Choudhury, Tasrina R. and Naher, U. H. Bodrun and Akter, Sarifa and Begum, Bilkis A. and Rahman, M. Safiur (2020) Chromium (III) Removal from Synthetic Wastewater Using Biochar Produced from Vegetable Tanned Leather Shaving Dust. Journal of Scientific Research and Reports, 26 (4). pp. 68-80. ISSN 2320-0227
Choudhury2642020JSRR56844.pdf - Published Version
Download (813kB)
Abstract
In recent years, the rapid industrialization leads to increase industrial discharges without any appropriate treatment. The present study deals with the removal of Cr (III) ions from aqueous solutions by ZnCl2 treated biochar produced from vegetable tanned leather shaving dust. Effect of various process parameters like solution pH, adsorbent dose, adsorbent type, initial Cr (III) concentration and temperature have been studied in batch system. The thermal resistivity and scanning electron microscopy (SEM) analysis were engaged to perceive the surface morphologies of chemically treated and untreated biochar adsorbent. The experimental data was fitted well to the Langmuir adsorption isotherm model and the adsorption efficiency of chromium (III) was found to be maximum (70%) at low values of pH (around 3) for 0.75 g/50 mL dose of ZnCl2 treated biochar adsorbent. The model matrix of 24 full factorial design approach has been applied at a 95% confidence level to find the impact of different variables on removal Cr(III) ions from waste water. This study revealed that three main factors: Adsorbent type (p < 0.0001; 66.39%), pH (p < 0.001; 16.01%) and adsorbent dose (p = 0.032; 12.15%) have significant impact on Cr (III) ions removal efficiency. For using ZnCl2 biochar, Cr(III) ions removal efficiency was increased 66.39% compared to using untreated biochar. Subsequently, two interaction factors: pH-time and adsorbent type-time (α = 0.05, p < 0.05) have shown statistically significant on Cr(III) ions removal efficiency. The ZnCl2 treated biochar adsorbent prepared from vegetable tanned leather shaving dust is efficient and it is proposed that it can be conveniently employed as a low cost alternative in the treatment of industrial waste water.
Item Type: | Article |
---|---|
Subjects: | East India Archive > Multidisciplinary |
Depositing User: | Unnamed user with email support@eastindiaarchive.com |
Date Deposited: | 24 Feb 2023 08:10 |
Last Modified: | 12 Aug 2024 11:56 |
URI: | http://ebooks.keeplibrary.com/id/eprint/322 |