
*Corresponding author: E-mail: hassan.bello@fedpoffaonline.edu.ng;

Asian Journal of Research in Computer Science

1(2): 1-10, 2018; Article no.AJRCOS.42834

Acceleration of Biological Sequence Alignment
Using Residue Number System

Hassan Kehinde Bello1* and Kazeem Alagbe Gbolagade2

1
Department of Computer Science, Federal Polytechnic, Offa, Nigeria.

2Department of Computer Science, Kwara State University, Malete, Nigeria.

Authors’ contributions

This work was carried out in collaboration between authors HKB and KAG. Both authors read and
approved the final manuscript.

Article Information

DOI: 10.9734/AJRCOS/2018/v1i224735

Editor(s):
(1) Dr. Stephen Mugisha Akandwanaho, Department of Information Systems and Technology, University of KwaZulu-Natal,

South Africa.
Reviewers:

(1) R. Mahalakshmi, India.
(2) Geraldo Francisco Donegá Zafalon, Sao Paulo State University, Brazil.

(3) Manish Mahajan, CGC College of Engineering, India.
Complete Peer review History: http://prh.sdiarticle3.com/review-history/25615

Received 2
nd

 May 2018
Accepted 11th July 2018

Published 19th July 2018

ABSTRACT

Smith-Waterman Algorithms (SWA) is becoming popular among researchers especially in the field
of bioinformatics. The algorithm performance is better among other known alignment algorithms
because of the high level of accuracy it exhibits. However, the algorithm performance is at low
speed due to its computational complexity. Researchers are concerned with this problem and are
looking for various ways to address the issue. Different approaches are adopted to improve the
speed, such as the use of a systolic array to accelerate the algorithm, use of recursive variable
expansion (RVE) method approach; some implemented the algorithm on software and hardware,
etc. This paper used Residue Number System (RNS) approach to the algorithm of Smith-Waterman
and carried out hardware implementation on Quartus II, 64-Bit version 12.1 (Cyclone II family) VHDL
application software.

Keywords: Smith-Waterman algorithm; bioinformatics; algorithm; recursive variable expansion;

computational complexity; residue number system.

Short Research Article

Bello and Gbolagade; AJRCOS, 1(2): 1-10, 2018; Article no.AJRCOS.42834

2

1. INTRODUCTION

The importance of biological sequence alignment
cannot be overemphasized in computational
biology, where functionalities are compared to
find the optimal alignment between any two
sequences of varying or same lengths.
Alignment score is computed based on the total
number of gap penalty, matches and
mismatches in the alignment. Biological
sequence alignment helps in the discovery of
functional, structural and evolutionary information
in the sequences of DNA, RNA and Proteins [1].

Biological sequence alignment is classified into
local and global alignment. In local sequence
alignment, the optimal value is calculated from
the most similar sub-region common to both
sequences while in global alignment, the two
sequences must be of similar length and the
optimal value is computed from beginning to the
end of the sequences [2].

There are many techniques proposed to solve
the sequence alignment method, like Dynamic
Programming (DP), Heuristic, Linear
programming, Hidden Markov model and T-
Coffee [3]. Smith-Waterman algorithm (SWA)
and Needleman Wunsch algorithm (NWA) are
based on dynamic programming (DP) technique
with space and time complexity of O(mn) [4]
where m and n are the lengths of the two
sequences being considered for alignment.
Heuristic algorithms such as Fast-All (FASTA)
and Basic Local Alignment Search Tool (BLAST)
are based on approximations and fast at the
expense of accuracy while the NWA and SWA
algorithms are commonly used to find global and
local alignment respectively [5,6,7,8,9].

