combination of (22), (23) and (24) yields

FA,ε(µk,m)(λ) =
(−i)m

m!
FA,ε(µ)(−λ)

[
(λ+ λk)

m

FA,ε(µ)(−λ)

]
−λk

. (25)

According to (16) and (25), ⟨µk,m,Φλs,j⟩ = 0 for s ̸= k. A straightforward calculation shows that

FA,ε(µk,m)(λ) = (−i)m
(λ+ λk)

m

m!
+O

(
(λ+ λk)

lk+1
)
,

in a neighborhood of −λk. We conclude, in view of (16), that ⟨µk,m,Φλk,j⟩ = 0 for j ̸= m, and
⟨µk,m,Φλk,m⟩ = 1. This achieves the proof. 2

10
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Corollary 4.1. Let f ∈ E(R). Assume that there are disjoint finite subsets Zj (groupings) such
that ZA,ε(µ) =

∪∞
1 Zj and

∞∑
j=1

 ∑
(λk,lk)∈Zj

∑
0≤l≤lk−1

ck,l Φλk,l

 (26)

is convergent in E(R) to f , with a suitable mode of convergence. Then f is µ-ΛA,ε-mean-periodic
and the coefficients ck,l can be computed by the formula

ck,l = ⟨µk,l, f⟩ . (27)

Proof. The function f is µ-ΛA,ε-mean-periodic because that is true for each term in (26). Identity
(27) follows immediately from Proposition 4.1. 2

5 Series Expansion with Respect to the Functions Φλk,lk

Like in the classical setting, the series (26) is not actually convergent in E(R), without a certain
abelian summation procedure is performed :

Theorem 5.1. Let f ∈ E(R) be ΛA,ε-mean-periodic with respect to µ ∈ E ′(R). Then there are
disjoint finite subsets Zj (groupings) such that ZA,ε(µ) =

∪∞
1 Zj and for every ε > 0 the series

∞∑
j=1

 ∑
(λk,lk)∈Zj

∑
0≤l≤lk−1

ck,l Φλk,l e
−ε|λk|


converges in E(R) to a function fε satisfying :

lim
ε−→0

fε = f, in E(R).

The coefficients ck,l being determined by (27).

Proof. By Proposition 3.3, V −1
A,εf is a classical mean-periodic function with respect to the distribution

tVA,εµ. So using (11) and the results of Schwartz [2], we can find:

− finite subsets Zj such that ZA,ε(µ) =
∪∞

1 Zj

− a sequence of complex numbers c̃k,l

such that for every ε > 0 the series

∞∑
j=1

 ∑
(λk,lk)∈Zj

∑
0≤l≤lk−1

c̃k,l ϕλk,l e
−ε|λk|


converges in E(R) to a function fε satisfying :

lim
ε−→0

fε = V −1f, in E(R).

As the intertwining operator VA,ε is an automorphism of E(R), it follows by (11) that

VA,ε(fε) =

∞∑
j=1

 ∑
(λk,lk)∈Zj

∑
0≤l≤lk−1

c̃k,l Φλk,l e
−ε|λk|


and

lim
ε→0

VA,ε(fε) = f,

11
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where both the series and the limit are meaningful in the topology of E(R). Finally, we deduce from
Corollary 4.1 that

c̃k,l = ck,l, 0 ≤ l ≤ lk − 1, k ∈ N.
This ends the proof. 2

Following Ehrenpreis [8], we introduce a class of distributions for which the Abel summation process
is not necessary.

Definition 5.1. A distribution µ ∈ E
′
(R) is called ΛA,ε-slowly-decreasing, if there are positive

constants c, d such that for any x ∈ R,

max
{
|FA,ε(µ)(y)|, y ∈ R, |x− y| ≤ d log

(
1 + |x|2

)}
≥ c (1 + |x|)−1/c.

Using the results of [8] and Proposition 3.3, it is not hard to establish the following theorem.

Theorem 5.2. Let f ∈ E(R) be ΛA,ε-mean-periodic with respect to a Λ-slowly-decreasing distribution
µ ∈ E ′(R). Then there exist finite groupings Zj of ZA,ε(µ) such that the series

∞∑
j=1

 ∑
(λk,lk)∈Zj

∑
0≤l≤lk−1

ck,l Φλk,l

 (28)

converges to f in E(R). The coefficients ck,l being determined by (27).

The next statement characterizes the Λ-slowly-decreasing distributions µ ∈ E ′(R) for which every
grouping Zj in (28) can be taken to contain a single point of ZA,ε(µ).

Theorem 5.3. Let f ∈ E(R) be ΛA,ε-mean-periodic with respect to a Λ-slowly-decreasing distribution
µ ∈ E ′(R). A necessary and sufficient condition that the series (28) converges to f in E(R) without
groupings (i.e., card(Zj) = 1 for all j) is that for some c, d > 0 we have∣∣∣∣ dl

dλl
FA,ε(µ)(λ)

∣∣∣∣ ≥ d
exp(− c |Imλ|)

(1 + |λ|)c

for all (λ, l) ∈ ZA,ε(µ).

Proof. The result follows easily by combining the results of [5] and Proposition 3.3. 2
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[2] Schwartz L. Théorie générale des fonctions moyenne-périodiques. Ann. of Math. 1947;48:857-
929.

[3] Delsarte J. Les fonctions moyenne-periodiques. J. Math. Pures et Appl. 1935;14:403-453.

[4] Kahane JP. Lectures on mean periodic functions. Tata Institute of Fundamental Research,
Bombay; 1975.

[5] Berenstein CA, Taylor BA. A new look at interpolation theory for entire functions of one
variable. Adv. Math. 1979;33:109-143.

12



Rebhi; JAMCS, 27(3): 1-13, 2018; Article no.JAMCS.38207
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