Hybrid Multi-Evolutionary Algorithm to Solve Optimization Problems

Pytel, Krzysztof (2020) Hybrid Multi-Evolutionary Algorithm to Solve Optimization Problems. Applied Artificial Intelligence, 34 (7). pp. 550-563. ISSN 0883-9514

Full text not available from this repository.

Abstract

The article presents a Hybrid Multi-Evolutionary Algorithm designed to solve optimization problems. The Genetic Algorithm and Evolutionary Strategy work together to improve the efficiency of optimization and increase resistance to getting stuck to sub-optimal solutions. Genetic Algorithm and Evolutionary Strategy can periodically exchange the best individuals from each other. The algorithm combines the ability of the Genetic Algorithm to explore the search space and the ability of the Evolutionary Strategy to exploit the search space. It maintains the right balance between the exploration and exploitation of the search space. The results of the experiments suggest that the proposed algorithm is more effective than the Genetic Algorithms and Evolutionary Strategy used separately, and can be an effective tool in solving complex optimization problems.

Item Type: Article
Subjects: East India Archive > Computer Science
Depositing User: Unnamed user with email support@eastindiaarchive.com
Date Deposited: 22 Jun 2023 08:05
Last Modified: 26 Jun 2024 11:14
URI: http://ebooks.keeplibrary.com/id/eprint/1479

Actions (login required)

View Item
View Item