SWA is the most common biological sequence
alignment algorithms; it is very accurate with a
high computational cost at the expense of speed.
These constraints of SWA have been tolerated in
the past, but due to exponential growth in the
size of the biological database, there is a need to
enhance the acceleration of the algorithm. Some
researchers approached the problem using a
systolic array to accelerate the algorithm, and
some use recursive variable expansion, some
implemented the algorithm on software and
hardware, etc. Residue Number System (RNS) is
a number system that can improve the
acceleration of any application that uses the
operations of addition, subtraction and
multiplication. It has also been successively

applied in Fourier application, Digital Signal
Processing, digital filtering, image processing,
cryptography, among others.

2. BACKGROUND

The Residue Number System (RNS) is an
integer that is capable of supporting high speed
concurrent automatic [10]. It may be defined as a
set of relatively prime integer called moduli which
can be denoted as m1, m2, m3 …mn, where mi is
the i

th
 modulus [11] and gcd(mi, mj) = 1 for i≠j .

Each X can be represented as a set of smaller
integers called x1,x2,x3…xn , where X mod mi = xi;
xi = |X|mi

RNS has the capabilities to support parallel
carry-free addition, borrow-free subtraction and
single step multiplication without partial fraction
[12,13,14]. Many moduli sets are used in RNS
with different Dynamic Range (DR). The most
popular 3n-bit DR moduli set known as traditional
moduli set is {2n-1, 2n, 2n+1} [15]. Others are {2n-

1
, 2

n
-1, 2

n
+1}, {2

n-1
-1, 2

n
-1, 2

n
} [16]. The DR of

3n-bits produced by this moduli set can be used
by any application with higher DR. 4n-bit DR 4
moduli set such as {2

n
-1, 2

n
, 2

n
+1, 2

n+1
+1}, {2

n
-1,

2n, 2n+1, 2n+1-1}, {2n-1, 2n, 2n+1, 2n-1-1} [17] were
suggested. In order to raise parallelism in RNS
arithmetic, 5n-bit moduli set were suggested {2n,
22n-1, 22n+ 1}, {2n-1, 2n, 2n+1, 22n+1} etc were
also proposed.

2.1 Selection of Moduli in RNS

In RNS, the Dynamic Range (DR) is the product
of all the moduli such that the interval can be
uniquely represented in RNS [18,19], this is an
important aspect to be considered in the choice
of moduli in RNS. Proper choice of moduli when
designing RNS system is very essential [20]; this
is because the moduli choice affects the
complexity of forward conversion, reverse
conversion and RNS arithmetic circuits. Also, the
speed of the resulting conversion depends on
selected moduli [21]; therefore, moduli selection
and data conversion are very critical in RNS to
binary conversion [20,22]. However, it is a
common fact that as the number of moduli
increases, the speed of residue arithmetic units
increases and the conversion from residue-
binary becomes slower and complex [23].
Abdullahi and Skavantzos stated that the moduli
set mi and mj satisfy the following criteria:

Bello and Gbolagade; AJRCOS, 1(2): 1-10, 2018; Article no.AJRCOS.42834

3

 They must be pairwisely prime (i.e. gcd(mi,
mj) = 1
Each moduli mi should be as small as
possible so that operation modulo mi
require minimum computation time

 The moduli mi, mj should imply simple
binary to Residue Number system and
Residue Number System to binary
conversion.

 The moduli product should be large
enough to implement the decision dynamic
range.

However, in a case where a large dynamic range
(DR) is required, large moduli might be in a
better performance. In addition, another
fundamental area where attention should be
taken is the hardware selection, which is a
determining factor for RNS performance. The
simplified conversion equation of the system is
computed by using adders, like Carry
Propagation Adder (CPA), Carry Save Adder
(CSA) [24,25], etc.

2.1.1Lemma

If m1,m2, ….mn are set of moduli, then the
dynamic range (DR) is the product of all the
moduli set, say M, then every representable
number (X) satisfy either of the following

−
���

�
≤ X ≤

���

�
 if M is odd (1)

−
�

�
≤ X ≤

�

�
− 1 if M is even (2)

2.2 The Smith-Waterman Algorithm

The optimal local alignment of two sequences X
and Y is given by the algorithm of SW [26] in
equation (3) for the computation of local
alignment of matrix Mi,j

 0
 M(i-1,j-1) + S(xi,yj) match/mismatch

M(i,j)=Max M (i-1,j) + g (3)
 M (i,j-1) + g

where M(0,0) = 0, M(0,j) = g × j and M(i,0) = g ×
i, for 1 ≤ i ≤ n,1 ≤ j ≤ m. The g is the penalty for
inserting a gap in any of the sequence and M(i,j)
is the score for match/mismatch, depending upon
whether X[i] = Y[j] or X[i] ≠ Y[j] [27]. The dynamic
programing step of a matrix M to compute
maximum value of M(i,j) is shown in Fig. 1.

M(i-1, j-1) M(i-1,j)

M(i, j-1)
 Max M(i,j)

 Fig. 1. Dynamic programming step

The time complexity of the initialization step is
O(m + n), where m is the number of rows and n
is the number of columns in the matrix M.

2.2.1 Steps in the algorithm of Smith-

Waterman

Step 1: Initialization:

At the initialization step, the matrix M(i,j) will be
initialized with M0,j = 0 and Mi,0 = 0, for all i and j
as shown in Fig 2. At this step, the time
complexity is given by is O(m + n), where m is
the total number of rows and n is the total
number of columns in the sequences X and Y
respectively.

Example:

Dynamic programming of a matrix M is illustrated
in Fig. 2, Fig. 3 and Fig. 4.

Given the sequences X: GAGATC and Y:
GCTAGCT with match = 2, mismatch = 1 and
gap = 1

Step 2: Matrix filling

The equation 1 will be used to fill up all the
entries in the matrix Mi,j based on given scoring
parameter (fig. 4). At this step, the time
complexity is equal to the number of cells in the
matrix i.e O(mn).

Example:

Given the sequences X: AGGTCA and Y:
CGTGTAA with match = 2, mismatch = 1 and
gap = 1

Step 3: Trace back

At the end of step 2 above, the cell with the
highest score will be located at the bottom right
of the matrix and traced back to get the optimal
local alignment, as shown in Fig 5. The time
complexity of the trace back is given by O(m+ n).

Bello and Gbolagade; AJRCOS, 1(2): 1-10, 2018; Article no.AJRCOS.42834

4

 G A G A T C

 0 0 0 0 0 0 0

G 0

C 0

T 0

A 0

G 0

C 0

T 0

Fig. 2. Initialization step

 G A G A T C
 0 0 0 0 0 0 0
G 0 2 1 2 1 1 1
C 0 1 3 2 3 2 3
T 0 1 2 4 3 5 4
A 0 1 3 3 6 5 6
G 0 2 2 5 5 7 6
C 0 1 3 4 6 6 9
T 0 1 2 4 5 8 8

Fig. 3. Matrix filling

Fig. 4. Trace back

At the end of step 3, the total time complexity of
Smith-Waterman algorithm is given by O(m+n) +
O(mn) + O(m+n) = O(mn). The space complexity
of the algorithm is given by O(mn) because the

size of the matrix is m x n [26]. The
corresponding optimal alignment of the two
sequences with the best score of 9 is computed
in fig. 4.

Bello and Gbolagade; AJRCOS, 1(2): 1-10, 2018; Article no.AJRCOS.42834

5

3. METHODOLOGY

This research work aims to apply RNS to
improve the speed of SWA, The functions in the
algorithm were studied and identified the one that
consumes most time as depicted in table 4.
Therefore, the speed of this function is improved
through the three RNS moduli set m = 2

2n+1
-1, 2

n-

1, 22n-1. In the implementation, our n = 2 gives m
= {31,2,15} with a dynamic range (DR) of 930.
Since the DR is an even number, equation (2) is
applied, meaning the range of numbers that can
be represented by this scheme is given to be -
465 ≤ X ≤ 464, and therefore, the values
representable by this dynamic range for signed
number are given in Table 1. On applying the
scoring parameters (gap, match/mismatch) and
RNS to equation (3), the range of our values will
fall within Table 1.

3.1 The RNS- SWA Conversion and
Design Entry

The first step is to convert the number in binary
number to RNS format. The memoryless RNS
converter is input into Quartus II version 12.1
VHDL application software using Altera Cyclone
II EP2C20F484C7. This allows the use of tools
embedded in the software to create a logic
design. The software directs the RNS
comparator to pick the best alignment value after
several comparisons, as shown in Fig. 5. The
best alignment is produced at a reduced
computation time.

3.1.1 The RNS processor

After binary conversion to RNS numbers, it
follows RNS processing where the inherent
properties of RNS like carry free addition, borrow
free subtraction, etc. will be applied with respect
to equation (3) as displayed in Fig. 5. The
sequence involve (i) addition of upper diagonal
elements, M(i-1,j-1) + Si,j; addition of left
elements, M (i,j-1) + g and (ii) addition of upper
elements, M (i-1,j) + g where g and Si,j are the
gap and match/mismatch values respectively.
This is sequence been controlled by the control
unit.

3.1.2 The compilation and simulation step

The compilation is done in order to convert the
source code to object code which is logically
down loaded to a target device and the software
simulation is carried out by the software to

ensure that the logic circuits function as
expected.

Table 1. Table of residues for MOD 31, MOD
15 and MOD 2 for signed numbers in

hexadecimal numbers

Decimal
number

Hexadecimal
number

MOD(31,15,2)

-465
-464
-463
.
.
.
-4
-3
-2
-1
0
1
2
3
4
.
.
.
462
463
464

E2F
E30
E31
.
.
.
FC
FD
FE
FF
0
01
02
03
04
.
.
.
1CE
1CF
1D0

(4,1,1)
(5,1,0)
(6,2,1)
.
.
.
(4,C,0)
(5,D ,1)
(6,E,0)
(7,F,1)
(0,0,0)
(1,1,1)
(2,2,0)
(3,3,1)
(4,4,0)
.
.
.
(28,12,0)
(29,13,1)
(30,14,0)

3.1.3 The RNS forward converter

The Moduli set of this research work M = (31, 15,
2) will give a DR of 930. The inputs variables
(M(i,j-1), M(i-1,j), M(i-1,j-1), S(i,j) and d) in
decimal/binary are converted to residue number
system by binary to RNS converter. This is
referred to as the forward converter [28]. The
three RNS processors then act on the input
values by applying the inherent properties of
RNS i.e. the carry-free addition, borrow-free
subtraction, etc. Each of the three processors is
independent of one another, as shown in Fig 6.

3.2 The RNS Comparator

The comparator in Fig 5 computes the final
optimal value M(i,j) from M(i-1,j), M(I,j-1), M(i-1,j-
1) using equation 3. It comprises of thee
registers and two multiplexers. The RNS-SWA
comparator is used in a Quartus II, 64-Bit version
12.1 (Cyclone II family) VHDL application
software and the graphic entry or schematic
capture tool embedded in the software are fully
used. This is later compiled in order to translate
the source code to object code. A: typical RNS-

Bello and Gbolagade; AJRCOS, 1(2): 1-10, 2018; Article no.AJRCOS.42834

6

SWA based signal processor of our design is
shown in Fig. 5.

Table 2 shows the parallel compilation and table
3 shows the summary report of the final
compilation. 2 out of 18,752 total logic elements
within the device are used and a negligible
number of the logic cell 190 / 12,400 (1%) within
the device are also used when implemented on
EP2C20F484C7 device (Cyclone II).

Table 2. Parallel compilation report

Usage by Processor % Time Used

 3-4 processors
 2 processors
 1 processor

 0.0%
20.0%
100.0%

Number detected on machine 4
Maximum used 2
Maximum allowed 2
Average used 1.33

Fig. 5. RNS comparator schematic diagram

Table 3. Flow summary of SWA_RNS processor

Status Successful - Tue May 29 18:17:46 2018
Quartus II 64-Bit Version 12.1 Build 243 01/31/2013 SP 1 SJ Web Edition
Revision Name RNS_COMPARATOR
Top-level Entity Name RNS_COMPARATOR
Family Cyclone II
Device EP2C20F484C7
Timing Models Cyclone II
Total logic elements 2 / 18,752 (< 1 %)
Total combinational functions 2 / 18,752 (< 1 %)
Dedicated logic registers 0 / 18,752 (0 %)
Total registers 44
Total pins 7 / 315 (2 %)
Total virtual pins 0
Total memory bits 0 / 239,616 (0 %)
Total ALUTs 190 / 12,400 (1 %)
Embedded Multiplier 9-bit elements 1 / 52 (< 1 %)
Total PLLs 0 / 4 (0 %)

Bello and Gbolagade; AJRCOS, 1(2): 1-10, 2018; Article no.AJRCOS.42834

7

4. PERFORMANCE EVALUATION

To inspect the performance evaluation of our
work, we compare it with another Hasan & Al-Ars
(2007) in the state of the art.

From Table 4, the labeled Fill_Matrix_2 is
identified to have consumed 72.33% of the total
time. It is this Fill_Matrix_2 that needs to be
implemented on VHDL. The time 5.23 ms is the
total time when the code is repeated 100 times.

The time consumed by matrix fill stage function
is 0.0523 ms with hardware delay 0.0146μs and
the time consumed by software equivalent is
52.32 μs

% runtime = �
�

�.���� � ����
 � �

�

��.� � ����
�

��.�� � ����

� x 100

= 3582% (35.82 times)

Timing simulation of RNS-SWA architecture
critical delay is 10.38 ns. Comparison between
the total delay [27] of hardware implementation
denoted as LZ_hw and hardware implementation
of this work is HK_hw is given as the percentage
runtime improvement over their work.

The % runtime improvement ratio of the RNS-
SWA implementation to [27] is computed as

�
�

�� _��
�

��_��

� x 100

% runtime ratio =
��.� � ����

��.�� � ����
 x 100

 = 140.63%

Runtime improvement over the hardware =

�
�

��.�� � ����
 � �

�

��.� � ����
�

��.� � ����

� x 100

 = 40.66%

Fig. 6. A typical RNS-SWA based signal processor

Bello and Gbolagade; AJRCOS, 1(2): 1-10, 2018; Article no.AJRCOS.42834

8

Table 4. [27] Result for software implementation of SWA

Function No. of
calls

No. of clock
ticks

No. of clock
CYCLES

Total
Time (ms)

% Time

Initial_Matrix 100 71944 2302208 0.718 9.93

Fill_Matrix_1 100 32392 1036544 0.323 4.47

Fill_Matrix_2 4800 524040 16769280 5.23 72.33

Trace_back_1 100 31232 999424 0.312 4.31

Trace_back_2 500 64944 2078208 0.648 8.96

5. RESULTS AND DISCUSSION

The algorithm of SWA uses dynamic
programming approach; Hasan & Al-Ars
(2007) [27] identifies the part of the function
that consumes more computational time
and attempts to improve the speed of that
function. This slight improvement in speed
enhances the performance of the entire
algorithm. The aim of this research work is to
improve the record of Hasan & Al-Ars (2007) [27]
whose work is known to be faster on the state of
the art. This research work is centered on the
function that consumes more computational time
in the algorithm of Smith-Waterman. The residue
number system was introduced to solve the
problem and compared with the results of Hasan
& Al-Ars (2007) [27]. The percentage speed
gained in our work is 140.63% faster than [27]
and also the run-time of the hardware
implementation of our research work is 40.66%
better than [27].

6. CONCLUSION

This research work investigates the likely
possibility of using Residue Number System in
the implementation of the algorithm of Smith-
Waterman. Three moduli sets were used with a
dynamic range of 5n-bits and designed RNS
comparator. The simulated result of our research
work is compared with the work of Hasan and Al-
Ars (2007) [27] in terms of speed and hardware
implementation. Our findings show a better
improvement than the work of Hasan and Al-Ars
[27]. This means there is hope for the
bioinformatics community in addressing the
speed bottleneck in SWA. With our result, RNS is
a good candidate to implement the algorithm of
Smith-Waterman.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Zubair N, Zaid A, Koen Bertels, Mudassir

Shabbir. Acceleration of Smith-Waterman
using recursive variable expansion.
Conference Paper; 2008.
DOI:10.1109/DSD.2008.32 Source:DBLP

2. Hassan KB, Kazeem AG. Application of
Smith-Wateman and NeedlemanWunsch
algorithm in pairwise sequence alignment
of deoxyribonucleic acid. Proc. of the 1

st

International conference of IEEE Nigeria
Computer Chapter In collaboration with
Dept. of Computer Science, University of
Ilorin, Ilorin, Nigeria; 2016.

3. FN Muhamad, RB Ahmad, SM Asi MN
Murad Performance analysis of
Needleman-Wunsch algorithm (Global)
and Smith-Waterman Algorithm (Local) In
reducing search space and time for DNA
sequence alignment. 1st International
Conference on green sustainable
computing. IOP Conf. series: Journal of
Physics: Con. Series 1019 (2018) 012085.
DOI 10.1088/1742-6596/1019/1/012085

4. Zubair N, Zaid A, Koen B, Mudassir S.
Acceleration of Smith-Waterman using
recursive variable expansion. Conference
Paper.
DOI: 10.1109/DSD.2008.32

5. Needleman S, Wunsch C, A general
method applicable to the search for
similarities in the amino acid sequence of
two proteins. Journal of Molecular Biology.
1970;48:443–453.

6. Altschul SF, Gish W, Miller W, Myers EW.
Lipman DJ. Basic Alignment search tool. J.
Mol. Biol. 1990;403-410.

7. Smith T, Waterman M. Identification of
common molecular subsequences. J. Mol.
Biol. 1987;147:195–197.

8. Choi Y, Sims GE, Murphy S, Miller JR,
Chan AP. Predicting the functional effect of
amino acid substitutions and indels. PloS
One. 2012;7(10):e46688.

Bello and Gbolagade; AJRCOS, 1(2): 1-10, 2018; Article no.AJRCOS.42834

9

9. Lee BJ, Shin MS, Oh YJ, Oh HS, Ryu KH.
Identification of protein functions using a
machine-learning approach based on
sequence-derived properties. Proteome
Science. 2009;7(1):27.

10. Andreas Pearson-Lars Bengttson.
Forward and reverse converters and
moduli set selection in signed digit
residue number system; 2008.

11. Omar Abdelfattah. Data Conversion in
Residue numbers system. A thesis
submitted to Department of Electrical &
Computer Engineering McGill University
Montreal, Canada; 2011.

12. Bello HK, Gbolagade KA. A MRC Based
RNS to binary converter using the moduli
set {2

2n+1
-1, 2

n-1
, 2

2n
-1}. International

Journal of Advanced Research in
Computer Engineering & Technology
(IJARCET). 2017;6(7).

ISSN: 2278 – 1323.

13. Siewobr H, Gbolagade KA. Modulo
operation free reverse conversion in the
{2

2n
+1 -1, 2

n
, 2

2n
-1} moduli set.

International Journal of Computer
application (0975 b-8887). 2014;85(18).

14. Kazeem AG An efficient MRC based RNS
to Binary Converter for the {22n - 1, 2n, 22n+1
–1} moduli set. International Journal of
Advanced Research in Computer
Engineering & Technology (IJARCET).
2013;2(10).

15. MohammedReza T, Elham K, Mohammad
E, Keivan N. Efficient reverse converter
design for five moduli set {2n, 22n+1 - 1, 2n/2
-1, 2

n/2
 +1, 2

n
+1}. Journal of Computations

and Modeling. 2012;2(1):93-108.

16. Wang W, Swang MNS, Ahmad MO, Wang
Y. A high speed residue to binary
converter and scheme of VLSI
implementation. IEEE Transaction Circuit
System II Analog Digital Signal
Processing. 2000;47(12):1576-1581 .

17. Cao B, Strikantan T, Chang CH. Efficient
reverse converters for the our- moduli sets
{2n -1, 2n, 2n + 1, 2n+1 -1} and {2n -1, 2n, 2n
+ 1, 2

n-1
 - 1} proc. IEEE Comput. Digit

Tech. 2005;152:687–695 .

18. Rami A, Mehdi H, Mehdi G. A novel High
Dynamic range 5-moduli set {2

2n+1
, 2

2n
 + 1,

2
n
 + 1, 2

n/2
 +1, 2

n/2
 – 1} with efficient

reverse converter and review improving
modular multiplication dynamic range.
Journal of Global Research in Computer
Science. 2012;3(1).

19. Amir Sabbagh Molahosseini,
Azadeh Alsadat Emrani Zarandi, Paulo
Martins, Leonel Sousa. A multifunctional
Unit for designing efficient RNS-based
datapaths. INESC-ID, Instituto Superior
Técnico, Universidade de Lisboa, Lisboa,
Portugal. Digital Object Identifier.
2017;1600-276.

DOI: 10.1109/ACCESS.2017.2766841

20. Gbolagade KA, Chaves R, Sousa L,
Cotofana SD. An Improved RNS reverse
converter for the {2

2n+1
-1,2

n
,2

n
-1} moduli

set IEEE International Conference on
Circuits and Systems (ISCAS 2010). Paris,
France. 2010;2103-2106.

21. Abdullahi M, Skavantzos A. A system
approach for selecting practical moduli set
for RNS. In Proceeding of the 27

th
 IEEE

Symposium in System Theory. 1995;445–
449.

22. Premkuma B. Corrections to An RNS to
binary converter in a three moduli set with
common factors, IEEE Trans. On Circuits
and Systems-II: Analog and Digital
Processing. 2004;51(1):43.

23. Ing. Dina Younes. Residue Number
System based building blocks for
applications in digital signal processing.
Available:https://coredownload/pdf

24. Augusta Angel M, Vijay MM. High speed
RNS to binary converter design using
parallel prefix adders.International Journal
of innovative Research in computer and
communication Engineering. An ISO
3297:2007 Certified Organization. 2015;3.

25. Kuttimani M, Rajalingam A.
Muthumanicckam, Mrs. R. Sornalatha
Design and implementation of RNS
reverse converter using parallel prefix
adders. International Journal of Computer
Applications (0975 - 8887). 2015;117(6).

26. Hassan Kehinde Bello, Kazeem Alagbe
Gbolagade. Acceleration of algorithm of
Smith-Waterman using recursive variable
expansion. International Journal of
Advanced Research in Computer
Engineering & Technology (IJARCET).
2018;7;(5).

ISSN: 2278 – 1323.

27. Hasan Z. Al-Ars. Performance
improvement of the Smith-Waterman
algorithm. Annual Workshop on Circuits,
Systems and Signal Processing (ProRISC
2007), Veldhoven, The Netherlands; 2007.

Bello and Gbolagade; AJRCOS, 1(2): 1-10, 2018; Article no.AJRCOS.42834

10

28. Kwame O, Boatteng, Edward Baagyere. A
Smith-Waterman algorithm accelerator
based on residue number system.
International Journal of Electronics and

Communication Engineering. International
Research Publication. 2012;5:1.

© 2018 Bello and Gbolagade; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://prh.sdiarticle3.com/review-history/25615

